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Abstract: This review clarifies particulate matter (PM) pollution, including its levels, the factors
affecting its distribution, and its health effects on passengers waiting at bus stations. The usual factors
affecting the characteristics and composition of PM include industrial emissions and meteorological
factors (temperature, humidity, wind speed, rain volume) as well as bus-station-related factors
such as fuel combustion in vehicles, wear of vehicle components, cigarette smoking, and vehicle
flow. Several studies have proven that bus stops can accumulate high PM levels, thereby elevating
passengers’ exposure to PM while waiting at bus stations, and leading to dire health outcomes such
as cardiovascular disease (CVD), respiratory effects, and diabetes. In order to accurately predict PM
pollution, an artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS)
have been developed. ANN is a data modeling method of proven effectiveness in solving complex
problems in the fields of alignment, prediction, and classification, while the ANFIS model has several
advantages including non-requirement of a mathematical model, simulation of human thinking,
and simple interpretation of results compared with other predictive methods.
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1. Introduction

Recently, particulate matter (PM) pollution has become an important concern worldwide due to its
negative health effects. PM is small enough to penetrate and deposit into many organisms of the body.
When exposed to PM for a long time, people may acquire serious symptoms related to cardiovascular
diseases (CVD) (e.g., heartbeat, arrhythmia, and vascular dysfunction), lung cancer, skin irritation,
diabetes, and especially respiratory health effects [1–5]. In particular, with population growth and the
rise of private vehicles leading to increased levels of air pollution in the city center, people have been
encouraged to travel by public transport such as the bus and subway system. However, it has been
demonstrated that both the inside and outside of the bus and subway system accumulate high PM
levels, and so passengers might be exposed directly to PM during their trips by public transport [6,7].

Although the study of commuter exposure to air pollutants is not a new field of research, there
has not been any focus on personal exposure assessments while passengers wait at bus stops. Several
studies have identified the pollution at bus stations using various methods, and found that the PM10

and PM2.5 levels were too high compared with standard air quality guidelines in Europe, the Americas,
and Asia [8–10]. For instance, Xu et al. (2015) determined that PM10 pollution is mainly attributed to
diesel vehicle emissions (28%), crustal dust (26%), coal combustion (22%), and cement (4.9%) at bus
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stops in China. PM10 during rush hours (254 ± 128 µg/m3) was 2.5 times higher than that during the
ambient 24 h (103 µg/m3) [6]. In a study by Moore et al. (2012), passengers waiting at bus stations in
Portland, USA could be exposed to PM10 and PM2.5 at 25.00 and 21.97 µg/m3, respectively [7].

This present review provides an overview of PM pollution at bus station, focusing on the
characteristics, health effects, and factors affecting PM as outlined in the following sections below:
“Classification and sources of PM”, “Health problems caused by PM exposure”, and “Factors affecting
PM pollution at bus stations”, respectively. In addition, the personal exposure levels to pollutants
around the world (Europe, the Americas, and Asia) are explicated in the section “Personal exposure to
PM at bus stations”. Next, in the section “Future directions for reduction in personal PM exposure”,
some PM-pollution predictive methods are proposed. Finally, a limitation and conclusions are given in
the “Limitation of study” and “Conclusions” sections, respectively.

2. Classification and Sources of PM

PM is known as particle pollution, which contains micrometer-sized particles, including both
inorganic and organic particles such as dust, soot, dirt, smoke, and liquid droplets [11–13]. Generally,
PM originates from volcanoes, forest fires, dust storms, grassland fires, sea spray, and living vegetation.
In addition, human activities including the burning of fossil fuels in traffic, industrial processes,
and power plant operation also generate significant amounts of PM [11]. PM is composed of sulfur
dioxide, elemental carbon known as black carbon, organic matter, and soot, all of which induce visual
effects such as smog [11].

