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Abstract: In recent decades, many researchers have focused on the issue of medical failures in the
healthcare industry. A variety of techniques have been employed to assess the risk of medical failure
and to generate strategies to reduce the frequency of medical failures. Considering the limitations of
the traditional method—failure mode and effects analysis (FMEA)—for risk assessment and quality
improvement, this paper presents two models developed using data envelopment analysis (DEA).
One is called the slacks-based measure DEA (SBM-DEA) model, and the other is a novel data-driven
approach (NDA) that combines FMEA and DEA. The relative advantages of the three models are
compared. In this paper, an infant security case consisting of 16 failure modes at Western Wake
Medical Center in Raleigh, North Carolina, U.S., was employed. The results indicate that both
SBM-DEA and NDA may improve the discrimination and accuracy of detection compared to the
traditional method of FMEA. However, NDA was found to have a relative advantage over SBM-DEA
due to its risk assessment capability and precise detection of medical failures.

Keywords: failure mode and effects analysis; medical failure; novel data-driven approach; data
envelopment analysis; healthcare

1. Introduction

In recent decades, medical failures, which are referred to as errors or adverse events in a medical
service, have attracted much attention in the healthcare industry due to the increasing concern for
patient safety [1]. The occurrence of medical failures may result in additional costs and a reduction
in medical quality [2]. The U.S. Institute of Medicine reported that preventable medical failures
result in 1,000,000 injuries and 44,000–98,000 deaths in hospitalized patients [3] and incur a loss of
$17,000,000 [4] each year in America. In Taiwan, approximately 500 medical conflicts each year await
legal mediation or trial [5]. Researchers suggest that reducing medical failures is critical for improving
patient safety in healthcare systems. The prevention of medical failures may consist of two stages:
risk assessment and quality improvement to monitor medical failures that may occur in a system.
In general, risk assessment is processed by categorizing medical errors and predicting the probability
of their occurrence [6]. The Joint Commission on Accreditation of Healthcare Organizations (JCAHO)
requires all accredited hospitals or other healthcare organizations to complete at least one proactive
risk assessment annually to assess the risk of errors and to continuously improve quality [7].

The techniques of risk assessment and quality improvement involve a variety of methods
to prevent medical failures, including Six Sigma, hazard analysis and critical control points
(HACCP), failure mode and effect analysis (FMEA) or healthcare failure mode and effect analysis
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(HFMEA), the Toyota production system (TPS), hazard and operability studies (HAZOP), total
quality management/continuous quality improvement (TQM/CQI), root cause analysis (RCA),
and probabilistic risk assessment (PRA) [8]. Among these methods, FMEA is widely accepted and
employed to assess the risk of medical failures [9–11] and thus serves as a basis for generating
preventive actions [12]. The validity of FMEA is commonly noted for the assessment of medical risk
by the JCAHO. In FMEA, three indexes, including severity (S), occurrence (O) and detection (D), are
applied to assess risk, where S denotes the seriousness of the effect of failure, O is the probability or
frequency of the failure, and D represents the probability that the failure will be detected before the
impact of the effect is realized. However, weaknesses in the process of assessing risk in FMEA have
been reported [13,14]. Based on a review of previous studies, the limitations of FMEA include the
following: (1) FMEA may not provide sufficient information regarding S, O, and D because it assumes
that the relative importance of S, O and D is equal [13]; (2) due to insufficient discriminative power,
the prioritization for the failure mode with different combinations of S, O, and D may yield the same
value for the risk priority number (RPN), resulting in difficulty in ranking priorities [15]; and (3) FMEA
provides limited corrective information on S, O and D for each failure mode.

Inspired by the technique of data envelopment analysis (DEA), this paper proposes two methods
to overcome the weaknesses of FMEA. One is called the slacks-based measure DEA (SBM-DEA) model,
and the other is a novel data-driven approach (NDA) that combines FMEA and DEA. The proposed
modified DEA models are applied to risk index datasets of S, O and D. The realistic solutions, including
complete prioritization and effective mitigation strategy, are generated to provide risk managers in
healthcare organizations with insights into the degree of risk of medical errors for each medical service.
Furthermore, the proposed models are also helpful for carrying out further process redesign for
risk mitigation.

The subsequent sections of this paper are organized as follows. The methodology is presented in
Section 2, in which the basic DEA model is briefly presented and three risk assessment approaches are
described. In Section 3, the numerical results of FMEA, SBM-DEA and NDA are presented. Section 4
presents a comparison of the three approaches. Section 5 concludes with a summary of findings.

