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Abstract: This paper firstly explores the space-time evolution of city-level PM; 5 concentrations
showed a very significant seasonal cycle type fluctuation during the period between 13 May 2014
and 30 May 2017. The period from October to April following each year was a heavy pollution
period, whereas the phase from April to October of the current year was part of a light pollution
period. The average monthly PM; 5 concentrations in mainland China based on ground monitoring,
employing a descriptive statistics method and a Bayesian spatiotemporal hierarchy model. Daily and
weekly average PM; 5 concentrations in 338 cities in mainland China presented no significant spatial
difference during the severe pollution period but a large spatial difference during light pollution
periods. The severe PM;5 pollution areas were mainly distributed in the Beijing-Tianjin-Hebei
urban agglomeration in the North China Plain during the beginning of each autumn-winter season
(September), spreading to the Northeast Plains after October, then later continuing to spread to other
cities in mainland China, eventually covering most cities. PM; 5 pollution in China appeared to be a
cyclic characteristic of first spreading and then centralizing in the space in two spring-summer seasons,
and showed an obvious process of first diffusing then transferring to shrinkage alternation during
the spring-summer season of 2015, but showed no obvious diffusion during the spring-summer
season of 2016, maintaining a stable spatial structure after the shrinkage in June, as well as being
more concentrated. The heavily polluted areas are continuously and steadily concentrated in East
China, Central China and Xinjiang Province.
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1. Introduction

Since the beginning of the 21st century, air pollution, especially PM, 5 pollution, has caused more
than 2 million deaths each year worldwide [1], leading to an increase in hospitalization and mortality
rates for asthma and chronic obstructive pulmonary disease (COPD) [2,3]. The research of Pope et al. [4]
showed that PM; 5 can lead to the deposition of arterial plaque, cause atherosclerosis and vascular
inflammation and enhance the risk of cardiovascular disease. When the PM; 5 concentration in the air
is higher than 10 pg/m?3 for a significant period of time, the risk of death increases significantly, on the
basis of 10 pg/m?; with every additional 10 pg/m? increase, the total risk of death increases by 4%,
with the risk of death from lung cancer and heart disease increasing by 8% and 6%, respectively [4].
Chen et al. [5] found that prolonged exposure to an environment with an additional 100 pg/m?3
increase of total suspended particulate matter would result in an average reduction of about 3 years in
life expectancy [5]. The Global Burden of Disease Study 2010 demonstrated that PM; 5 was the ninth
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most lethal risk factor in the world that year [6]. The death toll caused by PM; 5 pollution worldwide
increased from 2.91 million in 1990 to 3.22 million in 2010.

Over the past 30 years, China’s economy, society, cities and industries have been undergoing
rapid development, which has resulted in increasingly greater energy consumption, particularly coal
burning [7]. Simultaneously, rapid urbanization and industrial expansion is proceeding, leading to
serious urban PM; 5 pollution, probably believed to be a result of traffic-related emissions, industrial
emissions, soil dust, biomass burning and regional transported aerosols; however, the mechanism of
PM; 5 pollution is still not completely understood [8,9]. In mainland China, the annual number of extra
deaths caused by air pollution-related diseases is approximately 0.35-0.5 million [10]. The increasing
concentration of particulate matter causes the frequency of foggy weather in China to increase
continuously and present a clear upward trend [11-14]; correspondingly, visibility has dropped
significantly in most areas since 1990 [11,15-17]. The air pollution problem in mainland China has
drawn great attention from the government. Since 2013, air quality monitoring has been carried
out in 113 key environmental protection cities and environmental protection model cities. In 2015,
China established an air quality ground monitoring network covering 338 prefecture-level cities, i.e.,
sub-provincial administrative divisions, and began releasing reports of average hourly concentrations
of air pollutants such as sulfur dioxide (SO;), nitrogen dioxide (NO;y), carbon monoxide (CO), ozone
(O3), inhalable particulate matter PM;, fine particulate PMj, 5 and air quality index (AQI) numbers
to the public through the China National Urban Air Quality Real-time Publishing Platform [18].
According to recent public reports, to constrain the level of air pollution, the Chinese government has
been pursuing various strategies, such as permanently closing the most polluting industrial plants,
converting industrial plants from coal to natural gas, and requiring steel, aluminium, plate glass and
cement plants to reduce production by up to 50% over the winter period.

