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Abstract: The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans
justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled
the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of
presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus, within their flight
range. Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling
localities of gravid female Culex quinquefasciatus. The spatio-temporal correlations between VHC
data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land
surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we
developed a distribution model using the correlated predicting variables. Only 12 factors showed
significant correlations with spatial distribution of VHC ratios (R2 = 81.62, p < 0.01). Non-forested
wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest
relationship. The VHC ratios showed monthly environmental resilience in terms of number and type
of influential factors. The highest prediction power of RU and other urban and built up land (OUBL),
was demonstrated during May–August. This association was positively correlated with the onset
of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife
analysis in MaxEnt and independently collected field validation points. The spatial and temporal
correlations of VHC ratios and their response to the predicting variables are discussed.

Keywords: West Nile virus; Culex quinquefasciatus; habitat suitability; New Orleans; distribution risk

1. Introduction

West Nile virus (WNV) was first reported in 1999 in New York City, NY, USA. By 2000 the disease
has spread throughout the northeastern USA [1–3]. The virus reached Louisiana in the fall of 2001,
when a dead crow in Jefferson Parish was identified as being infected with WNV [4]. By 2003, WNV
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infections occurred in 60 of the 64 Louisiana’s parishes. In the New Orleans metropolitan areas (Orleans
and Jefferson Parishes) focal transmission activity occurs principally during mid-July [4].

Culex quinquefasciatus Say, as the main vector, with Cx. salinarius Coquillett possibly acting
as a secondary vector, were incriminated in the WNV outbreak in southern Louisiana during
2002 [5–7]. The former mosquito species, with a feeding preference for mammals, was responsible
for enzootic/epidemic transmission, especially in urban and sub-urban settings [7–14]. The primary
mosquito vector showed biological and ecological resilience in space and time based on the available
environmental resources. This resilience may influence the spatio-temporal distribution of the WNV
vector, which may or may not bring them to the vicinity of both reservoir host(s) and human
populations. Eventually this will affect the amplification and transmission cycles of WNV in areas
under risk.

In New Orleans, the confluence of availability of competent mosquito vector(s), susceptible
reservoir host(s), suitable natural systems and climate for both mosquitoes and host(s) enabled the
autochthonous transmission of WNV with hundreds of human cases and major mortality of wild
native and exotic birds [2,4]. Nonetheless, the transmission dynamics of WNV in terms of space
and time in relationship to the biology, ecology of mosquito vector(s), and their biophysical systems
remains unclear. In fact, the distribution, blood-feeding preference, flight range and vectorial capacity
of mosquito vectors are very critical inputs for predicting the transmission cycle of this disease.

Furthermore, mosquito vectors often shift their feeding preference seasonally or spatially,
depending on the availability of the blood meal source. For example, Cx. quinquefasciatus showed
an opportunistic preference for blood meal. In peninsular Florida, it is responsible for an epizootic
cycle and sustaining the virus circulation within reservoir host bird(s) [15,16]. However, it has been
incriminated with the enzootic/epidemic transmission cycle of WNV in urban and sub-urban areas in
Louisiana due to feeding preference to humans and other mammals [4,6,7,17–19].

Currently, most species distribution models for mosquitoes are based on hydrological and
meteorological data [15,16,20–22]. Some models include socio-environmental predictors in terms
of vegetation or urban and sub-urban areas [23]. With respect to WNV, models have used either used
data points of WNV cases and mosquito vectors instead of the flight range of the mosquito vectors
around their hosts or predicted the distribution risk of WNV on regional scale. Prediction models
for WNV and Zika virus (ZIKV) transmission potential were generated for their mosquito vectors in
regard to their flight range around recorded positive cases highlighting their response to surrounding
biophysical systems such as climate and non-climate factors [24,25]. Although previous models are
useful, their findings did not adequately account for the comprehensive response of vector-host
contact (VHC) ratios to climate and non-climate variables such as land use-land cover (LULC) and
Digital Elevation Models (DEM) and the overall influence on arbovirus transmission potential [26,27].
Mosquito density reflect neither the likelihood of biting risk, which is caused by mosquito vector, nor
the transmission potential as a function of biting rate. The VHC explains the ratio between collected
mosquito density and human population census, which reflects areas under risk of increased biting
rate by mosquito vector.

The lack of available vaccines for WNV and consistent development of insecticide resistance for
mosquito vector populations jeopardize public health in affected areas. Additionally, the focal and
sporadic locally-transmitted cases justify the necessity to generate prediction models that identifies
areas under risk of infective biting rates in order to target during surveillance and control activities. In
our model, we evaluated the spatio-temporal distribution of VHC ratios in response to: (i) future climate
scenarios during 2011–2030, (ii) LULC, (iii) socioeconomic, and (iv) DEM systems. Our correlative
models were generated within the flight range of WNV vector in the city of New Orleans, LA (NOLA).
The spatio-temporal VHC ratios were estimated utilizing data records on female gravid mosquito and
human population census per block during 2015. The spatio-temporal resilience of VHC ratios to their
predicted biophysical systems was characterized. This allowed developing prediction risk maps for the
WNV vector presence using the Maximum Entropy (MaxEnt) tool, emphasizing the human population
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under risk of infective mosquito bites. Since the local economy in NOLA is primarily driven by tourism,
management of arbovirus diseases has a significant economic implications. Arbovirus transmission has
the potential to jeopardize the tourism industry, making NOLA surveillance and control programs very
important to the economic and ecological health of the city.