2. Methodology

FMEA was first developed to solve reliability and safety problems in the aerospace industry in
the late 1950s. Because FMEA emphasizes the proactive prevention of medical failures rather than
solutions, it can assist managers in identifying failures and causes/effects and in eliminating failures
by instituting corrective actions in the risk assessment process [16]. In FMEA, a documented method is
employed, asking the manager to provide structural and formalized information for the risk control
and assessment of potential failures in terms of what might go wrong, what might cause it to go wrong,
and what effects it would have [17]. The prioritization of failure modes is determined by the RPN,
which is calculated by multiplying the scales of S, O and D. Higher values of RPN imply that corrective
action is more urgently needed. The calculation of the RPN is expressed as follows:

RPN = S × O × D (1)

DEA is a non-parametric analysis technique used to measure the relative efficiencies of
decision-making units (DMUs). By using mathematical programming, DEA yields a composite
efficiency score between zero and one for each DMU having multiple inputs and outputs. A DMU
is said to be efficient if and only if it has an efficiency score of one. In DEA, an assumption of the
weights for all of the productive indicators is not required. A set of weights is objectively generated
via a programming process in which favorable weights for all DMUs under evaluation are determined
by maximizing their efficiency scores. The result obtained from DEA may help decision-makers to
identify the inefficient units and to consequently establish improvement strategies.
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To overcome the weakness of FMEA, a numerous studies suggest that DEA may be an effective
option for enhancing the assessment capability of FMEA [18–20]. DEA is a well-known data-driven
approach for measuring the relative efficiencies among DMUs [21]. According to the efficiency
perspective, DEA aggregates all productive indicators and yields a composite score to reveal the
distance between a DMU’s position and efficiency frontier. The frontier is formed by efficient DMUs,
also called best -practices, representing the boundary condition for the whole system, which all DMUs
can benchmark at their current production technology [22].

In this paper, a slacks-based measure (SBM) was used to assess the risk of failure modes in the
healthcare industry. Suppose that there are n DMUs, each DMUj (j = 1, . . . , n) uses m inputs xij (I = 1,
. . . , m) to produce s outputs yrj (r = 1, . . . , s). Let DMUo be the DMU under evaluation, and its ith
input and rth output are denoted by xio and yro, respectively. The SBM score of DMUo, calculated
using the input orientation, is expressed by the following programming model:

Minimize θSBM
o = 1− 1

m

m

∑
i=1

s−i /xio

s.t.
xio = ∑n

j=1 λjxij + s−i i = 1, . . . , m
yro ≤ ∑n

j=1 λjyrj r = 1, . . . , s
λj ≥ 0, s−i ≥ 0 j = 1, . . . , n

(2)

Model (2) is commonly referred to as the envelopment form and is the dual problem of the
multiplier form. In model (2), s− ∈ Rm is the slack vector for the input, and λj ∈ Rn is the non-negative
vector connecting all inputs and outputs to form an efficiency frontier. s−i denotes the excess amounts
in the input that can be decreased non-radially comparing with efficient DMUs. The θSBM∗

o is the SBM
efficiency of DMUo. If s−∗i > 0, DMUo is identified as an inefficient unit, i.e., θSBM∗

o < 1; otherwise,
it is an efficient unit. Compared with a traditional radial DEA model, SBM provides a clearer view for
determining the specific input variable that causes the inefficiency. Through the optimal slack amount,
s−∗i , the direction for improving inefficient DMUs can also be easily obtained.

Figure 1 depicts the process of risk assessment, including four steps:
Step 1: Collect the risk index report of failure modes.
Step 2: Generate a dataset of risk indexes (severity, occurrence, and detection).
Step 3: Assess the risk of failure modes using modified DEA, including SBM-DEA and NDA,

as discussed in this paper, and generate the risk rankings for all failure modes.
Step 4: Provide improvement strategies by mitigating risk for the prevention of medical failures.
Because the S, O, and D dataset in FMEA has the property of “the lower, the better”, which is

similar to inputs, this paper considers the risk indexes of S, O, and D as inputs. Thus, by applying
SBM, as depicted in Equation (2), the FMEA model yields the following:

Minimize θRPN
o = 1−

(
ss−/So + sO−/Oo + sD−/Do

)
/3

s.t.
So = ∑n

j=1 λjSj + sS− for severity
Oo = ∑n

j=1 λjOj + sO− for occurrence
Do = ∑n

j=1 λjDj + sD− for detection
1 = ∑n

j=1 λj j = 1, . . . , n
λj, sS−, sO−, sD− ≥ 0

(3)

where sS−, sO− and sD− denote the slack for S, O, and D, respectively. The θRPN∗
o represents a composed

RPN index for each failure mode and is further employed as the basis for prioritizing n failure modes.
A failure mode with θRPN∗

o = 1 and sS−∗ = 0, sO−∗ = 0, sD−∗ = 0 represents a safer mode, whereas
failure modes with θRPN∗

o < 1 represent riskier modes. For risky failure modes, the improving targets
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(
So − sS−∗, Oo − sO−∗, Do − sD−∗) may be generated automatically by using the optimal slacks (sS−∗,

sO−∗, sD−∗). In this paper, Equation (3) is referred to as the SBM-DEA model.
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SBM-DEA may successfully improve the discriminatory problem of traditional RPN, i.e., some
failure modes have the same RPN composed of different combinations of S, O and D, providing an
alternative adjustment as quantitative information for each risky failure mode. However, SBM-DEA
may present two chief shortcomings: (1) for safer failure modes, it is unable to generate the complete
prioritization, as they all have a unity score θRPN∗

o = 1; and (2) for risky failure modes, the improving
targets waste of risk mitigation resources.

