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Abstract: In a town located in a desert area of Northern Chile, gold and copper open-pit mining
is carried out involving explosive processes. These processes are associated with increased dust
exposure, which might affect children’s respiratory health. Therefore, we aimed to quantify the
causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk
burden in children. Data on the prevalence of respiratory diseases and potential confounders were
available from a cross-sectional survey carried out in 2009 among 288 (response: 69%) children living
in the community. The proximity of the children’s home addresses to the local gold and copper mine
was calculated using geographical positioning systems. We applied targeted maximum likelihood
estimation to obtain the causal attributable risk (CAR) for asthma, rhinoconjunctivitis and both
outcomes combined. Children living more than the first quartile away from the mines were used as
the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children
lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by
4.7 percentage points (CAR: −4.7; 95% confidence interval (95% CI): −8.4; −0.11); and 4.2 percentage
points (CAR: −4.2; 95% CI: −7.9;−0.05) for both outcomes combined. Overall, our results suggest
that a hypothetical intervention intended to increase the distance between the place of residence of
the highest exposed children would reduce the prevalence of respiratory disease in the community
by around four percentage points. This approach could help local policymakers in the development
of efficient public health strategies.

Keywords: children; respiratory health; environmental public health; TMLE; machine learning;
causal inference; Chile

1. Introduction

Copper mining and gold mining are cornerstones of Chile’s economy. In 2014, Chile contributed
to 31% of the world’s production of copper and 2% of the gold production. Open-pit mining is the
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primary extraction method in Chile (used in up to 91% of the mines) [1] involving explosive procedures
and heavy machinery. Environmental impacts of open-pit mining include erosion, biodiversity loss,
as well as contamination of the groundwater and pollution of ambient air [2,3].

Children are particularly susceptible to air pollution because they spend more time outdoors and
have a higher breathing rate than adults [4,5]. Hence, children living in open-pit mining communities
in the U.K. consulted their GPs more frequently for respiratory conditions [6]. Furthermore, a study
carried out in a Colombian coal mining region indicated a higher prevalence of asthma among exposed
compared to non-exposed children [7]. Epidemiological studies investigating environmental air
pollution from other sources, such as petrochemical industry, wood factories or incinerators [8–12],
consistently indicated associations with asthma and allergies in children. Most of them used proximity
to sources as the exposure surrogate [9,13,14], and some suggested a threshold value, i.e., a distance
beyond which no association of the exposure with the respiratory diseases can be detected [8,9,13].

We have previously shown associations between distance to open-pit mines and prevalence of
respiratory diseases among children living in a rural community in the desert of Northern Chile,
where two open-pit mines (one for gold and one for copper) are located close to the community [14].
Given the dry climate (only 12 days with some rainfall per year), exposure levels might be higher
compared to other regions where rain washes out the air pollution every once in a while. Wind is
usually light, blowing 32% of the time from the mines to the town (west-south-western, western or
south-western wind) [15,16]. In that study, we used Bayesian and parametric models to establish the
relation between proximity to mines and respiratory diseases, adjusting for potential confounders.
However, these models may lead to biased estimates and incomplete control for confounding [17,18].
Furthermore, we did not evaluate the attributable risk mining has on respiratory disease prevalence in
the community’s children.

In order to address the aforementioned limitations, we aimed to estimate the causal attributable
risk (CAR) of living closer to the mines on asthma or allergic rhinoconjunctivitis. CAR compares,
under assumptions, the absolute change in asthma or rhinoconjunctivitis risk that would have
been experienced by the target population under a hypothetical intervention consisting of changing
proximity levels to the gold or the copper mine. These estimates are then compared to the currently
observed proximity levels.

2. Materials and Methods

2.1. Study Population and Questionnaire

Data for the analyses were obtained from a questionnaire-based cross-sectional study [14,19].
In brief, the study included 288 children attending 1st–6th grade at two larger elementary schools
in the community (417 were invited to participate, response: 69%). Approximately 84% of children
living in the community of the age under study attend one of these schools. Information on respiratory
outcomes and covariates were obtained using the Spanish version of the International Study on
Asthma and Allergies in Childhood (ISAAC) questionnaire [20]. The questionnaire was sent home
to be answered by the children’s parents. The project was approved by the Ethics Committee of the
University Hospital Munich (Ludwig Maximilians University) and by the Ethics Committee of the
Universidad Católica del Norte in Coquimbo, Chile.