2. Materials and Methods

2.1. Study Area

New Orleans, Louisiana (NOLA) lies on the Mississippi River, near the Gulf of Mexico with a
total area of 1084 km2 inhabited by almost 1,262,888 people, with an average density of 1165/km2.
NOLA is sub-tropical with an annual high temperature of 25 ◦C, an annual low of 16.8 ◦C, and average
annual precipitation of 162.3 cm. Average highest precipitation occurs in July (17.9 cm).

2.2. Data Layers

2.2.1. Mosquito Sampling and Socioeconomic Data

Density of wild-collected female gravid Cx. quinquefasciatus was estimated using Center for
Disease Control (CDC) gravid traps (John W. Hock Company, Gainesville, FL, USA) at 37 permanent
locations in the City of New Orleans. Traps were placed outdoors at the beginning of April through the
last week of December during 2015. Traps were setup on the ground and operated for 18–20 h using a
12-v battery. Mosquito collections were transported to the laboratory facility at The NOLA Mosquito
Control Board for further identification to the species level using the taxonomic keys of Darsie and
Ward [28].

Because the density of collected mosquitoes reflects neither the risk of vector contact with host
nor disease transmission rates, the vector-host contact (VHC) ratios were calculated within 5-km
buffer radii around the sampling localities [25,27,29]. These buffer radii reflect the foraging activity of
both ovipositing and newly emerged host seeking mosquitoes from their breeding sites. Moreover,
these buffer radii demonstrate human populations under risk of bites of host seeking mosquito and
disease transmission. Although the sampled mosquitoes in the current study were gravid and not host
seeking, their density gives insight regarding the wild mosquito populations within 5-km radii around
sampling sites.

The VHC ratios were estimated utilizing spatial and temporal density of WNV vector and human
population census within flight buffer radii (~5-km) of this mosquito vector. For the spatial analysis,
density of the mosquito vector (total number of mosquito vector/season/5-km) was estimated for
each sampling site, whereas in the temporal analysis, density was estimated on a monthly basis. Data
on human population census/housing block was imported from the NOLA census records of 2015
(data.nola.gov), and clipped within the buffer radii around vector sampling sites. Extraction of both
mosquito density and human population census were conducted using the Arc toolbox in ArcGIS
ver. 10.1 (Esri, Redlands, CA, USA). Accordingly, the spatio-temporal fluctuation of VHC ratios were
estimated in response to their predicted biophysical systems within the flight buffer radii.

2.2.2. Bioclimatic Data

In order to demonstrate the spatio-temporal fluctuation of VHC ratios in response to future
climate scenarios in NOLA, we utilized climate data from 2011–2030 (Table 1). Utilization of future
climate scenarios not only highlights the sampling time frame of WNV vector during 2015, but also
projects the future distribution of VHC ratios. Bioclimatic data layers were obtained from the General
Circulation Models (GCMs) for the optimistic IPCC Special Range of Emission Scenarios (SRES A1B).
The A1B represents a medium and balanced scenario for the emission rate produced by Green House
Gases (GHG). This scenario was imported from the data base at Centro International de Agricultura
Tropical (CIAT) (http://www.ccafs-climate.org/data/) [30]. We also used the data based on the global
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circulation model CSIRO-Mk3.5.0. For projections, a spatial resolution of 30 arc sec (~1 km) was
applied. The layers were clipped to match dimensions of NOLA and saved as ASCII grids using Model
Builder in ArcGIS ver. 10.1 (Esri, Redlands, CA, USA).

Table 1. Proposed thirty-three variables in prediction model of WNV mosquito vectors in the city of
New Orleans, LA.

Variable Variable Name Data Source Units

Alt Elevation in meters WorldClim 1 Meter

Aspect Aspect ratio Generated 2 Degrees

Bio01 Annual Mean Temperature WorldClim 1 Degree Celsius

Bio02 Mean Diurnal Range (Mean of monthly (max temp − min temp)) WorldClim 1 Degree Celsius

Bio03 Isothermality (BIO2/BIO7) (* 100) WorldClim 1 Dimensionless

Bio04 Temperature Seasonality (standard deviation * 100) WorldClim 1 Degree Celsius