Several researchers have studied the problems related to Chinese PM; 5 pollution in China.
Lin et al. [19] investigated the space-time patterns of PM, 5 annual average concentrations in China
from 2001 to 2010 based on global annual average PM, 5 grids data, and found that the spatial pattern
of PM; 5 annual concentrations remained stable between 2001 and 2010. Peng et al. [20] systematically
explored the spatiotemporal variations of PM; 5 annual average concentrations in China from 1999
to 2011 using remotely sensed PM; 5 data produced by van Donkelaar et al. [21] in 2015. Li et al. [22]
and Lu et al. [23] analyzed the spatiotemporal variations of PM; 5 pollution in China from 1998 to
2014 using the latest version of remotely sensed PM; 5 annual concentrations data provided by van
Donkelaar et al. [24]. Ma et al. [25] estimated the PM; 5 annual concentrations from 2004 to 2013 in
China using MODIS remote sensing data and described the spatiotemporal trends. This paper presents
the first study of the space-time patterns over China in recent years based on in-situ monitoring PM; 5
hourly concentration data.

On a countrywide scale in China, previous studies focused on the long-term evolution of
PM; 5 annual average concentrations based on remotely sensed annual average PM; 5 concentrations.
Although Zhang & Cao [9] explored Chinese PMj; 5 pollution based on ground readings, the study
period was only one year and not all 338 cities were covered. To our knowledge, this paper is the first
to investigate the spatiotemporal variations of PM, 5 pollution over China including all 338 cities based
on daily average concentrations from May 2014 to May 2017. A Bayesian spatiotemporal hierarchy
model (BSTHM) is first employed to estimate the stable spatial patterns of PM, 5 concentrations for
each month.

2. Data and Methodology

2.1. Data and Study Area

The raw data used in this paper is from ground station monitoring PM, 5 hourly concentrations
from 13 May 2014 to 30 May 2017, as released by the China National Urban Air Quality Real-time
Publishing Platform (http://106.37.208.233:20035/). There were 941 monitoring sites from 13 May 2014
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to 31 December 2014, with the number increasing to 1497 after 31 December 2014. The site distribution
is shown in Figure 1. Table 1 lists the number of PM; 5 ground monitoring sites in 31 provinces
of mainland China in 2014, 2015, 2016 and 2017. The study area in this paper is mainland China,
not including Taiwan. The four municipalities, Beijing, Shanghai, Tianjin and Chongqing, and the
other 334 sub-provincial cities, totalling 338 cities, serve as the statistical units. Since 2015, all 338 cities
have established ground monitoring stations, with a maximum and minimum number of monitoring
stations at 1 and 20, respectively.

The on-site readings of PM; 5 concentrations are the most authoritative data and are made public
in real time. Random errors can also be eliminated to some extent by average statistical calculation.
Moreover, Bayesian statistical estimates themselves can consider more uncertainties by regarding
parameters as random variables.

Before conducting statistical analysis, the raw data need to be pre-processed. Because the PM, 5
readings from the ground monitoring stations are hourly concentrations, first, the average daily
monitoring data, which are the basic inputs for classic and Bayesian statistics, needed to be produced.
Each site is assigned a serial number denoting the city where the site distributes. Then the daily, weekly
and monthly average PM, 5 concentrations of the 338 cities can be obtained. The missing monitoring
site data values are filled in using the spatial adjacent-averaging calculation with a 3 x 3 pixel scope
when the classic statistical analysis is conducted; however, they remain missing as null input in the
Bayesian statistical estimating process.
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Figure 1. The distribution of air quality monitoring stations in mainland China, with red dots
representing the 941 monitoring sites in 2014, and green dots representing the 556 additional sites
added in 2015.
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Table 1. The number of PM, 5 ground monitoring sites in 31 provinces in mainland China in 2014, 2015,

2016 and 2017.