To overcome the problem arising from SBM-DEA, this paper presents the NDA, expressed in
Equations (4) and (5). All failure modes are classified into two sets: safe failure modes and risky failure
modes. We then apply the Super SBM model developed by Tone [23] and a minimum distance model
developed by Aparicio et al. [24] to evaluate the RPN indexes of safe failure modes and risk failure
modes, respectively.

For safer failure modes:
Assume that there are n safe failure modes with θRPN∗

o = 1. To differentiate them, the RPN for
each safe failure mode is defined as the optimal value δRPN∗

o in the following model.

Minimize δRPN
o = 1 +

(
sS+/So + sO+/Oo + sD+/Do

)
/3

s.t.

So ≥ ∑n−1
j=1,j 6=o λjSj − sS+ for severity

Oo ≥ ∑n−1
j=1,j 6=o λjOj − sO+ for occurrence

Do ≥ ∑n−1
j=1,j 6=o λjDj − sD− for detection

1 = ∑n−1
j=1,j 6=o λj j = 1, . . . , n− 1, j 6= o

λj, sS+, sO+, sD+ ≥ 0

(4)

For risky failure modes:



Int. J. Environ. Res. Public Health 2018, 15, 2069 5 of 12

Let E be the set of safe failure modes with θRPN
o = 1 and λj = 1. Thus, the RPN index for each

risky failure mode can be solved by the following model.

Maximize θRPN
o = 1−

(
ss−/So + sO−/Oo + sD−/Do

)
/3

s.t.
So = ∑n

j=1, j∈E λjSj + sS− for severity
Oo = ∑n

j=1, j∈E λjOj + sO− for occurrence
Do = ∑n

j=1, j∈E λjDj + sD− for detection
1 = ∑n

j=1, j∈E λj j ∈ E
−
(
vSSj + vOOj + vDDj

)
+ u = −dj

vS, vO, vD, u ≥ 1
0 ≤ dj ≤ Mbj
0 ≤ λj ≤ M

(
1− bj

)
bj ∈ {0, 1}
sS−, sO−, sD− ≥ 0

(5)

where M is a large positive variable, and bj is the binary variable. The vS, vO and vD are the weights
for severity, occurrence and detection, respectively, which comply with the corresponding constraint
to the multiplier form.

Compared to SBM-DEA, in the NDA model, the safe failure modes to be evaluated are removed
from the safe frontier (λj, j 6= 0). In addition, all of the slacks (sS−, sO− and sD−) in the constraints and
objective function are modified from positive to negative. Thus, the RPN for each safe failure mode
can be obtained as δRPN∗

o ≥ 1.

Data Collection in the Healthcare Industry

In this section, we reuse a case from Western Wake Medical Center in Raleigh, North Carolina,
which was first introduced by applying FMEA to mitigate the risk of preventing infant abduction in
Reichert [25]. The dataset is tabulated in Table 1 and consists of 16 failure modes, which were identified
by a managerial team in the medical service process.

Table 1. Risk indexes (S, O, D) in failure mode and effects analysis (FMEA) for preventing
infant abduction.

No. Failure Modes Severity Occurrence Detection

FM1 Child not banded 10 7 5
FM 2 Insufficient IS info provided to mom 5 4 8
FM 3 Mom not paying attention 5 8 8
FM 4 Info not understood 5 2 8
FM 5 Baby may not be HUGS banded prior to washing 10 9 3
FM6 Info not entered into computer system, including name/room 10 8 5
FM7 Delay in entering info into computer system 10 4 5
FM8 “Unfounded” Alarms 10 3 10
FM9 Alarm ringing—doors not locking 10 2 10
FM10 HUGS band not applied until reaching post-partum (sometimes) 10 5 2
FM11 Bands loosening 8 9 6
FM12 Bands not checked and/or tightened properly 8 3 8
FM13 Not checked against census 7 8 7
FM14 Transferred rooms, not updated 7 7 7

FM15 HUGS band may not be checked when moving to nursery, other,
for blood draws, circ, etc 5 7 3

FM16 Leaving SCN other than for discharge w/o HUGS band (may
include family room visiting) 8 5 8

Note: HUGS: Hugs infant security system SCN: special care nursery.
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3. Results