Bio05 Max Temperature of Warmest Month WorldClim 1 Degree Celsius

Bio06 Min Temperature of Coldest Month WorldClim 1 Degree Celsius

Bio07 Temperature Annual Range (BIO5-BIO6) WorldClim 1 Degree Celsius

Bio08 Mean Temperature of Wettest Quarter WorldClim 1 Degree Celsius

Bio09 Mean Temperature of Driest Quarter WorldClim 1 Degree Celsius

Bio10 Mean Temperature of Warmest Quarter WorldClim 1 Millimeter

Bio11 Mean Temperature of Coldest Quarter WorldClim 1 Millimeter

Bio12 Annual Precipitation WorldClim 1 Millimeter

Bio13 Precipitation of Wettest Month WorldClim 1 Millimeter

Bio14 Precipitation of Driest Month WorldClim 1 Millimeter

Bio15 Precipitation Seasonality (Coefficient of Variation) WorldClim 1 Fraction

Bio16 Precipitation of Wettest Quarter WorldClim 1 Millimeter

Bio17 Precipitation of Driest Quarter WorldClim 1 Millimeter

Bio18 Precipitation of Warmest Quarter WorldClim 1 Millimeter

Bio19 Precipitation of Coldest Quarter WorldClim 1 Millimeter

Curvature Curvature Generated 2 Degrees

DFL Deciduous forest land USGS 3 Integer values

FW Forested wetland USGS 3 Integer values

Hill shade Hill shade Generated 2 Degrees

ICS Industrial and commercial services USGS 3 Integer values

NFWL Non-forested wetland USGS 3 Integer values

OUBL Other urban and build-up land USGS 3 Integer values

Population census Population census per block NOLA 5 No. household/block

RU Residential and urban settings USGS 3 Integer values

SCLRE Streams, canals, lakes, reservoirs and estuaries USGS 3 Integer values

Slope Slope Generated 2 Degrees

TD Tree density Lewis et al. 4 No. trees/area
1 WorldClim Global Climate database v1.4, available at: http://www.ccafs-climate.org/data/ (accessed on 7 March
2016); 2 Digital elevation model using the surface spatial analyst tool in Arc tool box of ArcGIS ver. 10.1; 3 USGS
available at: http://water.usgs.gov/GIS/dsdl/ds240/ (accessed on 3 March 2016); 4 Lewis et al. (In Review) [31];
5 data.nola.gov (accessed on 7 March 2016) All layers of variables data used in producing species distribution model
gridded to ~1 km spatial resolution and projected into World Geodetic System (WGS) 1984.

The DEMs representing slope, aspect ratio, curvature, and hill shade were highlighted in previous
studies to predict land geomorphology, temporary water accumulation and probable breeding sites for
mosquitoes [25,32–35]. Accordingly, these land surface indicators were generated from a 30 arc-seconds
DEM to be included in our investigation. Land geomorphology and temporary water accumulations
within 1 km were not highlighted in our study, because of two reasons: (i) resolution of all data layers
were resampled to match worldclim data (~1 km), (ii) Cx quinquefasciatus has been reported to fly for
longer distances within ~5 km seeking suitable host(s) and breeding sites.

http://www.ccafs-climate.org/data/
http://water.usgs.gov/GIS/dsdl/ds240/
data.nola.gov
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2.2.3. Land Use-Land Cover Data (LULC)

Since mosquitoes depend on the human population as a source of blood meal [36], an urban areas
layer was included as a predictor (Table 1). Urban areas were categorized into three classes to represent
degree of urbanization: (1) residential and urban, in which housing predominates in two different
forms; (2) industrial and commercial services, which represents industrial settings and fewer housing
structures; and (3) other urban and built-up land with the least housing and human populations.

Vegetation at the site level (data from USDA Forest Service and Tulane University), representing
resting places and sugar meal sources for adult mosquitoes, was included in our model [37–39].
Additionally, vegetation reflected habitat quality for nesting birds [40,41], which are reservoir hosts
of WNV. Therefore, four classes of vegetation types were extracted from the USGS and literature [31]
to build up our model: (1) non-forested wetland, (2) forest wetland, (3) deciduous forestland, and (4)
tree density.

Streams, canals, lakes, reservoirs and estuaries of different sizes (> and ≤1 km) were also included
to represent permanent water bodies, as possible breeding sites for Cx. quinquefasciatus. All LULC data
layers were imported from a US Geological Survey (USGS) data set. These data were built during
the 1970s and 1980s and updated and released during 2007 [42]. For comparison and confirmation of
the USGS data, areas of LULC from zoning district data layers were imported from the City of New
Orleans Enterprise GIS Database during 2016.

Although sampling sites were randomly selected to represent all LULC classes within the buffer
radii, urban areas were extensively highlighted in our study to predict human population under risk
of increased biting rate (Figure 1, Table 2). Additionally, the area percentages of each LULC class to the
total sampled areas within 5-km buffer radii were estimated (Table 2).
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Table 2. Number of traps and area percentage of LULC classes within 5-km buffer radii in NOLA.

LULC Class Area % LULC Class No. Traps/Class

Deciduous forest 7.18 2
Forested wetland 8.01 2

Industrial and commercial services 9.56 4
Non forested wetland 7.72 1

Other urban and built-up land 4.61 3
Residential-Urban 28.29 25

Streams, canals, lakes, reservoirs
and estuaries 24.93 0

2.3. Variables Selection

A total of 33 bioclimatic, LULC, socioeconomic and DEM data layers (Table 1) were clipped to
NOLA and extracted within each 5-km buffer radii around mosquito sampling sites in preparation
for collinearity analysis to: (i) reduce redundancy between influential factors, and (ii) select the
significant explanatory variables to be included in MaxEnt (Figure 2) [25,27]. In this regard, a stepwise
linear regression model (RM) was carried out for three purposes: (i) to test the spatial dependency of
vector-host contact ratios on their predicting variables within the flight range radii of this mosquito
vector around their sampling sites, (ii) to characterize monthly resilience of Cx. quinquefasciatus to their
predicting variables, (iii) to overcome redundancy and exclude the linearly correlated variables. This
analysis was carried out using JMP pro statistical package ver. 10.0.0 [43]. The minimum corrected
Akaik Information Criterion (AICc) and R2 values were used to select the significant predicting
variables (p < 0.05) [25,44–47].

