Supplementary Materials: Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review

Francesca Borghi, Andrea Spinazzè, Sabrina Rovelli, Davide Campagnolo, Luca Del Buono, Andrea Cattaneo and Domenico M. Cavallo

Table S1. Studies' characteristics. Data that were not directly acquired from the paper are reported in italics. In the case of missing data within the reference papers, data were acquired from the literature cited in bibliography or from external sources (retailer's site).

Reference	Study	Monitoring Site	Period	Pollutants	Mobile/Stationary	Indoor/Outdoor	Dimension and Weight	Wireless	GPS	Application	Power	Mesurement Range	Response Time
						PM s	sensors						
[1]	Wong et al., 2014	Hong - Kong	apr-14	PM2.5	Mobile	Indoor Outdoor	113x89 mm	Bluetooth	Yes	Yes	30 hours	n.a	1 s
						Gas	sensors						
[0]	Al-Ali et	Chariah		СО	Mobile	Outdoor		V	Yes	Yes		CO: 0 - 1000 ppm	CO <25s
[2]	al., 2010 Sharjah		n.a	NO ₂	Mobile	Outdoor	n.a	Yes	res	res	n.a	NO2: 0 - 20 ppm	NO <60s
				SO ₂								SO2: 0 - 20 ppm	SO ₂ <25s
				O3 CO	- - -						Platform will be mounted		O3 <45s CO <25s
				CO ₂ NO							on an electrical bicycle and the power of the platform will be supplied from the bicycle battery	Concentrations typically found in urban environment	CO2 n.a NO <45s
				NO ₂	-	Mobile Outdoor	32 mm			s Yes			NO2 <60s
[3]	Castell et al., 2015	Oslo	n.a	SO ₂	Mobile		(sensor diameter)	Yes	Yes				SO2<30s
[4]	Chen et al.,	Phoenix	n.a	VOC	Mobile	Indoor	Not much larger than a common smartphone	Yes	Yes	Yes	10 hours	Environmental: 0 - 1 ppm	Raw data: 1 s per measurement
	2012	San Diego				Outdoor	(<300 g)	-				Industrial: 1 - 1000 ppm	Calibrated concentration: 3 min per data

													point
[5]	Eisenman et al., 2009	Hannover	August 2006 - August 2007	CO ₂	Mobile	Outdoor	150x70 mm	Yes	Yes	Yes	10 hours (4 AA batteries)	0-2500 ppm or 0- 4000 ppm	< 60s
[6]	Fu et al., 2012	Singapore	n.a	CO ₂	Mobile Stationary	- Outdoor	80x60x30 mm	Yes	Yes	Yes	n.a	n.a	Warm up time: <60s
[7]	Gall et al., 2016	Singapore	May - December 2015	CO ₂	Mobile	Indoor Outdoor	146x91x33 mm	No	No	No	AA Batteries	0-10000 ppm	1 min
[8]	Guevara et al., 2012	Asuncion	n.a	СО	Mobile	Outdoor	16 mm (sensor diameter)	Yes	Yes	Yes	n.a	10-10000 ppm	n.a
[9]	Hu et al., 2011	Hsinchu	n.a	CO ₂	Mobile	Indoor Outdoor	38x32x12 mm	Yes	Yes	No	n.a	0-5000 ppm	30 s
[10]	Kanjo et al., 2008	Bristol	n.a	CO Noise	- Mobile	Indoor Outdoor	n.a	Bluetooth	Yes	Yes	n.a	n.a	n.a
[11]	Lo Re et al., 2014	Palermo	n.a	O ₃ CO CO ₂ NO ₂	– Mobile –	Outdoor	n.a	Yes	Yes	No	n.a	n.a	n.a
[12]	Mead et al., 2013	Cambridge London Cranfield Valencia Kuala Lampur Lagos	2010	CO NO NO2	Mobile Stationary	Outdoor	183x95x35 mm	No	Yes	No	14 hours	n.a	n.a
		0				Indoor	Size	Yes					
[13]	Negi et al., 2011	n.a	n.a	Hydrocarbons and acid	Mobile	Outdoor	comparable with a smart cell phone (<250 g)	Bluetooth	No	Yes	9h	n.a	n.a
						PM and	gas sensors						
				UFP	_		UFP: 40x90x180 mm (700g)						
			April 2012	O3	_		O3: n.a						
[14]	Hasenfratz et al., 2015	Zurich	- April 2014	СО	Mobile	Mobile Outdoor	CO: 32 mm (sensor diameter)	Yes	Yes	es No	UFP: 20 hours	UFP: 10 ³ - 10 ⁶ particles/ccm	n.a
				NO ₂	- -	NO2: 32 mm (sensor diameter)							