PM is classified based on its aerodynamic diameter, which is the main criterion for determining its
ability to transport in air and penetrate the human body [14]. PM includes PM10, with an aerodynamic
diameter 10 µm or less; fine aerodynamic particulate is defined as PM2.5 of 2.5 µm or less in diameter,
and ultrafine particles (PM0.1) are categorized as extremely small, less than 0.1 µm in diameter [11,12,15].
The sizes of PM10 and PM2.5 can be compared to the diameters of fine beach sand (∼90 µm) and
human hair (∼70 µm), respectively (Figure 1). PM10 (coarse PM) is known as inhalable particles that
can penetrate into the respiratory tract (e.g., trachea, deep lungs, and bronchi) [14,16,17]. The coarse
fraction of PM10 generally originates from construction and demolition operations, paved and unpaved
roads, industrial processes, and agriculture as well as biomass burning [14,18]. On the other hand,
PM2.5 can be emitted directly from the combustion of vehicles, industry, smokestacks, fires, and via
atmospheric reactions of gases (e.g., NOx and SO2) [12,14,18], PM2.5 can easily enter the alveolar region
of the lung [16,17,19,20]. At bus stations, PM2.5 is particularly problematic, because waiting passengers
can be easily exposed to this particulate as generated by the fuel burning process in vehicles (e.g.,
motorcycles, trucks cars, buses, and heavy-duty vehicles). [16]. According to a report of the World
Health Organization (WHO) (2003) on PM in Europe, the annual average mass concentrations of both
PM10 and PM2.5 are mainly contributed by sulfates, organic matter, nitrate, and black carbon [13].

Int. J. Environ. Res. Public Health 2018, 15, x 2 of 20 

 

diesel vehicle emissions (28%), crustal dust (26%), coal combustion (22%), and cement (4.9%) at bus 
stops in China. PM10 during rush hours (254 ± 128 μg/m3) was 2.5 times higher than that during the 
ambient 24 h (103 μg/m3) [6]. In a study by Moore et al. (2012), passengers waiting at bus stations in 
Portland, USA could be exposed to PM10 and PM2.5 at 25.00 and 21.97 μg/m3, respectively [7]. 

This present review provides an overview of PM pollution at bus station, focusing on the 
characteristics, health effects, and factors affecting PM as outlined in the following sections below: 
“Classification and sources of PM”, “Health problems caused by PM exposure”, and “Factors 
affecting PM pollution at bus stations”, respectively. In addition, the personal exposure levels to 
pollutants around the world (Europe, the Americas, and Asia) are explicated in the section “Personal 
exposure to PM at bus stations”. Next, in the section “Future directions for reduction in personal PM 
exposure”, some PM-pollution predictive methods are proposed. Finally, a limitation and 
conclusions are given in the “Limitation of study” and “Conclusions” sections, respectively. 

2. Classification and Sources of PM 

PM is known as particle pollution, which contains micrometer-sized particles, including both 
inorganic and organic particles such as dust, soot, dirt, smoke, and liquid droplets [11–13]. Generally, 
PM originates from volcanoes, forest fires, dust storms, grassland fires, sea spray, and living 
vegetation. In addition, human activities including the burning of fossil fuels in traffic, industrial 
processes, and power plant operation also generate significant amounts of PM [11]. PM is composed 
of sulfur dioxide, elemental carbon known as black carbon, organic matter, and soot, all of which 
induce visual effects such as smog [11]. 