2.4. Habitat Suitability Modeling of WNV Vector

The maximum likelihood of habitat suitability for Cx. quinquefasciatus was modeled using MaxEnt
software v. 3.3 (http://www.cs.princeton.edu/~schapire/maxent/, New York, NY, USA), [48–50]. This
analysis uses the occurrence records of mosquito vectors in association with the selected predicting
variables from RM to generate suitability risk maps. Accordingly, the Jackknife test was used to
evaluate the permutation importance of independent variables in our model. The generated risk
probability was categorized into five classes using the natural area breaks in ArcGIS utilizing WNV
minimum infection rate (0.8/1000) recorded by Godsey et al. (2005) [5]: very low (0–0.2), low (>0.2–0.4),
medium (>0.4–0.6), high (>0.6–0.8), and very high (>0.8).

The 37 collection sites were used as spatio-temporal replicates for the mosquito vector distribution.
These records were randomly partitioned for model evaluation into two subsamples: 75% of the records
were used for training and building the model, and 25% of the records were used for testing the model’s
accuracy. The duplicate records of WNV mosquito vectors within ~1-km of the same cell size were
excluded [51]. During data training, a matrix of spatial correlations between sampling points and
their associated predicting variables were created. Accordingly, the habitat suitability maps were
created for sampled and unsampled areas based on the habitat similarity between sampled and
unsampled regions.

Five replicate runs were assigned in running the model to generate the average, maximum,
minimum and median of the distribution range of mosquito vectors. Prediction models were evaluated
using the cross-validation method, by systematically removing each data point from our training data
set and predicting the removed point based on the remaining data points. Two thresholds have been
used to examine the performance accuracy of our model [49]: (i) the extrinsic omission was evaluated
at a fixed threshold (10 percentile training presence), and (ii) the area under the curve (AUC) of the
receiver operating characteristics (ROC).

http://www.cs.princeton.edu/~schapire/maxent/
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To increase the potential of the habitat suitability model and maximize the sampling effort of
extracted mosquito vectors, a separate ASCII file generated from the 5-km buffer zones was included
and weighted to the corresponding VHC ratios [25,52]. Accordingly, the habitat suitability of the
gravid mosquito vector will be predicted in regard to their flight range around human hosts, breeding
habitats and in response to their predicting variables.

Therefore, the generated risk map reflects the association between Cx. quinquefasciatus, available
avian or human blood meal, and water habitats. The MaxEnt evaluates different correlations between
the presence records of extracted mosquito vector data and their predicting variables within the
sampled areas utilizing logistic regression analysis. In our study, we weighted the presence records
to VHC ratios 5-km around sampling localities and attached these as ASCII bias files. Since the
habitat suitability for WNV transmission generated by MaxEnt was produced at the threshold of
WNV minimum infection rate, our risk maps highlighted human populations under risk of infective
mosquito bites.

2.5. Model Validation

To evaluate the generated risk probability maps, a total of 18 independent field validation points
were sampled biweekly. The validation points were randomly selected to represent areas with high
mosquito and human population density. Female mosquitoes (~4–100) sampled from each locality
were pooled according to their date of collection in order to be used for WNV testing. The sampling
sites were identified as WNV positive as long as one pool was reported positive from the same locality
during the season

3. Results

3.1. Variables Selection

3.1.1. Spatial Analysis

The vector-host contact ratios showed variation in their response to the 32 variables used in RM.
The increase in VHC ratios showed significant correlations with 12 predicting variables (AICc = 505.01,
R2 = 81.62, p < 0.01) (Table 3). The LULC related variables were found to be the key predictors,
especially non-forested wetland (NFWL) (r(13) = 1.91, AICc = 505.01, R2 = 81.62, p < 0.01). This land
cover type alongside with tree density (TD) positively correlated with the vector-host contact ratios.
However, the increase in residential and urban settings shared a reduced negative influence on the
spatial distribution of WNV mosquito vector (Table 4).

Table 3. Predicting variables used in building up the spatial and temporal models.

Model Variables Test AUC R2 AICc

Spatial Model Bio 1, 2, 4, 6, 7, 11, 13, 17, 18, NFWL, RU, TD 0.71 0.82 505.01
April Bio 11, 12, 14, 15, 8 0.77 0.75 79.05
May Alt, Bio 8, 11, 12, 14, 15, NFWL 0.74 0.85 71.53
June Alt, Bio 11, 14, 2, 8, OUBL 0.73 0.81 80.57
July bio14, 15, 8, 9, OUBL 0.77 0.83 73.28

August bio11, 12, ,15, 8, 9, OUBL, RU 0.8 0.93 60.67
September Bio 8, 11, 12 0.79 0.58 88.26

October Bio 1, 8, 12 0.75 0.55 81.30
November Bio 2, 8 0.78 0.52 84.34
December Bio 8, 12 0.71 0.42 80.95

Three of the predictors were related to seasonal precipitation and temperature variables namely:
precipitation of wettest month (Bio13), and precipitation of driest (Bio17) and warmest quarters
(Bio18). The coefficient estimates in RM demonstrated a negative association between WNV mosquito
vector and Bio17 and Bio18. Additionally, six temperature related variables correlated with VHC
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ratios namely: mean annual temperature (Bio1), mean diurnal range (Bio2), temperature seasonality
(Bio4), minimum temperature of coldest month (Bio6), temperature annual range (Bio7), and mean
temperature of coldest quarter (Bio11). Temperature related variables had varied correlations with
VHC ratios. Although the increased contact ratios showed a positive association with warm sampling
localities (Bio1, Bio4, and Bio11), Bio2, Bio6 and Bio7 showed negative correlations (Table 4).