Province Name Number of Sites in 2014 ;111;1 lz)gi 6? failt’;ezsollr; Added Number of Sites
Beijing 12 12 0
Tianjin 14 14 0
Hebei 53 53 0
Shanxi 32 59 27

Inner Mongolia 23 44 21

Liaoning 62 79 17
Jilin 17 33 16
Heilongjiang 27 57 30
Shanghai 9 9 0
Jiangsu 97 97 0
Zhejiang 55 55 0
Anhui 19 68 49
Fujian 13 37 24
Jiangxi 17 60 43
Shandong 100 100 0
Henan 37 75 38
Hubei 18 51 33
Hunan 39 78 39
Guangdong 102 103 1
Guangxi 22 50 28
Hainan 7 7 0
Chonggqing 17 17 0
Sichuan 40 94 54
Guizhou 15 33 18
Yunnan 12 40 28
Tibet 6 18 12
Shaanxi 37 50 13
Gansu 10 33 23
Qinghai 4 11 7
Ningxia 10 19 9
Xinjiang 15 41 26
Total 941 1497 556

2.2. Methodology

2.2.1. Mathematical Model Form

This paper’s empirical analysis is based on a BSTHM [26], which is a combination of the
Bayesian hierarchy model and a spatiotemporal interaction model. This model offers a comprehensive
consideration of the overall spatiotemporal evolution process, and decomposes the coupled
spatio-temporal process into three sub-processes of overall spatial effect, overall time effect and
temporal-spatial interaction effect (local variation trend). Spatiotemporal observational phenomena
usually do not match the two preconditions required in classic statistics—a large sample and
independent identical distribution (i.i.d.). First, it is not possible to repeatedly sample in one spatial
location at one time point during a space-time process. Second, “Tobler’s First Law of Geography”’ [27]
indicates that spatiotemporal correlation is neither independent nor identically distributed. Therefore,
in theory, the inference results for spatiotemporal data based on classic statistics are not reliable.
Fortunately, Bayesian statistics does not require a large sample and i.i.d. data as preconditions.
The BSTHM can effectively solve the problem of a small sample in a spatiotemporal phenomenon and
can make full use of spatiotemporal correlation by utilising prior information. Theoretically speaking,
the BSTHM has not only better reliability but is superior to classic statistical models, considering a
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greater number of uncertainties and being able to generate abundant results. The BSTHM framework
generally includes three parts:

yil0;,© ~ P(y;|6;,©) (1)
0;,© ~ P(6;,0ly,) 2)
© ~ P(©) ©)

where 0; denotes parameters, ® is hyperparameters, and P(®) is hyperprior. According to the Bayesian
theorem, P(6;, ®ly; ) is the posterior distribution of parameters and hyperparameters, and the formula
can be expressed as:

P(6;,©ly;) o P(y;|6;, ©)P(6;,©) @)

For the research described in this paper, the data from the monitoring station is the observation
value, the 338 cities are the spatial statistical units and the corresponding mathematical expression is
as follows:

Yit ~ N(.uc[i],tfa}%) ®)
In (pcfip,e) = o+ Sepjy + (bot™ +vt) + bejjp et ™ + €y 1 (6)

where y;, is the PM; 5 monitoring concentration of i(i = 1,2,...,1497) station at time ¢, c[i] is the serial
number of the city where i monitoring station is located, ;) ; is the PMy 5 concentration of c[i] city at
time ¢, 0'}% is the variance, o represents the common level of PM; 5 pollution over the Chinese mainland
in the study period, S.|; is the overall spatial relativity parameter of cli] city, bot* + v; describes the
overall trend, which consists of a linear trend b,t* (allow nonlinear trend) and a random effect v, bcm
is the local trend of c[i] city. € c[i]+ is @ Gaussian noise random variable capturing additional variability
in the data not explained by other variables in the model.