2.2. Respiratory Outcomes

Asthma was defined as “doctor diagnosed asthma” or “taking asthma medication during the
12 months before the survey.” A child was considered to have rhinoconjunctivitis if one or more of the
following nasal symptoms were reported: sneezing, itching, nasal congestion or rhinitis 12 months
before the survey and if these symptoms occurred in conjunction with itchy, red and watery eyes [20].
We also created a variable coded as “asthma or rhinoconjunctivitis” to assess the overall impact of
hypothetical interventions on respiratory health in the community’s children.
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2.3. Exposure to Mines

In the absence of available emissions inventory, stationary or personal exposure data, we used
proximity to open pit mines as a proxy for exposure. Using the global positioning system (GPS),
we established the latitude and longitude coordinates of children’s residences and the primary
locations of the mining extraction procedures (Figure 1). Based on this, we calculated residential
proximity to the gold and copper mine [14]. We considered the first and the second distance quartile to
each mine and to either mine [12] as exposed categories and compared them to those living at least
within the median distance.

Gold mine

Copper mine

0 0.5 1 km

scale approx 1:42,000

Figure 1. Geographical position of the gold and copper mines and child’s residence. Original positions
were changed using jitter to keep confidentiality.

2.4. Potential Confounders

As potential confounders, we included: sex (female vs. male), age (6–7 vs. 8–9, 10–11 and 12 or
more years) and family history of atopic disease, i.e., whether a family member ever reported or was
diagnosed with one or more of the respiratory diseases under study (no vs. yes). Further, as proxy
variables for socioeconomic status (SES), we assessed if the mother (no vs. yes) or father (no vs. yes) of
the child worked and whether the child was living with both parents (no vs. yes). We also considered
other sources of air pollution, i.e., exposure to cigarette smoking at home (no vs. yes), the energy
source for heating used at home (other vs. coal and gas) and type of nearest road (paved vs. dirt road).
We used time spent at home (less than 3 vs. 3–6 and more than 6 h/day) and the child’s main place
for playing (inside vs. outside) as additional confounders. As a sensitivity analysis, we additionally
adjusted the final models for schools.

2.5. Statistical Analysis

For our analysis, we used improved methods of causal inference [21,22]. These approaches
produce causal attributable risk estimates [23,24], and they are appropriate for cross-sectional study
designs [25–29]. Additionally, we used targeted maximum likelihood estimation (TMLE) [22],
which is a semi-parametric efficient approach, to estimate the causal attributable risk of asthma
or rhinoconjunctivitis. TMLE was implemented jointly with the Super Learner algorithm, a flexible
data-adaptive algorithm [30]. Combining TMLE with Super Learner, we were able to improve both the
robustness and precision of our estimates.

2.5.1. Parameters of Interest

We aimed to estimate the reduction in the prevalence of respiratory health outcomes (asthma,
allergic rhinoconjunctivitis or both) if the study population had been entirely unexposed, i.e., if the
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whole population lived at least one or two quartiles away from the mines. To quantify this reduction in
prevalences in our study population, we estimated the causal attributable risk (CAR). CAR compares
the outcome distribution under a hypothetical intervention intended to remove the current exposure in
the targeted population, with observed outcome distributions [23,31,32]. Based on the counterfactual
framework [21], we were interested in the following causal parameter (Equation (1)):

E(Y)− E(Ya); a ∈ A = {1, 2} (1)

where Y represents the observed respiratory disease, being equal to 1 if a child reports having asthma
or rhinoconjunctivitis (or both). Ya represents the counterfactual respiratory disease outcome that a
child would have if she/he had been exposed to a particular distance quartile, A = a ∈ A. In our
approach, A assumes two possible values, 1 indicating the first distance quartile or 2 representing
the median distance to the mines in the studied population. Estimates based on both exposures were
compared against the observed prevalences (Equation (1)).