			July - September 2013	UFP	Mobile		UFP: 4x9x18 cm (700g)						
[15]	Mueller et al., 2016	Zurich	December 2013 - February 2014	O ₃ Stationary	Outdoor	O3: n.a	No	Yes	No	UFP: 20 h	UFP: 10 ³ - 10 ⁶ particles/ccm	n.a	
				СО			CO: 32 mm (sensor diameter)						
				PM ₁			_					O3: 0 - 2 ppm	n.a
			_	PM2.5								CO: 0 - 50 ppm	
				PM10	Mobile	Indoor	-					CO2: 0 - 5000 ppm	
[16]	Pokrić et	n.a		O3	Stationary	Outdoor		Yes	Yes	Yes	n.a	NO: 0 - 20 ppm	
16]	al., 2015		n.a –	CO			n.a	165	165	res	11.d	NO2: 0 - 20 ppm	11.a
				CO ₂									
			_	NO									
				NO ₂									
[17]	Velasco et	Turin	n.a	PM10	Mobile	Outdoor	PM10: 46x30x17 mm	Yes	Yes	No	n.a	PM10: 0 - 0.5 mg/m ³	30 s
1,]	al., 2016	2016		O3	widdlic	Culdoor	O3: 9mm	105	105	110	11.0	O3: 10 - 1000 ppb	503

Table S2. Summary of selected papers. Aim of the study, methods and principal results are reported.

Reference	Study	Aim of the Study	Methods	Principal Results		
			PM senso	rs		
[1]	Wong et al., 2014	Development and evaluation of an Integrated Environmental	Field test conducted in different environments and locations both outdoor (e.g. road repair	The system illustrated worked well during field test and provide an important platform, raising the public awareness regarding environmental quality in micro environments.		
		Monitoring System.	work, bus stop) and indoor.	GPS performance are related to the number and the position of GPS satellites.		
			Gas senso	rs		
[2]	Al-Ali et al., 2010	Design, implementation and test of a wireless distributed mobile air pollution monitoring system.	The system was placed on a university bus.	Data transmitted and available on Internet shows pollution level and their conformance to local air quality standards.		
[3]	Castell et al., 2015	Present a new approach for the development of information chain.	Measurement were conducted outdoor, using mobile vehicles (e.g. bicycles, bus).	Main results not reported but authors, demonstrating the feasibility of mobile sensor network explains how this kind of data can contribute to understanding about air quality issue.		

[4]	Chen et al., 2012	Present a wearable sensor able to provide improvement in understanding of indoor and outdoor personal exposure assessment to VOC. Validation of VOC sensor in real-word environments and in different scenarios.	Validation of VOC sensor's performance using Gas Chromatography and Selected Ion Flow Tube e mass Spectrometry reference Methods in different environments (indoor/outdoor, traffic) and scenarios (e.g. different work, paint remodeling). Calibration and validation of the VOC sensor in real-word environments. Different tests were conducted: fields tests, inter laboratory	Field test validated the instrument's performance. Field test demonstrate high temporal and spatial pollutants information provided I this innovative monitor. The sensor correlates well or outperforms similar VOC sensor. The sensor may be able to improve knowledge about personal exposure, protectin human health. The sensor provide an accuracy higher than 81%.
[5]	Eisenman et al., 2009	Authors presents design, implementation and evaluation of a mobile sensing	tests and validation with commercial instruments. Reported implementation were tested during bicycle trips on different routes.	The study reported is the first to quantify cyclist experience (personal performanc and shared sampling).
[6]	Fu et al., 2012	system. Reports design of environmental monitoring system and related critical issue.	Light-weight and low-cost sensors were installed on mobile vehicles (e.g. cars, scooters, bicycle) and placed in outdoor fixed stations.	Three critical issues related design of environmental monitoring have been reporte efficiency of sensors, coverage of monitoring area, validity of sensed data.
[7]	Gall et al., 2016	An exposure study was conducted, in order to understand levels, dynamics and influencing factors of personal exposure to CO ₂ .	Personal, portable and continuous monitoring characterized by high time resolution were used for indoor and outdoor campaign.	Some determinant of CO2 exposure were found.
[8]	Guevara et al., 2014	Describes design and implementation of an environmental wireless sensor network. The study reports the development of	Sensor network was tested following selected routes of public transports.	Environmental monitors was characterized by good performance.

the sensor network and results obtained.