More specifically, each month will be a study sub-period, then the common spatial component
will be coagulated from the coupled space-time evolution process considering the overall time trend
bot* + vt and local trend b,;) ;t*. Furthermore, the estimated posterior median of exp (S,[;) measures a
relative magnitude of the PM; 5 pollution level, a ratio of the level of c[i] city to the common level over
the Chinese mainland, exp (o).

2.2.2. Determination of Prior Distribution

This paper employs the Besag York Mollie (BYM) model [28], which is a convolution of a spatially
structured and unstructured random effect to determine the prior distribution of the process model
parameters S [; and b[;j. Spatial structure is imposed by the conditional auto-regression (CAR) prior
with a first-order spatial adjacency matrix W, where its diagonal entries are w;; = 0 and the off-diagonal
entries are w;; = 1 if the spatial statistical units i and j share a common boundary, and w;; = 0
otherwise. In other words, the spatial correlation is established according to the topological relation of
the multiscale homogeneous subdivided grids. The mathematical expression is:

I(y6,0) = T f(yyl6i, ©) )

iteSl—t

where [(y|6, ®) is sample likelihood function, S;; is space-time domain, y;, are observed sample values,
|6;; are the spatiotemporal process variables, and © is the hyperparameter set. Here, the conditional
auto regression (CAR) prior distribution is used to represent the random effects of spatial structure.
The spatial adjacency matrix W adopts the first-order “queen” adjoining form. Gaussian noise is
git ~ N(0?). According to the conclusion of Gelman [29], the prior distribution of mean square error
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(such as 0y, 0¢) for all random variables in the model is determined as a strictly positive half-Gaussian
distribution N4 (0, 10).

In this paper, Bayesian estimation is achieved using WinBUGS [30], which is specifically for
Bayesian statistics based on the Markov Chain Monte Carlo (MCMC) method [31,32]. Two MCMC
chains are used to ensure the convergence and reliability of the estimation results. The number of
iterations for each chain is set to 250,000, of which, 200,000 are for the burn-in period and 50,000 are for
the number of iterations of posterior distribution of parameters. The reliability of Bayesian statistical
inference is assessed by convergence. The convergence of the Bayesian statistical results in this paper is
evaluated with the Gelman-Rubin statistical parameter estimation, in which the closer the value is to 1,
the better the convergence is [33]. The Gelman-Rubin parameters of all parameters in this study range
from 0.99 to 1.01, indicating that the convergence of these statistical results is steady, or the Bayesian
statistical estimated results are reliable.

3. Results

3.1. Descriptive Statistics

Figure 2 is a time series chart of the percentiles of PM; 5 daily average concentrations monitored
by the ground monitor stations in mainland China from 13 May 2014 to 30 May 2017. The daily PM; 5
average concentration is calculated based on the hourly average concentration. As can be seen from
Figure 2, PM; 5 daily average concentration showed a clear seasonal fluctuation in general, with the
period from October to April of the next year belonging to the heavy pollution period, while the
period from April to October of the same year belonged to the light pollution period. During the entire
study period, some monitoring stations had PM, 5 concentrations higher than 100 pug/m3 each day,
especially during the heavy pollution period. More than 50% of the ground monitoring stations’
PM; 5 concentrations were higher than 100 pg/ m3, and some even exceeded 300 ug/ m3. In addition,
throughout the study period, the quantile below 20% maintained a relatively stable state, while the
quantile above 50% showed a distinctive seasonal jump characteristic.
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Figure 2. The time series chart of the ground monitor station date of daily average PM, 5 concentration
from 13 May 2014 to 30 May 2017 in mainland China. The color represents the percentile.