2.5.2. Identification of the Causal Parameter

Once the causal parameters of interest are defined, it is essential to establish some assumptions
to identify the parameter from the observed data [33]. First, it was necessary to assume that the
observed outcome (Y) that a child experienced under the observed distance quartile to the mine was
equal to the counterfactual outcome (Ya) under the exposure level, i.e., Y = Ya; this is known as the
consistency assumption. Second, we assumed that given all used potential confounders (here indicated
as W), the potential outcome Ya was independent of the exposure A; i.e., Ya |= A|W, ∀a ∈ A; this is
referred to as the randomization assumption (no unmeasured confounding). Under this assumption,
we considered that all measured covariates W were enough to control for confounding the effect
of A on Y. Finally, we relied on the positivity assumption, which implies that there was a positive
probability for receiving each quartile of exposure A within every combination of covariates among
the studied population, also known as the experimental treatment assumption (ETA). The first and
second assumptions are untestable with the data [33].

Under these three assumptions, we can express the target parameter of interest regarding the
observed data as (Equation (2)):

E(Y)− E(Ya) = E(Y)− Ew{E(Y|A = a, W)}; a ∈ A = {1, 2} (2)

The equality in Equation (2) is a function of the observed data distribution, and it represents the
statistical estimand.

2.5.3. Estimation of Parameters of Interest

From Equation (2), the first term, E(Y), can be estimated using the prevalence of each respiratory
outcome, i.e., the proportion of children with asthma or allergic rhinoconjunctivitis. The counterfactual
part of the target parameter in Equation (2), Ew{E(Y|A = a, W)}, was estimated using targeted
maximum likelihood estimation (TMLE) [22,33]. TMLE is a two-step method: first, an estimation
of the conditional expectation of the outcome given the exposure and covariates is obtained,
E(Y|A, W). Then, using these estimates, a second step occurs, the bias-reduction step, where the
initial estimate of the outcome regression is updated using the estimation of the exposure mechanism,
P(A = a|W); a ∈ A ={1, 2} (exposure probabilities), and it is referenced as the “targeting” step [33].
In the last step, the updated estimation of E(Y|A, W) is used to estimate the parameter in Equation (2).
TMLE has the property of “double robustness,” meaning that the estimated parameters will be
consistent if either one of the two initial estimators is consistent, and TMLE estimates will reach
the lowest asymptotic variance among the reasonable estimators (efficiency) if both are estimated
consistently. We estimated the exposure probabilities, as well as the outcome regression using an
ensemble predictor known as Super Learner [30]. Super Learner constructs a convex combination
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of candidate predictors in a user-given library. Subsequently, weights are chosen to minimize the
cross-validated log-likelihood of the resulting ensemble. As using regressions to calculate the final
estimator could generate a bias increase [34], we corrected this issue using the Super Learner algorithm.

2.5.4. Missing Values

Several covariates of interest had missing values (Table 1). Therefore, we used multiple imputation
procedures on all confounders with missing values, but not so for the outcome variables, nor the
exposure variables. During imputation, we created five imputed datasets using the R library mice [35].
With each one of the five imputed datasets, we estimated a CAR, and results from these five parameters
were used to calculate a combined CAR estimate with the respective confidence intervals using Rubin’s
rules [36]. Analyses were performed in the R (Version 3.4.1, R Foundation for Statistical Computing,
Viena, Austria) programming language [37] using the tmle [38] and SuperLearner [39] packages.

Table 1. Socio-demographics by living distances to a gold and a copper mine among 275 children living
in a rural mining community in the north of Chile, 2009.