Table 4. Percent contribution of predicting variables on spatial distribution of WNV mosquito vector
during 2015 in City of New Orleans, LA.

Variable
Linear Regression Analysis

% Contribution (Jackknife’s Test)
Coefficient R2 p AICc

Bio 1 3.08 0.65 8 635.73 ** 1.1
Bio 11 4.74 0.46 4 722.22 ** 8.8
Bio 13 0.77 0.79 10 532.48 ** 0.1
Bio 17 -0.24 0.08 2 834.61 * 0.1
Bio 18 -0.25 0.73 9 579.02 ** 37.2
Bio 2 -0.83 0.81 12 514.95 * 0.2
Bio 4 0.07 0.11 3 828.82 ** 1.6
Bio 6 -2.99 0.49 5 711.32 * 0.1
Bio 7 -1.74 0.57 6 676.71 * 0.3

NFWL 1.91 0.82 13 505.01 28.9
RU -1.24 0.60 7 662.57 ** 20.9
TD 0.60 0.80 11 523.11 ** 0.7

* Significant at p < 0.05; ** Significant at p < 0.01; Best predictor, significant (p < 0.01).

3.1.2. Temporal Analysis

The temporal distribution of WNV mosquito vector showed ecological resilience in terms of
month-to-month response to their predicting variables. This resilience was demonstrated as the
temporal changes of predicting variables and did not affect monthly vector-host contact ratios
(20.16 ± 0.02) (Figure 3).
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Figure 3. Monthly mosquito WNV infection rate in correlation with vector-host contact ratios in NOLA.

Generally, temperature related variables were the key factors in predicting monthly distribution
of WNV mosquito vector (Table 5). These variables were manifested as: mean temperature of coldest
(Bio11), wettest (Bio8) and driest (Bio9) quarters, mean annual temperature (Bio1), and mean diurnal
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range (Bio2). The distribution of WNV mosquito density was shown to be positively associated
with the increase of all temperature parameters during sampling time. The increase in density of
WNV mosquito vector during April–September was found to be positively associated with Bio11.
This correlation was demonstrated as maximum prediction probability of vector-host contact ratios
during September (r(4) = 0.96, AICc = 88.26, R2 = 58.49, p < 0.01). This finding was confirmed by
the percent contribution of (Bio11) generated by the Jackknife’s test for this month (88.5%) (Table 5).
Mean temperature of wettest quarter (Bio8) shared reduced prediction power with Bio11 through the
whole season and reached its maximum in December. However, a negative correlation was recorded
with the mean temperature of the driest (Bio9) and wettest (Bio8) quarters during July–August and
September, respectively.

Table 5. Percent contribution of predicting variables on temporal distribution of vector-host contact
ratios of WNV in the City of New Orleans, LA.

Month
Linear Regression Model

% Contribution (Jackknife’s Test)
Variable Coefficient R2 p AICc

April

Bio 11 1.5671996 0.7468 6 79.0541 73.6
Bio 12 −0.1904792 0.6252 5 83.8586 ** 1.7
Bio 14 0.580292 0.4581 3 85.311 * 0.8
Bio 15 0.9505776 0.5683 4 83.3859 * 1.9
Bio 8 1.549815 0.292 2 88.5009 ** 21.9

May

Alt 0.2054192 0.6929 5 74.2539 * 2.2
Bio 11 1.2170901 0.8465 8 71.5334 51.1
Bio 12 −0.1428952 0.7531 7 77.6814 ** 1.7
Bio 14 −0.0756836 0.5338 3 77.4397 * 0.9
Bio 15 0.8079636 0.6232 4 75.555 ** 1.2
Bio 8 1.9098991 0.3773 2 81.4792 ** 15.4

NFWL 1.6682811 0.726 6 75.5791 ** 27.6

June

Alt 0.2648213 0.8139 7 80.5656 1.6
Bio11 1.0789617 0.7693 6 81.1173 ** 57.9
Bio14 −1.0029246 0.5241 3 87.6001 ** 1.1
Bio2 1.4828419 0.5889 4 87.3124 ** 0.5
Bio8 2.3433611 0.2854 2 94.4485 ** 38.8

OUBL 1.5141391 0.6708 5 85.5914 ** 0.1

July

Bio14 −0.6971647 0.5415 3 86.6717 ** 2.1
Bio15 1.5743201 0.7435 5 79.5723 ** 1.5
Bio 8 2.4390573 0.3209 2 93.1952 ** 31
Bio 9 −0.6412268 0.8334 6 73.2771 65.3