This paper applies the failure mode data in Table 1 to the three models: FMEA, SBM-DEA and
NDA. The results are demonstrated in Figure 2 regarding the prioritization of failure modes among
the three different approaches. For each approach, the horizontal axis displays the ranked set of
failure modes sorted from highest to lowest risk, whereas the risk index is shown on the vertical
axis. Additionally, we divided all ranked FMs into four quartiles (designated Q1 to Q4), with Q1
representing the highest 25th percentile of risk for FMs requiring urgent action. In Figure 2, we use the
reciprocal of optimal scores obtained by SBM-DEA and the NDA model for simple ranking. A risky
FM with θRPN∗

o , δRPN∗
o < 1 has the covered risk index 1/θRPN∗

o , 1/δRPN∗
o > 1, which serves as the

basis for ranking.Int. J. Environ. Res. Public Health 2018, 15, x 6 of 12 
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In terms of FMEA, the subsets of the four quartiles included Q1 = {FM 11, FM 6, FM 13, FM 1}, Q2
= {FM 14, FM 3, FM 16, FM 8}, Q3 = {FM 5, FM 7, FM 9, FM 12} and Q4 = {FM 2, FM 15, FM 10, FM 4}.
It became clear that the discrimination of FM 3 from FM 16 (an ordinal number of 6th) and FM 7 from
FM9 (an ordinal number of 10th) was quite low due to their use of different combinations of S, O and
D to compose the same RPN, i.e., FM 3 and FM 16 have RPN = 320; FM 7 and FM 9 have RPN = 200.

SBM-DEA may overcome such discriminatory problems, identifying the following risk priorities:
FM 3 (1/θRPN∗

3 = 1.333) ≺ FM 16 (1/θRPN∗
16 = 1.482) and FM 7 (1/θRPN∗

7 = 1.143) ≺ FM 9 (1/θRPN∗
9 =

1.304). However, the ranking is still not sufficiently complete. The risk indexes for FM 4, FM 10 and FM
15 in Q4 imply that they are relative safe modes requiring no corrective action. However, advanced
information on the priority of the modes is lacking because these three failure modes have the same
unity score. Furthermore, the analytical results for the failure modes in Q1 = {FM 11, FM 8, FM 6,
FM 13} and Q2 = {FM 16, FM 1, FM 14, FM 5} by SBM-DEA are not well matched to the results from
FMEA. Only 75% of failures in Q1 and 50% in Q2 are in agreement with the FMEA results.

According to the results from the NDA model in Figure 2, all of the problems mentioned above
were clearly solved. First, the weak discriminatory power of FMEA was improved upon. Risk rankings
between FM 3 and FM 16 and between FM 7 and FM 9 were obtained using the NDA model. The risk
index for FM 3 was (1/δRPN∗

3 = 1.333) greater than that for FM 16 (1/δRPN∗
16 = 1.25), and the risk

index for FM 7 (1/δRPN∗
7 = 1.125) was smaller than that for FM 9 (1/δRPN∗

9 = 1.304). Second, three
safe modes, including FM 4, FM 10 and FM 15, analyzed by SBM-DEA, showed the same unity score.
Through the analysis depicted in Equation (4), the risk of these three failure modes was completely
ranked using the NDA model. The priority ranking was determined as FM 15 � FM 10 � FM 4. Such a
result helps risk managers to obtain full prioritization. Finally, the prioritization of Q1 = {FM 1, FM 11,
FM 6, FM 13} and Q2 = {FM 3, FM 13, FM 8, FM 9} based on NDA is virtually a match, with the same
results as FMEA, i.e., 100% in Q1 and 75% in Q2.

4. Discussion

The RPN value calculated using FMEA provides very limited information for establishing
improvement strategies. Compared with the traditional FMEA, both SBM-DEA and the NDA model
not only can generate a composite risk index from an efficiency perspective for each FM but also
provide the risk control team with the quantitative information to set explicit targets for improving
their strategies. This quantitative information can be determined from the difference between risky
failure modes and their projection targets. However, these projection targets may differ between
SBM-DEA and the NDA model because the former uses the maximum difference, while the latter
concerns the minimum difference under programming.

Table 2 provides a detailed list of optimal scores, projection targets and difference rates for all
failure modes calculated from SBM-DEA and the NDA model. Both the SBM-DEA model (left-hand
side) and the NDA model (right-hand side) identify that FM 4, FM 10 and FM 15 are relatively safe
modes. For each, the SBM-DEA model yields a score of one and projection target of S, O and D that
are equivalent to the original data, such that the reduction rates are all zero. In contrast, the NDA
model provides a score of more than one that can be used as the basis for further ranking. Moreover,
the positive rates of S, O and D express additional information on risk-taking ability, i.e., FM 4 can
increase 100% of O, FM 10 can increase 40% of O and 50% of D, and FM 15 can increase 83% of S.
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Table 2. Comparative results of SBM-DEA and novel data-driven approach (NDA).