PM is classified based on its aerodynamic diameter, which is the main criterion for determining 
its ability to transport in air and penetrate the human body [14]. PM includes PM10, with an 
aerodynamic diameter 10 μm or less; fine aerodynamic particulate is defined as PM2.5 of 2.5 μm or 
less in diameter, and ultrafine particles (PM0.1) are categorized as extremely small, less than 0.1 μm 
in diameter [11,12,15]. The sizes of PM10 and PM2.5 can be compared to the diameters of fine beach 
sand (~90 μm) and human hair (~70 μm), respectively (Figure 1). PM10 (coarse PM) is known as 
inhalable particles that can penetrate into the respiratory tract (e.g., trachea, deep lungs, and bronchi) 
[14,16,17]. The coarse fraction of PM10 generally originates from construction and demolition 
operations, paved and unpaved roads, industrial processes, and agriculture as well as biomass 
burning [14,18]. On the other hand, PM2.5 can be emitted directly from the combustion of vehicles, 
industry, smokestacks, fires, and via atmospheric reactions of gases (e.g., NOx and SO2) [12,14,18], 
PM2.5 can easily enter the alveolar region of the lung [16,17,19,20]. At bus stations, PM2.5 is particularly 
problematic, because waiting passengers can be easily exposed to this particulate as generated by the 
fuel burning process in vehicles (e.g., motorcycles, trucks cars, buses, and heavy-duty vehicles). [16]. 
According to a report of the World Health Organization (WHO) (2003) on PM in Europe, the annual 
average mass concentrations of both PM10 and PM2.5 are mainly contributed by sulfates, organic 
matter, nitrate, and black carbon [13]. 

 
Figure 1. Size comparisons of particulate matter (PM) [12] “Reproduced with permission from (Kim 
et al., Environment International) published by (Elsevier, 2015).”. 
Figure 1. Size comparisons of particulate matter (PM) [12]. “Reproduced with permission from
(Kim et al., Environment International) published by (Elsevier, 2015)”.



Int. J. Environ. Res. Public Health 2018, 15, 2886 3 of 20

Recent studies indicate that traffic, specifically wear and tear of vehicle components (e.g., tires and
brakes) and road dust suspension, is one of the major sources of PM [19,21]. Indeed, in the big cities
around the world, increased demand for transportation in the forms of cars, buses, and subways, has
led to increased air pollution from vehicle emissions [22]. The Department of Transport in the United
Kingdom (UK) reported a 21% increase in vehicle traffic from 2000 to 2010 (Figure 2) [22]. The wide
variety of pollutants and PM emitted from these sources is primarily composed of volatile organic
compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), carbon
dioxide (CO2), and metal particles [21–23].
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Figure 2. Sources of PM10 (coarse PM) pollution in UK (2001) [22].

Particularly, buses have been considered as an environmentally friendly form of transport relative
to cars and other types. Buses utilize less fuel per person carried, thus producing less pollution than
the number of either cars or motorbikes replaced [22,24]. Nevertheless, diesel engines used in buses
emit large amounts of NOx, leading to larger emissions of black smoke and PM. Black smoke consists
of numerous PM responsible for the soiling of buildings, and PM2.5 is correlated with a variety of
adverse health effects [25].

3. Health Problems Caused by PM Exposure

The exposure effectiveness of PM depends not only on its chemical compositions and physical
properties that can be influenced by local conditions including weather, seasons, sources of particles,
and concentrations emitted [26], but also on human physical characteristics (e.g., breathing mode and
volume of a typical person). Particle size is primarily responsible for the association between PM and
human health problems: smaller particles can more easily penetrate into the human body and deposit
deep into the respiratory tract [19,27]. Indeed, Atkinson et al. indicated that the cilia and mucus in
nasal-breathing effectively filter only most particles greater than 10 µm in diameter; thus, PM10 and
PM2.5 can easily infiltrate the body, settle down rapidly, and lodge in the bronchi or trachea (upper
throat). However, the body may react to eliminate these intrusive PM via processes such as sneezing
and coughing [28]. Londahl et al. acknowledged that particles less than 10 µm in diameter can enter
the respiratory tract, starting from the nasal passages and proceeding into the alveoli and deep within
the lungs, due to their excessive penetrability [29]. In addition, whereas particles in the range of
5–10 µm are most likely to be deposited in the tracheobronchial tree, those from 1 to 5 µm tend to be
deposited in the alveoli and the respiratory bronchioles where gas exchange occurs [29,30] (Figure 3).
During deposition in the lung, these particles may interfere with gas exchange and then escape
into the bloodstream, resulting in significant health problems [19,30]. On the other hand, particles
smaller than 1 µm behave like gas molecules, thus entering into the alveoli (deposited by diffusion
forces), and move further into tissue and the circulatory system [31]. Generally, as the human body
cannot prevent exposure or adversely effects by PM, people may experience several health problems
including CVD, respiratory health effects, diabetes, and premature death [1,23]. The WHO (2016)
estimates that PM pollution contributes to about 4.2 million premature deaths each year (16% of lung
cancer deaths, 26% of respiratory infection deaths, 17% of ischemic heart disease and stroke deaths,
and 25% of chronic obstructive pulmonary disease deaths), ranking it as the 14th leading cause of
death worldwide [32–34].