OUBL 1.9151789 0.6321 4 84.6186 ** 0.1

August

Bio 11 1.0996856 0.8687 6 65.7127 ** 35.1
Bio12 −0.0854343 0.6302 4 82.893 ** 1.2
Bio15 1.5403677 0.8289 5 68.006 ** 0.3
Bio8 1.8883324 0.1999 2 95.2837 ** 9.7
Bio9 −0.7676054 0.9091 7 61.4863 * 16.1

OUBL 2.9633858 0.4018 3 91.2107 ** 1.3
RU 0.2968421 0.9294 8 60.6681 36.3

September
Bio 8 −0.1073224 0.2915 2 95.6155 ** 10.1
Bio 11 0.9622917 0.5849 4 88.2612 88.5
Bio 12 −0.1073224 0.4927 3 90.1222 ** 1.4

October
Bio 1 1.2929084 0.5465 4 81.2964 56.6
Bio 8 1.431466 0.1947 2 89.6387 ** 37.7
Bio 12 −0.0983597 0.4436 3 83.2546 ** 5.7

November
Bio 2 0.9214511 0.5155 3 84.3401 0.1
Bio 8 1.6743075 0.2768 2 91.4944 ** 99.9

December
Bio 8 1.591142 0.1993 2 85.9884 ** 84.9
Bio 12 −0.0493324 0.4161 3 80.9488 15.1

* Significant at p < 0.05; ** Significant at p < 0.01; Best predictor, significant (p < 0.01).
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Precipitation related variables, LULC and elevation showed less influence in predicting
Cx. quinquefasciatus distributions and VHC ratios. Precipitation variables showed negative influence
on the distribution of WNV mosquito vector during April–September, especially annual precipitation
(Bio12) and precipitation of the driest month (Bio14). However, the seasonal precipitation (Bio15),
during April–August, demonstrated a positive correlation with the distribution of Cx. quinquefasciatus.
The prediction power of LULC was demonstrated during May–August. Unlike the spatial model, both
“Other Urban and Built-up Land” (OUBL) and “Residential-Urban” (RU) settings were found to be
positively associated with vector-host contact ratios and the onset of mosquito WNV infection rates
during June (Table 5, Figure 3). Similarly, elevation shared a subtle positive prediction power during
May and June.

3.2. Habitat Suitability Modeling of West Nile Virus Vector

Spatial and Temporal Analysis

A total of 37 sampling points were included in both spatial and temporal models. Nine and
28 points were used for testing and training the habitat suitability models, respectively. For the spatial
model, the average predictive performance was found to be high with an AUC value of 0.85 and 0.71 for
training and testing occurrence records respectively, with a standard deviation of 0.07. The specificity
of the model was demonstrated as the fractional predicted area. This area at a 10-percentile training
presence was found to be 0.36, which were classified as significantly no better than random (p < 0.05).
The average likelihood of predicting very high risk areas was ~107 km2, which is ~9.87% of the total
area of the city of New Orleans (Figure 4).

The Jackknife test confirmed the findings we retrieved from RM analysis. The LULC related
variables (NFWL, RU, and TD) significantly maximized the predictability of vector-host contact (50.5%).
The highest training gain was shared with precipitation related variables (37.4%). Temperature related
variables shared a reduced training gain (12.1%) in our model (Table 4). Although RM showed
a negative correlation between Cx. quinquefasciatus and residential-urban settings, the maximum
likelihood of the vector-host contact ratio was predicted at urban areas with less housing structures
with an AUC training gain of 0.68 (Figure 5).

For the monthly habitat suitability model, the average predictive performance for the nine months
was found to be high with an AUC value of 0.82 and 0.76 for training and testing occurrence records,
respectively (Table 3). The fractional predicted area at a 10-percentile training presence was found to
be no better than random (p < 0.05). The average likelihood of predicting very high suitable habitat
was almost ~10.87% of the total area of NOLA. This habitat suitability ranged from ~13.8 and 8.13%
during the early and late seasons. The percentage contribution of predicting variables generated by
the Jackknife test for each month is summarized in (Table 5).
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3.3. Model Validation

A total of 715 mosquito pools were tested for WNV representing 18 collection sites. Only
30 mosquito pools were WNV positive during June–December, confirming our results in the temporal
analysis. Thirteen and five collection sites were recorded as WNV positive and negative, respectively,
representing different habitat suitability classes (Figure 6).
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4. Discussion

In our model, we generated habitat suitability estimates for the spatio-temporal likelihood of
VHC ratios in NOLA. Since the relationship between mosquito population density and human hosts
is important in determining the infective biting rate and transmission risk of arboviruses, density of
Cx. quinquefasciatus was linked to the human population census in order to generate risk maps for
areas under risk of increased VHC. Additionally, we predicted the habitat suitability for the likelihood
of VHC within flight ranges of Cx. quinquefasciatus (~5-km) around their sampling sites [29,53]. The
significant explanatory variables were evaluated and selected using minimum AICc values using
stepwise RM. The potentiality of the current prediction model was proven by the high AUC and R2

values produced by MaxEnt and RM. These thresholds indicate that occurrence records were likely
assigned a higher probability of presence than background sites. Additionally, the generated risk map
was validated using 18 independent field collected sampling points and tested for mosquito WNV
infection rates during the season.