SBM-DEA NDA

Modes
θRPN∗

o
Index Original Projection Rate Modes

δRPN*
o

Index Original Projection Rate

FM1 S 10 5.0 −50.00% FM1 S 10 7.5 −25.00%
0.700 O 7 7.0 0.00% 0.705 O 7 3.5 −50.00%

D 5 3.0 −40.00% D 5 5.0 0.00%

FM2 S 5 5.0 0.00% FM2 S 5 5.0 0.00%
0.833 O 4 2.0 −50.00% 0.917 O 4 4.0 0.00%

D 8 8.0 0.00% D 8 6.0 −25.00%

FM3 S 5 5.0 0.00% FM3 S 5 5.0 0.00%
0.750 O 8 2.0 −75.00% 0.750 O 8 2.0 −75.00%

D 8 8.0 0.00% D 8 8.0 0.00%

FM4 S 5 5.0 0.00% FM4 S 5 5.0 0.00%
1.000 O 2 2.0 0.00% 1.333 O 2 4.0 100.00%

D 8 8.0 0.00% D 8 8.0 0.00%

FM5 S 10 10.0 0.00% FM5 S 10 9.2 −8.33%
0.741 O 9 5.0 −44.44% 0.806 O 9 4.5 −50.00%

D 3 2.0 −33.33% D 3 3.0 0.00%

FM6 S 10 5.0 −50.00% FM6 S 10 7.5 −25.00%
0.658 O 8 7.0 −12.50% 0.730 O 8 3.5 −56.25%

D 5 3.0 −40.00% D 5 5.0 0.00%

FM7 S 10 7.5 −25.00% FM7 S 10 6.7 −33.33%
0.875 O 4 3.5 −12.50% 0.889 O 4 4.0 0.00%

D 5 5.0 0.00% D 5 5.0 0.00%

FM8 S 10 5.0 −50.00% FM8 S 10 6.7 −33.33%
0.656 O 3 2.0 −33.33% 0.756 O 3 3.0 0.00%

D 10 8.0 −20.00% D 10 6.0 −40.00%

FM9 S 10 5.0 −50.00% FM9 S 10 5.0 −50.00%
0.767 O 2 2.0 0.00% 0.767 O 2 2.0 0.00%

D 10 8.0 −20.00% D 10 8.0 −20.00%

FM10 S 10 10.0 0.00% FM10 S 10 10.0 0.00%
1.000 O 5 5.0 0.00% 1.300 O 5 7.0 40.00%

D 2 2.0 0.00% D 2 3.0 50.00%

FM11 S 8 5.0 −37.50% FM11 S 8 6.7 −16.67%
0.634 O 9 7.0 −22.22% 0.722 O 9 3.0 −66.67%

D 6 3.0 −50.00% D 6 6.0 0.00%

FM12 S 8 5.0 −37.50% FM12 S 8 6.7 −16.67%
0.764 O 3 2.0 −33.33% 0.861 O 3 3.0 0.00%

D 8 8.0 0.00% D 8 6.0 −25.00%

FM13 S 7 5.0 −28.57% FM13 S 7 7.0 0.00%
0.673 O 8 7.0 −12.50% 0.733 O 8 3.2 −60.00%

D 7 3.0 −57.14% D 7 5.6 −20.00%

FM14 S 7 5.0 −28.57% FM14 S 7 7.0 0.00%
0.714 O 7 3.0 −57.14% 0.752 O 7 6.2 −11.43%

D 7 7.0 0.00% D 7 2.6 −62.86%

FM15 S 5 5.0 0.00% FM15 S 5 9.2 83.33%
1.000 O 7 7.0 0.00% 1.278 O 7 7.0 0.00%

D 3 3.0 0.00% D 3 3.0 0.00%

FM16 S 8 5.0 −37.50% FM16 S 8 8.0 0.00%
0.675 O 5 2.0 −60.00% 0.800 O 5 5.0 0.00%

D 8 8.0 0.00% D 8 3.2 −60.00%

Note: FM15 and 16 are taken as two examples to elaborate the calculations of SBM-DEA and NDA (See Appendix A).
NDA: novel data-driven approach, SBM-DEA: slacks-based measure DEA (data envelopment analysis).

For risky failure modes with scores of less than one, the reduction rate with respect to the
corresponding original data provides the scales for improving the effort of S, O and D (see the fifth
and tenth columns of Table 2). By following these rates, the risky failure modes can be made safer,
i.e., either to achieve the projection targets or to produce a score of θRPN∗

o = 1 for the SBM-DEA
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model and δRPN∗
o ≥ 1 for the NDA model. Table 2 also shows large differences in optimal scores and

reduction rates between the SBM-DEA model and the NDA model. On the basis of the optimal scores,
the first three extreme cases include FM 16 (θRPN∗

16 = 0.675 and δRPN∗
16 = 0.800), FM 8 (θRPN∗

8 = 0.756
and δRPN∗

8 = 0.656) and FM 12 (θRPN∗
12 = 0.861 and δRPN∗

8 = 0.764). Regarding these failure modes,
the SBM-DEA model suggests that reduction rates are S (−37.5%), O (−60%), and D (0%) for FM 16;
S (−50%), O (−33.33%), and D (−20%) for FM 8; and S (−37.5%), O (−33.33%), and D (0%) for FM 12.
These targets seem unattainable. In contrast, the NDA model obviously provides a more attainable
(less effort) target for safety improvement with reduction rates of S (0%), O (0%), and D (−60%) for
FM 16, S (−33.33%), O (0%), and D (−40%) for FM 8 and S (−16.67%), O (0%), and D (−25%) for
FM 12. None of the reduction rates of S, O and D by the NDA model are ensured to be less than those
obtained by SBM-DEA. For instance, the NDA model suggests that FM 5 may reach the safety frontier
by reducing 8.33% of S and 50% of O, whereas the projection target provided by SBM-DEA asks FM
5 to reduce 44% of O and 33.33% of D. Figure 3 compares the average reduction rates between the
SBM-DEA model and the NDA model. The reduction rate calculated by the difference between the
projection target and the original data is 21.71% for the NDA model and 22.26% for the SBM-DEA
model. The result demonstrates that the projection target of NDA is more closed to FEMA. And thus,
on an average, safety improvement recommended by the NDA model are significantly more effective
than those provided by the SBM-DEA model.Int. J. Environ. Res. Public Health 2018, 15, x 9 of 12 
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Figure 3. The average reduction rates between SBM and our approach.