Int. J. Environ. Res. Public Health 2018, 15, 2886 4 of 20

Int. J. Environ. Res. Public Health 2018, 15, x 4 of 20 

 

estimates that PM pollution contributes to about 4.2 million premature deaths each year (16% of lung 
cancer deaths, 26% of respiratory infection deaths, 17% of ischemic heart disease and stroke deaths, 
and 25% of chronic obstructive pulmonary disease deaths), ranking it as the 14th leading cause of 
death worldwide [32–34]. 

 
Figure 3. Potential for deposition of particles of different sizes [19] “Reproduced with permission 
from Kim et al. (Environment International; published by Elsevier, 2015).” 

3.1. Cardiovascular Diseases (CVD) 

Cardiovascular diseases (CVD) are recognized as some of the leading causes of mortality and 
morbidity in the world [35,36]. Recently, many traditional CVD risk factors have been identified, such 
as high blood pressure, diabetes, physical inactivity, smoking, and especially air pollution [1,19,37]. 
Particularly, PM is an important CVD risk factor in cases where people are exposed over long 
durations, because it can easily penetrate and deposit deep into the organism through several 
pathways both direct and indirect (Figure 4) [1,2,38]. Via the direct pathway, these particles 
translocate into the bloodstream and remote specific target organs [38,39]. In this systemic circulation, 
reactive oxygen species and ion channel interference play an important role in affecting the heart and 
vasculature [40]. In contrast, indirectly, these particles induce pulmonary-mediated oxidative stress 
and inflammatory responses, resulting in a less acute and adverse effects after several hours and days 
of inhalation [38–42]. 

 

Figure 3. Potential for deposition of particles of different sizes [19]. “Reproduced with permission
from Kim et al. (Environment International; published by Elsevier, 2015)”.

3.1. Cardiovascular Diseases (CVD)

Cardiovascular diseases (CVD) are recognized as some of the leading causes of mortality and
morbidity in the world [35,36]. Recently, many traditional CVD risk factors have been identified,
such as high blood pressure, diabetes, physical inactivity, smoking, and especially air pollution [1,19,37].
Particularly, PM is an important CVD risk factor in cases where people are exposed over long durations,
because it can easily penetrate and deposit deep into the organism through several pathways both direct
and indirect (Figure 4) [1,2,38]. Via the direct pathway, these particles translocate into the bloodstream
and remote specific target organs [38,39]. In this systemic circulation, reactive oxygen species and ion
channel interference play an important role in affecting the heart and vasculature [40]. In contrast,
indirectly, these particles induce pulmonary-mediated oxidative stress and inflammatory responses,
resulting in a less acute and adverse effects after several hours and days of inhalation [38–42].
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3.1.1. Effects of Short-Term Exposure