The human population in NOLA is centralized in the western areas of the city. However, the
likelihood of VHC ratios demonstrated heterogeneous distributions in this side (Figure 4). Although
the monthly predicting variables showed some variations, especially the climate, in terms of their
percent contribution, the number of these variables declined gradually toward the end of the season.
However, the changes in these predicting variables had a consistent influence on the distribution of
VHC likelihood of the same high risk areas in the west side of the city. This may reflect the temporal
resilience of this mosquito vector to their predicting climate variables in these habitats. This resilience
gives the WNV vector the ability to develop and survive in close vicinity to WNV reservoir bird
host(s), which was confirmed by the positive WNV mosquito pools during our study [29,53]. However,
multi-year mosquito data are recommended to be included in further investigations.

During June and early August 2002, WNV was identified in pools of Cx. quinquefasciatus
mosquitoes in southeastern Louisiana with the possibility of Cx. salinarius acting as a secondary
vector [6]. Although other mosquito vectors were incriminated in amplification and transmission
potentials, the selective feeding preference on both human and avian blood and vectorial capacity
experiments emphasized that Cx. quinquefasciatus is the competent vector in transmitting WNV in LA.
The Cx. quinquefasciatus mosquito is well known as exophilic and exophagic and the breeding habitats
range from ditches, woodland pools, and freshwater marshes of a semi-permanent or permanent
nature [25]. As much as Cx. quinquefasciatus maintains and amplifies WNV within reservoir host
bird(s) [15,16], it is responsible for the urban transmission cycle of WNV in southern and southeastern
parts of the USA [17–19].

In the spatial analysis, the RM demonstrated a significant association between NFWL and VHC
ratios (R2 = 82, p < 0.01). The NFWL habitats were dominant in the eastern side of the city with
significantly low human population census. Although this side has not been extensively sampled
(No. traps = 1), it is worthy to be highlighted in further investigations to understand the temporal
association between WNV vector and reservoir host(s). Other LULC related variables such as TD,
OUBL and RU showed a reduced contribution in predicting the likelihood of VHC. These LULC
habitats provide both sugar and blood meals, and are favorable to WNV maintenance by enhancing
maintenance and amplification phases between mosquito vector and their nesting/roosting reservoir
bird hosts, especially the passerines [17]. This finding was confirmed by the selective feeding preference
of this mosquito vector in NOLA, their contribution in both enzootic and epidemic transmission cycle
of WNV [5,17,54–57], and the extended transmission season due to the milder climatic conditions of
the Gulf Coast as manifested in mosquito WNV infection rates (Figure 3). Similar reports of increases
in mosquito WNV infection rates have been made in 2005 and 2006 in Chicago [58]. Moreover, both
the Jackknife test in MaxEnt (28.9%) and temporal analysis emphasized the association between LULC
types during amplification and early transmission phases (May–August) (Tables 3 and 5).

Although no WNV human cases were included in our model, the transmission potential still
exists due to the high VHC ratios during September and high suitable habitats. In addition, the lack
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of data on vector competence, survival rate, and the gonotrophic cycle period for NOLA prevented
inclusion of this information in our model. However, the high risk probability was generated utilizing
WNV minimum infection rates (0.8/1000) [5].

The climate variables shared reduced contributions in predicting likelihood of VHC in the spatial
analysis [55,56]. However, climate was demonstrated as the key predicting factor in determining
temporal distribution of WNV vectors. The varied correlations between temperature-related variables
and VHC explain the association of WNV mosquito distribution with warmer areas during the
coldest months. This was confirmed by the negative correlation between VHC and Bio6, which
represents the minimum temp of the coldest months. Similarly, Bio6 predicts timing and distribution
of the nesting/roosting bird hosts during early spring. In a field study, severe winter caused
delay in birds nesting, which explains the variation in timing of host feeding shifts. The VHC
showed a negative correlation with precipitation during the driest (Bio17) and warmest (Bio18)
quarters [25,55,56]. This negative correlation may be attributed to the flush of limited numbers of
mosquitoes from breeding habitats due to rainfall during dry and wet seasons. Subsequently, this
reduced the abundance/distribution of WNV mosquito vector during these periods.

In the temporal analysis, we attempted to characterize the ecological resilience of WNV mosquito
vector in response to seasonal temperature and precipitation related variables, in association with
other LULC variables. This resilience was demonstrated by a decrease in the number of variables
that predicted VHC ratios during the late season. The lagged influence of mean temperature of the
coldest quarter (Bio11) had a positive association with the increased development/distribution of
WNV vector during April–September [25]. This was manifested as maximum prediction probability
of VHC ratios during September (R2 = 58.49, p < 0.01). This lagged influence may cause the increase
in the development rate of mosquito vectors in affected areas during the amplification phase of the
WNV pathogen during April–May. Meanwhile, neotropical bird migrants, mainly passerines, tend
to nest during April–May or roost through July, which is crucial for the amplification phase [55,59].
Accordingly, this may accelerate the disease transmission during June–September. Moreover, blood
meal preference may shift from birds to mammals including humans that are temporally associated
with distribution of nesting/roosting birds, thereby enhancing human risk of arboviruses [55,56,58].
This shift in mosquito feeding preference may be influenced by the temperature-related variables
during dry and wet seasons, i.e., negative correlations between VHC and temperature-related variables
during dry and wet seasons. The increase in these temperatures reflects the reduction in water bodies
that may allow breeding and nesting habitats for mosquito vectors and birds, respectively. Similarly, the
negative influence of precipitation variables during April–September, especially annual precipitation
(Bio12) and precipitation of the driest month (Bio14), shared a reduced influence toward the prediction
of distributions of Cx. quinquefasciatus. This may help stimulate blood feeding during these times.
The seasonal precipitation (Bio15) during April–August increased both available water habitats and
distribution of WNV vector.