In brief, SBM-DEA may yield biased measurements of risk and generate unrealistic solutions
with two main shortcomings in comparison to the NDA model. First, SBM-DEA imperfectly generates
a complete prioritization for all failure modes. Second, the improvement strategy generated by
SBM-DEA for risk mitigation is feasible, but it results in a waste of resources.

5. Conclusions

Given the growing awareness of and pressure for healthcare quality and patient safety in today’s
healthcare environment, both academics and practitioners are increasingly concerned with risk
management in medical services to avoid the effects of medical failures. FMEA is a well-known
systematic procedure that is widely used to identify medical errors and to provide the necessary
corrective actions. In this paper, we presented two models for improving the traditional FMEA method
and compared the relative advantages among the three models. The analysis was based on an infant
security case at Western Wake Medical Center in Raleigh, North Carolina, U.S.
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Both the SBM-DEA model and the NDA model aim to solve the problem of discriminatory
power arising from FMEA, which may result in the same RPN with different combinations of S, O
and D for some failure modes. The results indicate that the SBM-DEA model and the NDA model,
by integrating both two models and FMEA, may provide realistic solutions on optimal targets for safety
improvement, whereas the risk mitigation strategies resulting from FMEA remain scarce. However,
SBM-DEA might be imperfect, as the corrective direction generated from the optimizing process
was unrealistic, resulting in a waste of resources. Additionally, SBM-DEA is incapable of providing
complete prioritization for all failure modes.

The NDA model was found to successfully overcome the problems associated with the SBM-DEA
model, as the NDA model can provide precise and complete prioritizations of failure modes in the
healthcare industry. The NDA model attempts to find the minimum distance for each failure mode
and then yields a strategy for improving medical failures. The corrective actions obtained from the
NDA model are guaranteed to require less effort. As risk mitigation is a vital activity for reducing any
further damages to safety once the risk assessment process is completed, risk mitigation plays a critical
role in enhancing safety. The empirical results clarify the superiority of the NDA model. In light of the
limited resources of healthcare organizations, the NDA model is a more effective and precise approach
for risk management and costs less.
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Appendix A. Calculations of SBM-DEA and NDA for FM 15 and 16

SBM-DEA solves the following linear problems to obtain the optimal objective values of FM 15
θRPN∗

15 = 1.000 and FM 16 θRPN∗
16 = 0.675, respectively.

Minimize θRPN
15 = 1−

(
ss−/5 + sO−/7 + sD−/3

)
/3

s.t.

5 = (10λ1 + 5λ2 + 5λ3 + 5λ4 + 10λ5 + 10λ6 + 10λ7 + 10λ8 + 10λ9 + 10λ10 + 8λ11 + 8λ12 + 7λ13 + 7λ14 + 5λ15 + 8λ16) + sS−

7 = (7λ1 + 4λ2 + 8λ3 + 2λ4 + 9λ5 + 8λ6 + 4λ7 + 3λ8 + 2λ9 + 5λ10 + 9λ11 + 3λ12 + 8λ13 + 7λ14 + 7λ15 + 5λ16) + sO−

3 = (5λ1 + 8λ2 + 8λ3 + 8λ4 + 3λ5 + 5λ6 + 5λ7 + 10λ8 + 10λ9 + 2λ10 + 6λ11 + 8λ12 + 7λ13 + 7λ14 + 3λ15 + 8λ16) + sD−

1 = (λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12 + λ13 + 7λ14 + λ15 + λ16)

λ1:16, sS−, sO−, sD− ≥ 0

Minimize θRPN
16 = 1−

(
ss−/8 + sO−/5 + sD−/8

)
/3

s.t.

8 = (10λ1 + 5λ2 + 5λ3 + 5λ4 + 10λ5 + 10λ6 + 10λ7 + 10λ8 + 10λ9 + 10λ10 + 8λ11 + 8λ12 + 7λ13 + 7λ14 + 5λ15 + 8λ16) + sS−

5 = (7λ1 + 4λ2 + 8λ3 + 2λ4 + 9λ5 + 8λ6 + 4λ7 + 3λ8 + 2λ9 + 5λ10 + 9λ11 + 3λ12 + 8λ13 + 7λ14 + 7λ15 + 5λ16) + sO−

8 = (5λ1 + 8λ2 + 8λ3 + 8λ4 + 3λ5 + 5λ6 + 5λ7 + 10λ8 + 10λ9 + 2λ10 + 6λ11 + 8λ12 + 7λ13 + 7λ14 + 3λ15 + 8λ16) + sD−

1 = (λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12 + λ13 + 7λ14 + λ15 + λ16)

λ1:16, sS−, sO−, sD− ≥ 0

NDA solves the following linear problems to obtain the optimal objective values of FM 15 δRPN∗
15

= 1.278 and FM 16 δRPN∗
16 = 0.800, respectively.
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Minimize θRPN
15 = 1 +

(
ss+/5 + sO+/7 + sD+/3

)
/3

s.t.