Distance to Gold Mine Copper Mine Either Mine †

> Quartile 1 > Quartile 1 > Quartile 1

Total n per Category % (n) % (n) % (n)

Sex
Female (126) 75 (94) 75 (94) 75 (94)
Male (149) 75 (112) 75 (112) 74 (111)

Age
6–7 years (74) 77 (57) 76 (56) 77 (57)
8–9 years (86) 74 (64) 76 (65) 76 (65)
10–11 years (82) 70 (57) 72 (59) 70 (57)
≥12 years (33) 85 (28) 79 (26) 79 (26)

Living with both parents (NA = 9)
No (81) 72 (58) 68 (55) 70 (57)
Yes (185) 76 (140) 78 (144) 76 (141)

Parental atopic disease (NA = 30)
No (160) 77 (123) 77 (123) 76 (122)
Yes (85) 73 (62) 76 (65) 76 (65)

Mother working (NA = 15)
No (191) 76 (146) 74 (142) 74 (142)
Yes (69) 70 (48) 78 (54) 75 (52)

Father working (NA = 22)
No (22) 68 (15) 64 (14) 54 (12)
Yes (231) 78 (181) 78 (181) 79 (182)

Hours child stay at home (NA = 61)
Less 3 h (20) 95 (19) 85 (17) 85 (17)
3–6 h (46) 74 (34) 72 (33) 74 (34)
More than 6 h (148) 71 (105) 76 (112) 73 (108)

Place child play most of the time (NA = 9)
Inside (105) 77 (81) 75 (79) 78 (82)
Outside (161) 73 (118) 75 (120) 72 (116)

Smoking in child’s presence (NA = 28)
No (180) 77 (139) 73 (132) 74 (134)
Yes (67) 69 (46) 81 (54) 76 (51)

Nearest road (NA = 10)
Dirt (57) 67 (38) 60 (34) 58 (33)
Paved (208) 77 (160) 79 (164) 79 (164)

Type of heater (NA = 69)
Other (80) 78 (62) 78 (62) 76 (61)
Coal and Gas (126) 73 (92) 72 (91) 73 (92)

† Indicates distances above the first quartile to either mine; NA: missing values.
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3. Results

3.1. Descriptive Results

Of the 288 participating children, we excluded three children for having missing residence
locations and ten children who lived in isolated zones from the community. Therefore, the analysis
included 275 children living in the community.

The point prevalence was 24% for asthma, 34% for rhinoconjunctivitis and 44% for asthma and
rhinoconjunctivitis combined. The mean distance to the mines was 2.08 km (standard deviation (SD):
0.26; range 1.33–2.77 km) for the gold mine and 1.95 km (SD: 0.37; range 0.87–3.11 km) for the copper
mine. Children living within the first quartile of distance to the mines reported the highest prevalence
of respiratory symptoms. Using the median as the cut-off point, no statistically relevant differences in
respiratory diseases were found for the resulting two exposure groups (Table 2).

Forty-six percent of the included participants were female; mean age was 9.05 years (SD: 1.88 years,
range 6–15 years). Two-thirds of the children lived with both parents. In 84% of the families, the father
was working, while in 25%, the mother was holding a job. Children whose father worked were
more likely to live further away from the mines than those whose father did not work (Table 1).
The proportion of parents with atopic diseases was 31%. Children spending fewer hours at home also
lived further away from the mines (Table 1).

3.2. Causal Attributable Risk

Based on the estimated CARs, a hypothetical intervention in which all children lived further
away than the first quartile of distance to the copper mine would decrease the risk of allergic
rhinoconjunctivitis by 4.1 percentage points (CAR: −4.1%, 95% confidence interval: −6.9;−1.3%) and
by 2.9 percentage points for both respiratory outcomes combined (CAR: −2.9%, 95% CI:−5.7%;−0.1%).
Estimates were similar for distance to either mine and rhinoconjunctivitis (CAR: −4.7%, 95% CI:
−8.4;−1.1%) and asthma and rhinoconjunctivitis combined (CAR: −4.2%, 95% CI: −7.9; −0.5%).
However, no association was seen for asthma, distance to the gold mine and using the median as the
cut-off (Table 3).

Adjusting for schools, results remained robust for all outcomes with respect to the distance to
the copper and the gold mine. However, using the first distance quartile to either mine as exposure
variable, estimates lost statistical significance (Appendix A, Table A1).
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Table 2. Prevalence and crude odds ratios of respiratory diseases by living distances to gold and copper mines among 275 children living in a rural mining community
in the north of Chile, 2009.