Our findings showed heterogeneity in the temporal distribution of Cx. quinquefasciatus in response
to LULC during May–August. This reflects the influence of some LULC classes on monthly flux and
distribution patterns of mosquito populations. The heterogeneity in monthly distributions of mosquito
vectors can have a large impact on virus amplification during the early season, especially when it is
in close vicinity to reservoir bird hosts. Although no WNV positive mosquito pools were reported
during April and May, NFWL was positively correlated with VHC during May (R2 = 72.6). This may
reflect the association between nesting/roosting reservoir bird hosts and VHC ratios in May. During
June–August, WNV seemed to build inside mosquito bodies to the detectable level that can cause
potential transmission. Both OUBL and RU settings were associated with the onset of mosquito WNV
infection rates during June. Other models reported that WNV transmission was either associated with
forested and urban land [18,60] or socioeconomic status [61]. However, these correlations may vary
spatially or temporally [62].
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Some previous studies improved our understanding about biology and ecology of
Cx. quinquefasciatus and epidemiology [16,21,63]. Nevertheless, their findings did not highlight the
interaction between different systems and their overall influence on mosquito vector distribution at a
local scale. Moreover, these models predicted the geographic distribution of WNV vectors utilizing
mosquito density as sampling points rather than the flight range area and vector-host contact ratios.

Land geomorphology and topography were used in predicting suitable habitats for mosquito
breeding [25,34,35,62]. Four potential indicators were rigorously investigated: aspect ratio, slope,
land surface curvature and hill shade [25,34,35,62]. The sampled gravid mosquito vectors reflect the
proximity of water habitats to collected samples. Although these indicators showed potentiality in
predicting WNV mosquito vectors in other areas [25,35], only relative high altitude demonstrated
temporal influence on increased VHC ratios during May and June.

5. Conclusions

In the current study we modeled the spatio-temporal distribution of VHC ratios in response
to future climate scenario, LULC, human population census, and DEM. Vector-host contact (VHC)
ratios were estimated as a potential entomological indicator for the likelihood of biting rate and
transmission potential of WNV. The VHC ratios were estimated within 5-km buffer zones around
mosquito sampling sites representing their average flight range utilizing mosquito density and
population census/house block. The likelihood of VHC ratio was first predicted in response to
the biophysical systems using stepwise multiple regression model (RM). Accordingly, we used the
significant predicting variables from RM to highlight the spatio-temporal distribution of areas under
risk of increased VHC emphasizing the likelihood of infective mosquito bites.

The interaction between these different biophysical systems showed heterogeneous influences on
the spatio-temporal distribution of VHC ratios. In the spatial analysis, 12 variables were associated
with the distribution of VHC ratios, and NFWL showed the highest prediction gain (R2 = 81.62).
Although NFWL has not been sampled extensively during our study (1), to complete our objective,
this variable needs to be highlighted rigorously in a separate investigation. Seasonal precipitation- and
annual temperature-related variables shared reduced significant associations with VHC ratios. The
average likelihood of predicting very high risk areas was ~107 km2, which is ~9.87% of the total area of
NOLA. Although neither the temporal distribution of VHC ratios nor their estimates were significantly
changed from month-to-month (except during September), their monthly response showed resilience to
the number and type of the influential factors. The highest VHC ratio was reported during September,
which was associated with the peak positive WNV mosquito pools. Seasonal temperature-related
variables showed the highest influence on monthly likelihood of VHC in comparison with seasonal
precipitation, LULC and DEM variables. This finding was confirmed by both RM (R2 = 58.49) and
Jackknife’s test (88.5%). The influence of LULC on likelihood of VHC was demonstrated during
May–August. The NFWL showed a positive association with the increased VHC ratio during May,
with no positive WNV mosquito pools. Meanwhile, both OUBL and RU settings were associated with
the onset of mosquito WNV infection rates during June. This may reflect the distribution of WNV
vector in close vicinity to reservoir host(s) during May, during the virus amplification phase, and the
virus beginning to build up inside mosquito bodies during June–August. During September–December,
reduced numbers of positive WNV mosquito pools were recorded, which may explain the reduced
viremia in wild Cx. quinquefasciatus.

The independent field collected sampling points were consistent with both likelihood of VHC
ratios and spatio-temporal distribution of increased VHC ratios. However, multi-year mosquito,
spatial projections of LULC and human population census data are recommended to be included in
further investigations. Moreover, due to data limitation of reservoir host(s), human cases, mosquito
vector survival rates, vector capacity parameters, and gonotrophic periods, we did not have the chance
to include these variables in our study.
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