Several studies have estimated that short-term PM exposure (∼a few days) and PM increase
of 10 µg/m3 are associated with increased relative risk (RR) of daily CVD mortality in both PM10

and PM2.5 of 0.6–1.8% and 0.6–1.3%, respectively [32,39]. In addition, these PM concentrations may
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present a major acute risk for elderly people and those with heart diseases [44]. Although the risk to an
individual at any one time point may be small, the burden on public health is enormous. An increase
in short-term PM exposure leads to tens of thousands of mortalities per year in the United States.
According to the Nation Morbidity Mortality Air Pollution Study (NMMAPS) data, an increase of
10 µg/m3 in PM10 caused a 0.7% increase in cardiopulmonary mortality (95% confidence interval (CI),
0.2–1.2%) [45]. In another study on the 38 biggest of China’s cities by Yin et al., the effect of increase per
10 µg/m3 PM10 on deaths from cardiorespiratory diseases was 0.62% (95% CI 0.43–0.81%), compared
with 0.26% (95% CI 0.09–0.42%) for other causes of mortality [46]. In another, smaller trial on 12,000
patients in Utah, Pope et al. determined that a 10 µg/m3 increase in PM2.5 resulted in a 4.5% (95% CI,
1.1–8.0%) increase in acute ischemic coronary events [44].

3.1.2. Effects of Long-Term Exposure

The adverse effect of long-term exposure to PM has been identified as even more harmful than
short-term exposure in the “Harvard Six Cities” study, which showed that living in the heaviest
polluted cities increased the risk of CVD mortality by 30% [39]. In 2007, a women’s health initiative
study estimated that long-term PM exposure leads to a 24% (95% CI, 9–41%) increase in CVD per PM2.5

increase of 10 µg/m3 [47]. In addition, PM pollution is associated with CVD morbidity, as observed by
some studies focused on hospital admissions for CVD. According to the Medicare data for 204 U.S.
cities, a rise of 10 µg/m3 in PM2.5 concentration results in increased hospitalization for cerebrovascular
disease (+0.81%), ischemic heart disease (+0.44%), arrhythmias (+0.57%), peripheral arterial disease
(+0.86%), and heart failure (+1.28%) [39,48,49].

3.2. Respiratory Effects

Exposure to PM has been proven to be associated with a variety of respiratory health effects
including respiratory symptoms (cough, phlegm, and wheeze), bronchial hyper-reactivity, acute-phase
reaction, respiratory infections, decreased lung growth in children, chronic loss of pulmonary function
in adults, and premature mortality in patients with chronic lung disease [1,50]. PM’s respiratory
mechanisms consist of pulmonary injury from free radical peroxidation, imbalanced intracellular
calcium homeostasis, and inflammation injury (Figure 5) [1,4,5,32]. In fact, when it enters the body, PM
can directly affect macrophages, in which the alveolus responds rapidly to inhaled PM as an initial
innate immune response, and then produces nitrogen species, reactive oxygen species, and releases
TNF-α and IL-1, thus resulting in epithelial cell apoptosis and inflammation [32,51,52]. Besides, induced
mitochondrial fusion and mitochondrial lipid peroxidation in lung macrophages might be an important
mechanism contributing to respiratory diseases caused by PM [52].