Asthma Rhinoconjunctivitis Asthma or Rhinoconjunctivitis

Overall Prevalence 24% (n = 66) 34% (n = 93) 44% (n = 121)

Missing Data (NA = 35) (NA = 17) (NA = 26)
Distance to

Total n per Category % (n) OR a (95% CI) % (n) OR a (95% CI) % (n) OR a (95% CI)

Gold mine

Quartile 1 (1.9 km) ≤ (69) 32 (22) 1.67 (0.89; 3.11) 41 (28) 1.54 (0.86; 2.75) 52 (36) 1.58 (0.89; 2.84)
> (206) 21 (44) 1 32 (65) 1 41 (85) 1

Quartile 2 (2.3 km) ≤ (138) 24 (34) 1.01 (0.58; 1.79) 35 (48) 1.08 (0.65; 1.80) 44 (61) 0.99 (0.60; 1.62)
> (137) 23 (32) 1 33 (45) 1 44 (60) 1

Copper mine

Quartile 1 (1.6 km) ≤ (69) 30 (21) 1.47 (0.78; 2.72) 45 (31) 1.79 (1.01; 3.16) 57 (39) 1.70 (0.97; 3.01)
> (206) 22 (45) 1 30 (62) 1 39 (82) 1

Quartile 2 (2.0 km) ≤ (138) 25 (35) 1.18 (0.67; 2.09) 38 (52) 1.38 (0.83; 2.31) 47 (65) 1.27 (0.78; 2.10)
> (137) 23 (31) 1 30 (41) 1 41 (56) 1

Both mines

Quartile 1 † ≤ (96) 30 (29) 1.61 (0.90; 2.87) 43 (41) 1.81 (1.07; 3.08) 53 (51) 1.66 (0.99; 2.81)
≥ (179) 20 (37) 1 30 (52) 1 40 (70) 1

Quartile 2 ‡ ≤ (101) 24 (41) 0.79 (0.44; 1.41) 35 (61) 0.75 (0.45; 1.27) 44 (76) 0.74 (0.44; 1.24)
> (174) 25 (25) 1 32 (32) 1 45 (45) 1

† Indicates distances above the first quartile to either mine; ‡ indicates distances above the second quartile to either mine; NA: missing values; a unadjusted odds
ratios using logistic regression.
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Table 3. Estimated causal attributable risk (CAR) of respiratory diseases in children, expressed as
percentage points with the 95% confidence intervals (95% CI). Data from children living in a rural
mining community in the north of Chile, 2009.

Asthma Rhinoconjunctivitis Asthma or Rhinoconjunctivitis
n = 240 a n = 262 a n = 229 a

CAR b 95% CI CAR b 95% CI CAR b 95% CI

Gold mine Quartile 1 (1.9 km) −2.7% (−5.7%; 0.3%) −2.1% (−4.8%; 0.8%) 2.7% (−5.7%; 0.2%)
Quartile 2 (2.3 km) −4.3% (−9.5%; 0.8%) −1.5% (−6.7%; 3.4%) 3.7% (−9.3%; 1.9%)

Copper mine Quartile 1 (1.6 km) −1.4% (−4.3%; 1.6%) −4.1% (−6.9%; −1.3%) −2.9% (−5.7%;−0.1%)
Quartile 2 (2.0 km) −1.3% (−5.4%; 2.9%) −1.4% (−5.7%; 2.9%) −1.5% (−6.1%; 3.1%)

Either mine Quartile 1 −3.5% (−7.1%; 0.1%) −4.7% (−8.4%; −1.1%) −4.2% (−7.9%; −0.5%)
Quartile 2 0.5% (−3.9%; 5.0%) −2.0% (−6.7%; 2.7%) 0.7% (C%; 5.6%)

a Total sample used in the estimation after multiple imputations of the covariates; b negative values imply a
reduction in prevalences due to a hypothetical intervention.