In order to study the variation characteristics of PM; 5 pollution in 338 cities in mainland China
during the study period, this paper draws a time series thermodynamic histogram of PM; 5 weekly
average concentration in Chinese mainland cities, as shown in Figure 3. The distribution of PM; 5
weekly average concentration in Chinese mainland cities also showed obvious seasonal fluctuation in
the time dimension. The period from the 41st week of the year to the 10th week of the following year
was the heavy pollution period, while the period from the 10th to the 41st week of the current year
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was the light pollution period. The weekly average concentration of PM; 5 in Chinese mainland cities
was mainly distributed in the range of 0-100 pg/m?; during the heavy pollution period, the cities
with PM, 5 weekly average concentration above 100 pg/m> appeared. Figure 2 demonstrates that
the three severe pollution periods of 2014-2015, 20152016 and 20162017 showed a tendency of
shortening; that is, the number of weeks with PM; 5 concentrations higher than 100 ug/ m3 gradually

decreased along the three heavy pollution periods, while the ups and downs were becoming “thinner
and thinner”.
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Figure 3. The time series thermodynamic histogram of PM; 5 weekly average concentration distribution
in 338 cities in mainland China.

This paper also analysed the spatial heterogeneity of PM; 5 monthly average concentration in
Chinese mainland cities and its variation based on the spatial variation coefficient (as shown in
Figure 4), which is a ratio of the standard variation and mean value of the monthly average PM; 5
concentrations for all 338 cities at a cross-section. The higher the variation coefficient, the greater
the spatial heterogeneity is. As can be seen in Figure 4, during the period of heavy pollution (from
October to January of the following year), there was no significant spatial difference among PM; 5
monthly average concentrations in cities of mainland China. While the period of light pollution (from
January to October of the same year) involved a large spatial difference, especially in the period
from June-September 2016, the spatial variation coefficient continued to rise, with a minimum of
0.29 and a maximum of 0.45. There were also similarly high spatial differences in May and July 2015,
with corresponding variation coefficients of 0.44 and 0.43, respectively. The variation coefficient of
other months remained below 0.10.

0.60
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Figure 4. Distribution variation coefficient of PM; 5 in Chinese mainland cities from May 2014 to
May 2017.
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3.2. Bayesian Statistics Results

According to the results of the above descriptive statistical analysis, PM, 5 pollution in mainland
China showed a strong seasonal fluctuation throughout the overall study period. Therefore, when
estimates using the Bayesian spatiotemporal model are made, a natural year is divided into two
seasons: an autumn-winter season (from September to February of the next year) and a spring-summer
season (from March to August of the current year). Then, PM; 5 daily average concentration data
is used as observational sample data. The steady-state spatial pattern of PM; 5 pollution in each of
the two seasons is measured using the posterior median of exp (S.;) estimated from its posterior
probability density. exp (S¢j;)) > 1.0 (<1.0) indicates that PM 5 pollution in cli city is exp (Sj;)) times
the overall level in mainland China in this month, measured by the parameter exp (). Since the
parameter exp (S.;j) is derived after decomposing the global and the local trend, it has a steady
state characteristic.

3.2.1. The Spatial and Temporal Evolution of the Autumn-Winter Season

Figures 5-7 shows the evolution of the steady-state spatial pattern of cities” PM; 5 pollution in
mainland China during the autumn-winter seasons from 2014-2017. The results show that in each
autumn-winter cycle, the spatial pattern of PM; 5 pollution shows different distribution features
every month.