		Propose a vehicular sensor network architecture.	Measurement conducted				
[9]	Hu et al., 2011	Development of a Zig-Bee based prototype in order to monitor carbon dioxide in urban areas.	outdoor and indoor, via vehicular sensor node (characterized by internal and external sensors).	Reported results are related to simulation data and prototype experience.			
[10]	Kanjo et al., 2008	Describes a monitor system able to monitors using mobile phones.	Evaluation of sensor in a school environment.	Authors demonstrate the feasibility of developing an environmental sensing monitors using mobile sensing devices.			
[11]	Lo Re et al.,	Show and discuss different approach to	Use of mobile monitor device as implementation of vehicular sensor network.	Vehicular sensor network is an innovative approach to environmental monitoring and it is considered as an interesting development in wireless and mobile networking.			
[11]	2014	environmental monitoring.	Monitors used outdoor on public busses.	The main advantage of this approach is relative to the economy and to the simplicity of the system.			
				The study showed that urban environment cannot fully characterized using static networks.			
		Provide evidence about performance of electrochemical sensor network.	Measurement via portable devices held by pedestrian and cyclist/drivers and via static devices in outdoor.	Networks characterized by high spatial and temporal resolution are required in urba air quality measurements.			
[12]	Mead et al., 2013		Different test carried out in urban environments.	In field measurement, the sensor baseline signal depends on environmental conditions (temperature and relative humidity).			
			Laboratory test and validation carried out using standard gas.	The work demonstrate the potential of miniaturized and low-cost sensor network system utilized in urban environment and its ability to provide data at appropriate scale			
				Sensor operate without significant gain attenuation over long period.			
[13]	Negi et al., 2011	Paper reports development and test of a wearable	Validation of function and performance in different scenarios, involving operator from different working fields.	Monitors provide accurate and real-time measurement and it is immune to environmental changes (e.g. humidity, temperature).			
		monitor.	Sensor validation was carried out with chromatography-mass				

			spectrometer (GC-MS) and				
			performances were compared				
			with commercial instrument.				
		Development of a	PM and gas se	ensors			
[14]	Hasenfratz et	Development of a land-use regression model in order to create pollution	Measurement carried out on	Accuracy of pollution maps (characterized by sub-weekly temporal resolution) sufferent from the reduced number of measurement available.			
[]	al., 2015	maps, characterized by high spatial resolution.	the top of public vehicles.	Maps generate with this new approach are characterized by higher spatial and temporal resolution and are useful to general population as well environmental scientist and epidemiologist.			
		Show performance					
		of electrochemical					
		sensor in urban environment.	Measurements were carried out both with stationary and				
		environment.	mobile devices.				
		Present a method to		Sensor used in monitor test showed low noise and high linearity.			
[15]	Mueller et al., 2016	modelling pollutant	Mobile monitors were installed	The modelling approach proposed reasonably predict the main features of the			
		concentrations in	on the roof of public transports.	The modelling approach proposed reasonably predict the main features of the investigated pollutant.			
		urban environments		nivestigateu ponutant.			
		relying on	Model validation with data				
		georeferred data	from fixed stations.				
		acquired via mobile sensor network.					
		Describes an					
		approach to					
		integration of					
		physical and digital					
		worlds.					
		Demonstrate how	Different kind of application in				
[16]	Pokrić et al.,	Internet of Things	real-word (stationary/mobile	Several users find that this new approach promotes environmental issue and that t			
	2015	(IoT) and	and indoor/outdoor).	game proposed was educational an entertaining.			
		Augmented Reality					
		(AR) could provide a					
		new way to present					
		and share digital					
		information in real world.					
		The paper describes	PM10 and O3 sensors were	This system, due to its high portability, may be able to improve spatial resolution a			
		a mobile wireless	tested in controlled	resolution of data.			
[17]	Velasco et al., 2016	sensor network with	environments (outdoor/indoor)				
		the aim to	and during different on-field				
		complement existing	campaigns (urban and rural	adaguate calibration and maintenance conditions			

monitoring system.	bike sharing support and static	Measurement conducted via proposed sensor were less accurate than reference		
	stations.	methods.		