4. Discussion

Using a semi-parametric targeted approach, we were able to estimate CAR from proximity to
mining industries among children living in the surroundings of open-pit copper and gold mines in
Northern Chile. Results indicated that a hypothetical intervention intending to increase the distance
from children’s home to the mines could result in a reduction of rhinoconjunctivitis prevalence in
the studied population by up to 4.7 percentage points (95% CI: −8.4%; −1.1%). Thereby, our method
estimates the public health impact of such an intervention, which could not be done using the standard
statistical approaches (e.g., logistic regression estimates).

With the standard approach, we previously found the minimum distance between the mines and
address of the children associated with increased odds of respiratory diseases. These previous results
are not directly comparable with the results presented here because they were based on Bayesian and
parametric models. Nevertheless, our new findings strengthen the conclusions from the earlier study.
Based on the previous results, we dichotomized our exposure [14]. Additionally, we examined the
nonlinearity of the exposure-response association plotting the distances between the place of residence
and the mines (Appendix A, Figures A1–A6). While the associations were linear for the distance to
the gold mine (Figures A1–A3), a U-shape association was found for the distance to the copper mine
(Figures A4–A6). Understanding the shape of the association needs to be taken into account when
deciding upon public health interventions [40].

Our approach has several strengths. First, we used the distance between the place of residence
and the mines as a proxy for ambient dust exposure, which could be a good surrogate measure of
long-term exposure when exposure monitoring sites are missing [9]. Secondly, there was only light
traffic in the area and other related outdoor air pollutants. Therefore, the described association is not
expected to be confounded by other sources [5,8,41]. We controlled for several potential confounders,
including SES and other indoor air pollutants (e.g., second-hand smoke). Another source of indoor
exposure, gas cooking, was not considered as 95% of the population used gas for cooking. Our results
were robust when adjusting for a number of potential confounders. One may argue that kids spent
much of their time in schools and therefore, associations might be confounded by school. However,
our sensitivity analyses did not confirm this hypothesis. Our questionnaire instrument was validated
for a worldwide study [20] and is thus expected to estimate the prevalence of the outcome correctly.
To address the challenge of missing data and relatively small sample size, we used multiple imputation
methodologies to use all possible information from the study. Using a counterfactual approach, we
were able to estimate CARs to assess the effect of a potential public health intervention, which might
be helpful for policymakers [18,42,43]. This methodology has not yet been used to study exposure to
open-pit mining and respiratory health. In our estimations, we used TMLE, which is doubly robust
to model misspecification. Lastly, combining TMLE with the Super Learner algorithm helped us to
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correct parametric misspecification bias and thereby guaranteed accurate inference for the TMLE
method [33].

Several limitations need to be considered when interpreting our findings. Despite using multiple
imputation procedures to handle missing values of the covariates, we lost 17% of the sample because of
missing data in the outcome variables. Moreover, our cross-sectional design does not permit assessing
the time sequence of exposure and outcome [44]. However, we believe that this condition was met
in our study since 98% of the children were born in the community (data were not shown), and the
open-pit mining procedures started in the early 1990s, so reverse causation is unlikely an issue for our
study. Another consideration is the experimental treatment assumption (ETA). It is possible that we
did not record some characteristics of the children or the neighborhood. However, parameter estimates
using targeted maximum likelihood estimation are robust to possible ETA violations [23,45]. Possible
ETA violations must be investigated to guarantee the causal interpretation of the parameter estimate,
especially when transferring our findings based on CARs to other populations [23,46]. Nevertheless,
we assume that we had enough variability within each quartile of the proximity to the mines, various
covariate strata and sample size, hence the positivity assumption is reasonable.

5. Conclusions

Our research was one of the first studies in Latin America assessing the causal impact of open-pit
mining on respiratory diseases. We found that living close to open-pit mines could increase the
respiratory disease burden in children living in a Northern Chile community. As it is not possible
to change the location of the mines (mines must be where the ores are located), a relocation of the
population would be a suggested policy intervention. Whether this costly approach is efficient and
agreeable to the population needs further evaluation.

Acknowledgments: We thank Daloha Rodríguez, Tobias Weinmann and Jessica Gerlich for their helpful comments.
This work was supported by the Center of International Health (CIH) of the University of Munich (LMU) funded
by the German Academic Exchange Service (DAADvia its exceed program supported by the German Federal
Ministry for Economic Collaboration and Development (BMZ)). Ronald Herrera received a Ph.D. scholarship
from the Colombian Institute for Science and Technology-ColCiencias (Ref: 646).