According to the report of the WHO, approximately 16% of lung cancer deaths, 11% of chronic
obstructive pulmonary disease (COPD) deaths, and 13% of respiratory infection deaths are caused by
exposure to air pollution [52]. In addition, an American Cancer Society cohort study of 1.2 million
American adults for 26 years (from 1982–2008) showed that with a PM2.5 increase of 10 µg/m3 per
day, lung cancer mortality increased by 15–27% [4]. In another study, Karakatsani et al. reported that
a 10 µg/m3 increase the in previous-day PM10 concentration was positively correlated with a 1.06%
increase in cough symptoms (95% CI: 1.01–1.11) [53]. Guo et al. (2018) determined that long-term
exposure to PM2.5 was linked to reduction and faster decline of lung function and that it was also
associated with a significant increase in COPD risk (1.39%; 95% CI, 1.24–1.56) in Taiwan [54]. Jo et al.
evaluated the effect of PM on patients at a hospital in South Korea (between 2007 and 2010) in terms of
respiratory diseases. At that time, for the mean daily PM10 and PM2.5 concentration of 49.6 ± 20.5 and
24.2 ± 10.9 mg/m3, the mean numbers of acute bronchitis, allergic rhinitis, and asthma cases were
5.8 ± 11.9, 4.4 ± 6.1, and 3.3 ± 3.3, respectively [55].
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Recently, at least five publications have identified the relationship between air pollution, especially
PM, and diabetes [56–60], and showed that the main mechanism of PM’s increased incidence of diabetes
is significantly involved in endothelial and mitochondrial dysfunction and inflammation of visceral
adipose tissues [3]. In particular, the long-term exposure of adipose tissue macrophages to PM was
characterized by increased IL-6 and TNF-α as well as reduced expression of IL-10, thereby promoting the
production of innate immune cells in adipose tissue, which is pathophysiologic of type 2 diabetes [3,61].
In addition, this prolonged exposure also reduces inter-scapular brown adipose tissue (BAT) and
mitochondrial size, which effects are accompanied by increases in nitrosative and oxidative stress in
BAT, in combination with antioxidant gene induction including nicotinamide adenine dinucleotide
phosphate (NADPH) quinone oxidoreductase 1, NF-E2-related factor 2, and glutamate-cysteine ligase
modifier subunit, resulting in the downregulation of insulin in adipose gene profiles and reduction of
uncoupling protein expression, all of which are risk factors for development of type 2 diabetes [62].

In fact, He et al. reported that PM2.5 was 1.25 % positively correlated with incidence of type 2
diabetes mellitus over a long-term exposure period (95% CI, 1.10–1.43). Therefore, with a 10 µg/m3

increase in PM2.5 per day, the incidence of type 2 diabetes would increase by 25% [63]. In a systematic
review by Liang et al. (2014), PM2.5 was closely related to blood pressure variation of 1.39 mmHg
(95% CI, 0.87–1.91) per 10 µg/m3 increase in PM2.5 [57]. In addition, in another study, Hansen et al.
(2016) found that PM10 and PM2.5 were potential risk factors for diabetes development. The incidence
of diabetes increased by 1.06% (95% CI, 0.98–1.14) and 1.11% (95% CI, 1.02–1.22) for each increase of
2.8 µg/m3 in PM10 and 3.1 µg/m3 in PM2.5, respectively [56].

4. Factors Affecting PM Pollution at Bus Stations

4.1. Meteorological Factors

Several environmental factors have been identified during PM10 and PM2.5 monitoring at
bus stations. The association between PM, airborne particles, and meteorological parameters (e.g.,
wind speed, temperature, relative humidity, pressure, rain volume, and cloudiness) have been
investigated in several recent studies [64–69].
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Akyuz et al. studied the meteorological dependence of PM concentrations in winter and summer
periods according to Pearson’s correlation analysis in Zonguldak, Turkey [65]. There were significant
differences in the seasonal variations of PM10 and PM2.5 concentrations. In particular, the maximum
daily PM10 and PM2.5 concentrations reached 66.7 µg/m3 and 32.4 µg/m3 in summer, and 116.7 µg/m3

and 83.3 µg/m3 in winter, respectively. The authors pointed out that atmospheric pressure indirectly
influences pollutant concentrations by affecting atmospheric stability conditions. Indeed, high
atmospheric pressure leads to low wind speed and stable stratification, which limit the spread of
pollutants within the atmosphere [65].

Tecer et al. indicated that temperature has a significant negative effect on PM concentration with
respect to the occurrence of episodic events in Turkey. The concentrations of PM10 and PM2.5 increased
7 and 6 times at the lowest temperature (10 ◦C), respectively [64]. They also reported that the wind
speed increased from 1.39 to 2.80 m/s, resulting in an increase in pollution levels per day. Besides,
when wind speed is too high, PM can be transported from nearby sources by the dilution effects of the
wind, which indeed plays an important role in PM movements [64].