References

- 1. Wong, M.S.; Yip, T.P.; Mok, E. Development of a personal integrated environmental monitoring system. Sensor 2014, doi:10.3390/s141122065.
- 2. Al-Ali, A.R.; Zualkernan, I.; Aloul, F. A mobile GPRS-sensor array for air pollution monitoring. *Sensors* 2010, doi:10.1109/JSEN.2010.2045890.
- 3. Castell, N.; Kobernus, M.; Liu, H.Y.; Schneider, P.; Lahoz, W.; Berre, A.J.; Noll, J. Mobile technologies and services for environmental monitoring: The citisense-mob approach. *Urban Clim.* **2015**, doi:10.1016/j.uclim.2014.08.002.
- 4. Chen, C.; Driggs Campbell, K.; Negi, I.; Iglesias, R.A.; Owens, P.; Tao, N.; Tsow, F.; Forzani, E.S. A new sensor for the assessment of personal exposure to volatile organic compounds. *Atmos. Environ.* **2012**, doi:10.1016/j.atmosenv.2012.01.048.
- 5. Eisenman, S.B.; Miluzzo, E.; Lane, N.D.; Peterson, R.A.; Ahn, G.; Campbell, A.T. BikeNet: A mobile sensing system for cyclist experience mapping. *ACM Trans. Sens. Netw.* **2009**, doi:10.1145/1653760.1653766.
- 6. Fu, H.; Chen, H.; Lin, P. APS: Distributed air pollution sensing system on wireless sensor and robot networks. *Comput. Commun.* 2012, doi:10.1016/j.comcom.2011.08.004.
- 7. Gall, E.T.; Cheung, T.; Luhung, I.; Schiavon, S.; Nazaroff, W.W. Real-time monitoring of personal exposures to carbon dioxide. *Build. Environ.* 2016, doi:10.1016/j.buildenv.2016.04.021.
- 8. Guevara, J.; Barrero, F.; Vargas, E.; Becerra, J.; Toral, S. Environmental wireless sensor network for road traffic applications. *IET Intell. Trans. Syst.* 2012, doi:10.1049/iet-its.2010.0205.
- 9. Hu, S.; Wang, Y.; Huang, C.; Tseng, Y. Measuring air quality in city areas by vehicular wireless sensor networks. J. Syst. Softw. 2011, doi:10.1016/j.jss.2011.06.043.
- 10. Kanjo, E.; Benford, S.; Paxton, M.; Chamberlain, A.; Stanton Fraser, D.; Woodgate, D.; Crellin, D.; Woolard, A. MobGeoSen: Facilitating personal geosensor data collection and visualization using mobile phones. *Pers. Ubiquit. Comput.* **2008**, doi:10.1007/s00779-007-0180-1.
- 11. Lo Re, G.; Perri, D.; Vassallo, S.D. Urban air quality monitoring using vehicular sensor networks. Adv. Intel. Syst. Comput. 2014, 2063, 311–232.
- 12. Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. *Atmos. Environ.* **2013**, *70*, 186–203.
- 13. Negi, I.; Tsow, F.; Tanwar, K.; Zhang, L.; Iglesias, R.A.; Chen, C.; Rai, A.; Forzani, E.S.; Tao, N. Novel monitor paradigm for real-time exposure assessment. J. *Expo. Sci. Environ. Epidemio.* **2011**, doi:10.1038/jes.2010.35.
- 14. Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Arn, T.; Beutel, J.; Thiele, L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. *Pervasive Mob. Comput.* **2015**, doi:10.1016/j.pmcj.2014.11.008.
- 15. Mueller, M.D.; Hasenfratz, D.; Saukh, O.; Fierz, M.; Hueglin, C. Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network. *Atmos. Environ.* **2016**, doi:10.1016/j.atmosenv.2015.11.033.
- 16. Pokrić, B.; Krčo, S.; Drajić, D.; Pokrić, M.; Rajs, V.; Mihajlović, Z.; Knežević, P.; Jovanović, D. Augmented reality enabled IoT services for environmental monitoring utilising serious gaming concept. J. Wirel. Mobile Netw. 2015, 6, 37–55.
- 17. Velasco, A.; Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M. A mobile and low-cost system for environmental monitoring: A case study. *Sensor* **2016**, doi:10.3390/s16050710.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).