5 ≥ (10λ1 + 5λ2 + 5λ3 + 5λ4 + 10λ5 + 10λ6 + 10λ7 + 10λ8 + 10λ9 + 10λ10 + 8λ11 + 8λ12 + 7λ13 + 7λ14 + 8λ16) + sS+

7 ≥ (7λ1 + 4λ2 + 8λ3 + 2λ4 + 9λ5 + 8λ6 + 4λ7 + 3λ8 + 2λ9 + 5λ10 + 9λ11 + 3λ12 + 8λ13 + 7λ14 + 5λ16) + sO+

3 ≥ (5λ1 + 8λ2 + 8λ3 + 8λ4 + 3λ5 + 5λ6 + 5λ7 + 10λ8 + 10λ9 + 2λ10 + 6λ11 + 8λ12 + 7λ13 + 7λ14 + 8λ16) + sD+

1 = (λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12 + λ13 + 7λ14 + λ16)

λ1:16( 6=15), sS+, sO+, sD+ ≥ 0

Maximize θRPN
16 = 1−

(
ss−/8 + sO−/5 + sD−/8

)
/3

s.t.
8 = (5λ4 + 10λ10 + 5λ15) + sS−

5 = (2λ4 + 5λ10 + 7λ15) + sO−

8 = (8λ4 + 2λ10 + 3λ15) + sD−

1 = (λ4 + λ10 + λ15)

−
(
vS5 + vO2 + vD8

)
+ u = −d4

−
(
vS10 + vO5 + vD2

)
+ u = −d10

−
(
vS5 + vO7 + vD3

)
+ u = −d15

0 ≤ d4 ≤ Mb4

0 ≤ d10 ≤ Mb10

0 ≤ d15 ≤ Mb15

0 ≤ λ4 ≤ M(1− b4)

0 ≤ λ10 ≤ M(1− b10)

0 ≤ λ15 ≤ M(1− b15)

vS, vO, vD, u ≥ 1
sS−, sO−, sD− ≥ 0
b4, b10, b15 ∈ {0, 1}

References

1. Giraldo, P.; Sato, L.; Sala, M.; Comas, M.; Dywer, K.; Castells, X. A retrospective review of medical errors
adjudicated in court between 2002 and 2012 in Spain. Int. J. Qual. Health Care 2016, 28, 33–39. [CrossRef]
[PubMed]

2. Valentini, R.P. Patient safety and quality improvement: What the pediatric trainee needs to know.
Prog. Pediatr. Cardiol. 2017, 44, 47–53. [CrossRef]

3. Kohn, L.T.; Corrigan, J.M.; Donaldson, M.S. To Err is Human: Building a Safer Health System; A Report of the
Committee on Quality of Health Care in America; National Academies Press: Washington, DC, USA, 2000.

4. Green, S.F. The cost of poor blood specimen quality and errors in preanalytical processes. Clin. Biochem.
2013, 46, 1175–1179. [CrossRef] [PubMed]

5. Ministry of Health and Welfare. MIHW News. Available online: https://www.mohw.gov.tw/np-16-1.html
(accessed on 10 June 2018).

6. Classen, D.C.; Resar, R.; Griffin, F.; Federico, F.; Frankel, T.; Kimmel, N.; Whittington, J.C.; Frankel, A.;
Seger, A.; James, B.C. Global trigger tool shows that adverse events in hospitals may be ten times greater
than previously measured. Health Affairs 2011, 30, 581–589. [CrossRef] [PubMed]

7. Marx, D.A.; Slonim, A.D. Assessing patient safety risk before the injury occurs: An introduction to
sociotechnical probabilistic risk modelling in health care. Qual. Saf. Health Care 2013, 12, 33–38. [CrossRef]

8. Aspden, P.; Corrigan, J.M.; Wolcott, J.; Erickson, S.M. Quality improvement and proactive hazard analysis
models: Deciphering a new Tower of Babel. In Patient Safety: Achieving a New Standard for Care; National
Academies Press: Washington, DC, USA, 2004.