In another study, this one by Unal et al., variations of PM10 concentrations as influenced by
meteorological factors including wind direction, wind speed, and high pressure in Istanbul were
analyzed [68]. Figure 6 showed that with increases of wind speed, the average concentration of PM10

was higher than 50 µg/m3 and typically highest with winds blowing in the south-west (SW) and
east-north-east (ENE) directions. They also demonstrated that a high pressure system can induce light
wind and stable atmospheric conditions, in consequence of which, the highest PM10 level was found,
and vice versa for strong wind and unstable atmospheric conditions [68].

Fondelli et al. studied PM2.5 concentrations during working days and in heavy traffic to predict
ambient pollution levels in Florence, Italy [67]. According to data from the Tuscan Environmental
Protection Agency (ARPAT) for 24-h PM2.5 measurements, they analyzed and estimated that PM2.5

hourly averages were closely correlated with pressure, precipitation, wind speed, and wind direction.
In this study, low wind speeds (average below 2 m·s−1) effected increases in PM2.5 mass and
composition [67].
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4.2. Traffic Factors

Among the environmental factors influencing PM concentrations, traffic is the major one at
bus stations [10,66,70]. According to the report of the Air Quality Expert Group (AQEG) (2012) in
the UK, road traffic contributes significantly to the existence of PM2.5 in ambient air pollution [71].
Indeed, traffic is closely associated with PM2.5 pollution via two pathways including exhaust particles
produced from gasoline- and diesel-engine vehicles (e.g., buses, private vehicles, and motorcycles)
and non-exhaust particles originating from various physical processes (e.g., tire and brake wear, tire
abrasion of road surface, and blowing off of dust particles caused by vehicle motion) [10].

Moreover, the internal fossil fuel combustion of diesel buses is known to be the main mobile
source of PM emissions at bus stations. Bus types, traffic volume, and the presence of cigarette smoking
at bus shelters also are factors [66]. In addition, the location of bus shelters is one of the contributors to
personal exposure to PM. Most bus shelters are usually located on main roads or near intersections;
thus, particles originally exhausted from other private vehicles will easily accumulate, especially
during rush hours or green lights near bus stops, when vehicle flows are high [10,66]. Consequently,
passengers waiting at bus shelters can be exposed directly to large amounts of PM. Moreover, Hess et al.
(2010) evaluated the role of individual cigarette smoking on PM pollution at bus stations, finding
that the presence of cigarette smoking at the level of 0.01 increased the PM2.5 exposure of waiting
passengers by 22.74 µg/m3 [66].

The effects of traffic factors on PM concentration have been determined by various methods.
Zhang and Batterman (2010) used generalized additive models to estimate vehicle contributions to
PM pollution near roadways [72]. They indicated that traffic count was in a positive relationship with
PM2.5 concentration rise at points near the road (Figure 7).

Int. J. Environ. Res. Public Health 2018, 15, x 8 of 20 

 

Among the environmental factors influencing PM concentrations, traffic is the major one at bus 
stations [10,66,70]. According to the report of the Air Quality Expert Group (AQEG) (2012) in the UK, 
road traffic contributes significantly to the existence of PM2.5 in ambient air pollution [71]. Indeed, 
traffic is closely associated with PM2.5 pollution via two pathways including exhaust particles 
produced from gasoline- and diesel-engine vehicles (e.g., buses, private vehicles, and motorcycles) 
and non-exhaust particles originating from various physical processes (e.g., tire and brake wear, tire 
abrasion of road surface, and blowing off of dust particles caused by vehicle motion) [10]. 