In general, the spatial pattern evolution processes of the three autumn-winter cycles have some
similarities. In the early part of each autumn-winter season (September), the areas with serious PM; 5
pollution are mainly distributed in the Beijing-Tianjin-Hebei urban agglomeration area of the North
China Plain. After September, the heavy pollution areas spread to the northeast plains and then to
other cities in mainland China, with PM, 5 pollution in most of the cities in China reaching more
serious levels. However, regardless of month, PM; 5 pollution levels in the North China Plain were
the highest.
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Figure 5. Evolution of spatial relativity of PMj 5 pollution over Chinese mainland (not including
Taiwan) during the autumn-winter season of 2014-2015.
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Figure 6. Evolution of spatial relativity of PMj, 5 pollution over Chinese mainland (not including
Taiwan) during the autumn-winter season of 2015-2016.
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Figure 7. Evolution of spatial relativity of PM; 5 pollution over the Chinese mainland (not including
Taiwan) during the autumn-winter season of 2016-2017.

Specific to each autumn-winter cycle, the spatial pattern of PM; 5 pollution in mainland China
exhibits its own characteristics. In January 2015, February 2016 and December 2016, the spatial
differences in PM; 5 pollution were smallest, and the corresponding maximum values of steady state
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spatial pattern coefficients exp (Sc[i]) were 1.02, 1.08 and 1.03, respectively, which is consistent with the
conclusion of the aforementioned variation coefficient and can be specifically justified by the Bayesian
spatiotemporal model from a spatial perspective. Figure 2 shows that the above-mentioned months
are the periods of most severe pollution, that is, most of the cities in mainland China during those
three months were experiencing severe PM, 5 pollution. In addition, during the autumn-winter season
of 20142015, with the exception of January 2015, the areas with heavy PM; 5 pollution were mostly
concentrated in the eastern and northeastern areas north of Shanghai and Zhejiang. During the last
two autumn-winter cycles, PM» 5 pollution in western cities began to increase. Over three months
(December 2015, January 2016 and February 2016) of the 2015-2016 autumn-winter season and over
four months (October 2016, November 2016, December 2016, and February 2017) of the 2016-2017
autumn-winter season, a situation emerged in which PM; 5 pollution levels in the western cities
were higher than the overall levels were. In the three autumn-winter cycles, PM; 5 pollution in the
northeastern region had a tendency to decrease gradually. In the first, second and third autumn-winter
seasons, the months in which PM; 5 pollution in the northeastern region was lower than the overall
level were 1, 3 and 4, respectively.

3.2.2. The Spatial and Temporal Evolution of the Spring-Summer Season

As the ground monitor site data used in this paper is from 13 May 2014 to 30 May 2017,
the spring-summer seasons of the years 2014 and 2017 are incomplete. This section selects two
complete spring-summer seasons, that is, the data from 2015 and 2016, for research. Figures 8 and 9
show the evolution process of spatial pattern of PM; 5 pollution in Chinese mainland cities during
two spring-summer seasons, estimated by the Bayesian time-space model. PM; 5 pollution in China
showed a cyclic characteristic of first spreading and then centralizing in space during both seasons,
and showed an obvious process of first diffusing then transferring to shrinkage alternation during
the spring-summer of 2015, but no obvious diffusion during the spring-summer season of 2016,
maintaining a stable spatial structure after the shrinkage in June.
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Figure 8. Evolution of spatial relativity of PM; 5 pollution over the Chinese mainland (not including
Taiwan) during the spring-summer season of 2015.
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From the results based on the Bayesian spatiotemporal model estimation, we can see that the
spatial difference of PM, 5 pollution in mainland China was more significant during the spring-summer
season than the autumn-winter season. In May and July 2016 and June and July 2016, the spatial
relativity coefficient EXP(Sj; ) reached 2.98 and 2.95, and 2.68 and 3.55, respectively. Most of the heavy
pollution areas in the above months were located in the Beijing-Tianjin-Hebei urban agglomeration
in the North China Plain, with some heavy pollution areas also located in Xinjiang. During the
spring-summer cycle of 2016, heavily polluted areas expanded. However, the degree of pollution
in the northeastern region showed a decreasing trend in both annual spring-summer seasons, with
the number of months with PM; 5 pollution lower than the overall level being 2 and 5, respectively.
The spatial distribution of PM; 5 pollution in mainland China was more concentrated during the
spring-summer season in 2016, with the heavily polluted areas continuously and steadily concentrated
in East China, Central China and Xinjiang.
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Figure 9. Evolution of spatial relativity of PMj 5 pollution over the Chinese mainland (not including
Taiwan) during the spring-summer season of 2016.