9. Chiozza, M.L.; Ponzetti, C. FMEA: A model for reducing medical errors. Clin. Chim. Acta 2009, 404, 75–78.
[CrossRef] [PubMed]

http://dx.doi.org/10.1093/intqhc/mzv089
http://www.ncbi.nlm.nih.gov/pubmed/26573788
http://dx.doi.org/10.1016/j.ppedcard.2017.01.006
http://dx.doi.org/10.1016/j.clinbiochem.2013.06.001
http://www.ncbi.nlm.nih.gov/pubmed/23769816
https://www.mohw.gov.tw/np-16-1.html
http://dx.doi.org/10.1377/hlthaff.2011.0190
http://www.ncbi.nlm.nih.gov/pubmed/21471476
http://dx.doi.org/10.1136/qhc.12.suppl_2.ii33
http://dx.doi.org/10.1016/j.cca.2009.03.015
http://www.ncbi.nlm.nih.gov/pubmed/19298799


Int. J. Environ. Res. Public Health 2018, 15, 2069 12 of 12

10. Fattahi, R.; Khalilzadeh, M. Risk evaluation using a novel hybrid method based on FMEA, extended
MULTIMOORA, and AHP methods under fuzzy environment. Saf. Sci. 2018, 102, 290–300. [CrossRef]

11. Rezaee, M.J.; Yousefi, S.; Valipour, M.; Dehdar, M.M. Risk analysis of sequential processes in food industry
integrating multi-stage fuzzy cognitive map and process failure mode and effects analysis. Comput. Ind. Eng.
2018, 123, 325–337. [CrossRef]

12. Vandenbrande, W.W. How to use FMEA to reduce the size of your quality toolbox. Qual. Prog. 1998, 31,
97–100.

13. Liu, H.C.; Liu, L.; Liu, N.; Mao, L.X. Risk evaluation in failure mode and effects analysis with extended
VIKOR method under fuzzy environment. Expert Syst. Appl. 2012, 39, 12926–12934. [CrossRef]

14. Chang, D.S.; Chung, J.H.; Sun, K.L.; Yang, F.C. A novel approach for evaluating the risk of health care failure
modes. J. Med. Syst. 2012, 36, 3967–3974. [CrossRef] [PubMed]

15. Chang, D.S.; Sun, K.L.P. Applying DEA to enhance assessment capability of FMEA. Int. J. Qual. Reliab. Manag.
2009, 26, 629–643. [CrossRef]

16. Kim, K.O.; Zuo, M.J. General model for the risk priority number in failure mode and effects analysis.
Reliab. Eng. Syst. Saf. 2018, 169, 321–329. [CrossRef]

17. Sankar, N.R.; Prabhu, B.S. Modified approach for prioritization of failures in a system failure mode and
effects analysis. Int. J. Qual. Reliab. Manag. 2001, 18, 324–336. [CrossRef]

18. Chin, K.S.; Wang, Y.M.; Poon, G.K.K.; Yang, J.B. Failure mode and effects analysis by data envelopment
analysis. Decis. Support Syst. 2009, 48, 246–256. [CrossRef]

19. Parameshwaran, R.; Srinivasan, P.S.S.; Punniyamoorthy, M. An integrated approach for performance
enhancement in automobile repair shops. Int. J. Bus. Excel. 2010, 3, 77–104. [CrossRef]

20. Rezaee, M.J.; Salimi, A.; Yousefi, S. Identifying and managing failures in stone processing industry using
cost-based FMEA. Int. J. Adv. Manuf. Technol. 2017, 88, 3329–3342. [CrossRef]

21. Zhu, J. Quantitative Models for Performance Evaluation and Benchmarking: DEA with Spreadsheets; Springer Press:
New York, NY, USA, 2014.

22. Ozcan, Y.A.; Tone, K. Health Care Benchmarking and Performance Evaluation: An Assessment Using Data
Envelopment Analysis (DEA); Springer Press: New York, NY, USA, 2014.

23. Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002,
143, 32–41. [CrossRef]

24. Aparicio, J.; Ruiz, J.L.; Sirvent, I. Closest targets and minimum distance to the Pareto-efficient frontier in
DEA. J. Prod. Anal. 2007, 28, 209–218. [CrossRef]

25. Reichert, T.A. Applying failure modes and effects analysis (FMEA) in healthcare: Preventing infant abduction,
a case study. In Proceedings of the 2004 Society for Health Systems Presentation, Raleigh, NC, USA,
20–21 February 2004.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ssci.2017.10.018
http://dx.doi.org/10.1016/j.cie.2018.07.012
http://dx.doi.org/10.1016/j.eswa.2012.05.031
http://dx.doi.org/10.1007/s10916-012-9868-5
http://www.ncbi.nlm.nih.gov/pubmed/22773135
http://dx.doi.org/10.1108/02656710910966165
http://dx.doi.org/10.1016/j.ress.2017.09.010
http://dx.doi.org/10.1108/02656710110383737
http://dx.doi.org/10.1016/j.dss.2009.08.005
http://dx.doi.org/10.1504/IJBEX.2010.029490
http://dx.doi.org/10.1007/s00170-016-9019-0
http://dx.doi.org/10.1016/S0377-2217(01)00324-1
http://dx.doi.org/10.1007/s11123-007-0039-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Results 
	Discussion 
	Conclusions 
	Calculations of SBM-DEA and NDA for FM 15 and 16 
	References