Author Contributions: R.H. performed the analysis and wrote the manuscript. R.H. and I.D. conceived of
the statistical approach. K.R., S.C., O.v.E. and D.M. conceived of the original idea and design. K.R., U.B. and
O.v.E. contributed to the analyses and their statistical interpretation. R.H., I.D., K.R., O.v.E. and U.B. edited the
manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAR Causal attributable risk
CI Confidence interval
ETA Experimental treatment assumption
GPS Global positioning system
GP General practitioners
ISAAC International Study on Asthma and Allergies in Childhood
SES Socioeconomic status
TMLE Targeted maximum likelihood estimation



Int. J. Environ. Res. Public Health 2018, 15, 39 10 of 15

Appendix A.

Tables

Table A1. Estimated causal attributable risk (CAR) of respiratory diseases in children, expressed
as percentage points with the 95% confidence intervals (95% CI) including schools as a potential
confounder. Data from children living in a rural mining community in the north of Chile, 2009.

Asthma Rhinoconjunctivitis Asthma or Rhinoconjunctivitis
n = 240 a n = 262 a n = 229 a

CAR b 95% CI CAR b 95% CI CAR b 95% CI

Gold mine Quartile 1 (1.9 km) −2.8% (−6.0%; 0.3%) −2.4% (−5.4%; 0.6%) −3.0% (−6.8%; 0.2%)
Quartile 2 (2.3 km) −0.4% (−4.5%; 3.6%) −1.2% (−5.4%; 2.9%) −0.3% (−4.7%; 4.1%)

Copper mine Quartile 1 (1.6 km) −1.3% (−4.3%; 1.2%) −3.6% (−6.7%; −0.4%) −3.2% (−6.5%; −0.01%)
Quartile 2 (2.0 km) −1.6% (−5.7%; 2.4%) −3.7% (−8.0%; 0.6%) −3.2% (−7.6%; 1.2%)

Either mine Quartile 1 −1.2% (−3.7%; 1.3%) −1.6% (−4.0%; 0.9%) −2.0% (−4.5%; 0.5%)
Quartile 2 0.9% (−3.6%; 5.4%) −1.7% (−6.4%; 3.0%) 1.6% (−3.3%; 6.6%)

a Total sample used in the estimation after multiple imputations of the covariates; b negative values imply a
reduction in prevalences due to a hypothetical intervention.

Figures

Appendix A.1. Causal Attributable Risks at Different Distances to the Gold Mine
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Figure A1. Estimated CAR of asthma in children, expressed as percentage points with whiskers
indicate 95% confidence intervals and different distances to the gold mine. Data from children living in
a rural mining community in the north of Chile, 2009.
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Figure A2. Estimated CAR of rhinoconjunctivitis in children, expressed as percentage points with
whiskers indicate 95% confidence intervals and different distances to the gold mine. Data from children
living in a rural mining community in the north of Chile, 2009.
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Figure A3. Estimated CAR of asthma or rhinoconjunctivitis in children, expressed as percentage points
with whiskers indicate 95% confidence intervals and different distances to the gold mine. Data from
children living in a rural mining community in the north of Chile, 2009.
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Appendix A.2. Causal Attributable Risk at Different Distances to the Copper Mine
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Figure A4. Estimated CAR of asthma in children, expressed as percentage points with whiskers
indicate 95% confidence intervals and different distances to the copper mine. Data from children living
in a rural mining community in the north of Chile, 2009.
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Figure A5. Estimated CAR of rhinoconjunctivitis in children, expressed as percentage points with
whiskers indicate 95% confidence intervals and different distances to the copper mine. Data from
children living in a rural mining community in the north of Chile, 2009.
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Figure A6. Estimated CAR of asthma or rhinoconjunctivitis in children, expressed as percentage points
with whiskers indicate 95% confidence intervals and different distances to the copper mine. Data from
children living in a rural mining community in the north of Chile, 2009.
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