3.2.3. Trend Analysis

PMj; 5 pollution in Chinese cities exhibited different trend characteristics during different seasons.
During the spring-summer seasons of 2015 and 2016, PM,5 monthly average concentrations in
Chinese mainland cities showed a month to month downward trend (Figure 10), and in most cities,
PM, 5 monthly average concentration was maintained at a level of less than 100 pg/m?3. During the
autumn-winter seasons of 2015, 2016 and 2017, PM; 5 monthly average concentrations showed a trend
of first increasing and then decreasing. In August of three autumn-winter seasons, PM; 5 monthly
average concentrations in the Chinese mainland were the lowest, and then continued to increase.
In January 2015, December 2015 and January 2017, PM; 5 pollution in the cities of mainland China
reached the highest levels for each respective year. PM; 5 monthly average concentrations in 25% of
cities (85 cities) exceeded 100 pg/ m?3, and the median of each autumn-winter season was 76.46 ug/ m3,
69.08 pg/m3 and 71.18 nug/m?>, respectively. According to Figures 5-7, the spatial distribution of
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heavily polluted cities in the highly polluted months showed a gradually concentrating trend from
2015 to 2017. The number of cities with PM, 5 pollution exceeding the national average was 231 in
January 2015 (only the southeastern Guangdong and Fujian and a small part of northern Xinjiang were
excluded), which was reduced to 163 in December 2015 (mainly including cities in East China, North
Central China and the western regions (Xinjiang, Qinghai and Tibet)) and then increased to 174 in
January 2017 (mostly concentrated in east China and northeast China).
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Figure 10. Box-plot chart of PM; 5 monthly average concentration in Chinese mainland cities from
May 2014 to May 2017.

4. Discussion

This paper researches the space-time evolution process of PM; 5 pollution in mainland China
in recent years, employing the descriptive statistics method and the BSTHM based on PM; 5 hourly
concentration data from ground monitoring stations over the past three years. Most other research on
the temporal and spatial patterns of PM; 5 pollution is based on the large scale nation-level, and on
the PM, 5 annual average concentration data, which is an inversion in remote sensing. However,
the reliability of remote sensing inversion data of PMj 5 concentration is apparently weaker than
the ground monitoring data, and its time span is usually in annual units, rendering the granularity
too large to explore many fine temporal and spatial evolution characteristics and laws. Moreover,
the PM; 5 daily, weekly and monthly average concentrations are more closely related to the public
environment and public health, and corresponding research is therefore more practical and instructive.

The results of a series of studies based on PM; 5 annual average concentration of remote sensing
inversion data [19,20,34] indicate that the spatial pattern of PM; 5 pollution at the annual scale will
generally maintain a certain steady state structure. However, this study shows that the PM; 5 pollution
spatial pattern at the fine-grained time scale has very unsteady characteristics, as the spatial distribution
of PM; 5 pollution in mainland China presents significant differences during different months of
different seasons. Through this fine-grained study in time and space, it is possible to develop a
deeper understanding of the evolution of regional PM, 5 pollution and make policy formulation more
pertinent to relevant environmental governance.

PMj, 5 pollution is an environmental threat to China as well as to other developing countries,
such as India and Saudi Arabia. As outlined above, the Chinese government has been taking active
measures to combat PM, 5 pollution. The statistical results in this paper show that some success
has been realised, however, there is still a great deal of room for air quality improvements in China.
PMj; 5 pollution is not just a local issue—it can be considered a countrywide or even world-wide
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phenomenon. To control PM; 5 pollution, the Chinese government needs to consider spatial and
temporal heterogeneity simultaneously. Resource management and policy formulation should target
PM; 5 pollution treatment in specific regions and months. This paper provides detailed spatial
city-level patterns for each month. Meanwhile, macroscopic national and urban regional policy
implications can be provided. Precise measures not only result in fine effects and save limited resource,
but they also minimally influence public lifestyle, for example, not having to impose regular traffic
restrictions. In addition, at present, the PM; 5 pollution over China in the winter heating season is
being given greater attention. Nevertheless, PM; 5 pollution in the other seasons—autumn, spring
and summer—cannot be overlooked. The phenomenon of PM; 5 pollution is also dependent upon
a time axis. Therefore, policies for preventing and remedying PM; 5 pollution should be formulated
according to its monthly evolution over China. In so doing, the results achieved through conformance
to policies would be ultimately more effective.

5. Conclusions

This paper presents the first systematic study of the space-time pattern evolution process of
PM; 5 pollution in mainland China over the most recent three years based on available ground
monitoring station data. The study findings are: (i) PM, 5 pollution in mainland China showed a
very significant seasonal cycle type fluctuation, with the period from October to April following a
previous year being a heavy pollution period, while the phase from April to October of the current
year belonged to the light pollution period. Throughout the entire study period, there was a situation
of PM, 5 concentration higher than 100 pg/m3 every day, especially during the heavy pollution
period. It was noted that over 50% of the monitoring stations” PM; 5 daily average concentration
levels were higher than 100 ng/ m?3; (ii) The three severe pollution periods of 2014-2015, 20152016
and 2016-2017 demonstrated a shortening tendency, meaning that the number of weeks with PM; 5
concentration levels higher than 100 ug/m3 gradually decreased over the three heavy pollution periods.
The average monthly concentration of PM; 5 in the cities of mainland China presented no significant
spatial differences during the severe pollution period (from October to January of the next year) and
but a large spatial difference during the light pollution period (from January to October of the same
year); (iii) The severe PM, 5 pollution areas were mainly distributed in the Beijing-Tianjin-Hebei urban
agglomeration in the North China Plain at the beginning of each autumn-winter season (September),
and spread to the Northeast Plains after October, then continued to spread to other cities in mainland
China later, eventually covering most of the cities in China. Regardless of month, however, PM; 5
pollution in the North China Plain was the highest; (iv) PM; 5 pollution in China showed a cyclic
characteristic of proliferation-contraction in space during two spring-summer seasons, showing an
obvious process of diffusion (transfer)-shrinkage alternation in the spring-summer season of 2015 but
no obvious diffusion in the spring-summer season of 2016, maintaining a stable spatial structure after
the shrinkage in June and being more concentrated. The heavily polluted areas are continuously and
steadily concentrated in east China, central China and Xinjiang province; (v) the spatial distribution of
heavily polluted cities in the highly polluted months showed a gradually concentrated trend from 2015
to 2017. The number of cities with PM, 5 pollution exceeding the national average was 231 in January
2015 (only southeastern Guangdong, Fujian and a small part of northern Xinjiang were excluded),
a number reduced to 163 in December 2015 (mainly including east China, north central China and
the western regions (Xinjiang, Qinghai and Tibet)) before increasing to 174 in January 2017 (mostly
concentrated in east China and northeast China).

However, there are some specific shortcomings of this paper. First, only PM; 5 was selected
from the ground station monitoring data pertaining to pollutants, meaning other air pollutants such
as SO, and NO; were not included in the study. If all of the pollutants monitored by the ground
stations were to be included in the research, more comprehensive results would be obtained. Second,
this paper uses the urban administrative divisions as the spatial units and uses PM; 5 concentration
data monitored by the sites within the city areas to describe the PM; 5 pollution levels of each city.
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Therefore, the estimations based on considering city areas as the relevant spatial units may be biased
due to the unbalanced layout of the ground monitoring stations (most of them are located in urban
areas, with only a small number of control sites being located in the outskirts). In the next phase, we
will break down the urban administrative division and use other space division units for further study.
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