Moreover, the internal fossil fuel combustion of diesel buses is known to be the main mobile 
source of PM emissions at bus stations. Bus types, traffic volume, and the presence of cigarette 
smoking at bus shelters also are factors [66]. In addition, the location of bus shelters is one of the 
contributors to personal exposure to PM. Most bus shelters are usually located on main roads or near 
intersections; thus, particles originally exhausted from other private vehicles will easily accumulate, 
especially during rush hours or green lights near bus stops, when vehicle flows are high [10,66]. 
Consequently, passengers waiting at bus shelters can be exposed directly to large amounts of PM. 
Moreover, Hess et al. (2010) evaluated the role of individual cigarette smoking on PM pollution at 
bus stations, finding that the presence of cigarette smoking at the level of 0.01 increased the PM2.5 
exposure of waiting passengers by 22.74 μg/m3 [66]. 

The effects of traffic factors on PM concentration have been determined by various methods. 
Zhang and Batterman (2010) used generalized additive models to estimate vehicle contributions to 
PM pollution near roadways [72]. They indicated that traffic count was in a positive relationship with 
PM2.5 concentration rise at points near the road (Figure 7). 

 
Figure 7. Relationship between PM2.5 concentrations and general traffic counts at major highway in 
Detroit, Michigan during summer season [10,72]. “Reproduced with permission from (Zhang and 
Batterman, Atmospheric Environment; published by Elsevier, 2010).” 

In addition, PM pollution is also correlated with vehicle flow [21,73]. In an investigation by Moore 
et al. (2012), averages of 1267 and 1415 vehicles per hour at bus shelters in the morning and evening, 
respectively, were positively associated with PM10 and PM2.5 pollution in Powell Boulevard, UK. 
Besides, the authors pointed out that the orientation of bus shelters also influenced the distribution of 

Figure 7. Relationship between PM2.5 concentrations and general traffic counts at major highway in
Detroit, Michigan during summer season [10,72]. “Reproduced with permission from (Zhang and
Batterman, Atmospheric Environment; published by Elsevier, 2010)”.

In addition, PM pollution is also correlated with vehicle flow [21,73]. In an investigation by
Moore et al. (2012), averages of 1267 and 1415 vehicles per hour at bus shelters in the morning and
evening, respectively, were positively associated with PM10 and PM2.5 pollution in Powell Boulevard,
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UK. Besides, the authors pointed out that the orientation of bus shelters also influenced the distribution
of PM inside and outside. They observed that there were higher PM concentrations inside than outside
of shelters oriented toward the roadway. Contrastingly, the concentrations were higher outside than
inside of shelters oriented away from the roadway [73].

5. Personal Exposure to PM at Bus Stations

5.1. PM Exposure Levels in Europe

In the 1999–2000 period, due to excessive levels of PM in London, UK, Adams et al. conducted
a comprehensive PM2.5 personal exposure study of users of bus, car, and bicycle transport [74].
It was estimated that passengers during bus transit and while waiting at bus stops were exposed to
34.0 ± 1.8 µg/m3 and 30.9 ± 2.1 µg/m3 in the summer and winter, respectively. They also indicated
that meteorological variables, traffic density, and route are all closely linked to individual exposure.
Wind speed was found to be the most important factor influencing personal exposure, higher wind
speeds leading to lower personal exposure levels. In particular, the difference in personal exposure
was 1.5–2.0 times when comparing the 10th and 90th percentiles of wind speeds. In 2009, Kaur et al.
calculated personal exposures to PM2.5 in Central London, UK by five transport models (walking,
car, taxi, cycling, and bus) [75]. The analyses estimated that for an average temperature of 14 ◦C,
70% humidity, and a wind speed of 1 to 5.8 m/second, PM2.5 concentrations were obtained at an
average of 34.1 ± 11.3 µg/m3 during waiting and transit by bus. In another study, Cevallos monitored
PM2.5 pollution at seven bus stops on the campus of the University of Manchester, UK, and found
that the concentration of pollutant was obtained in the range of 13.66–25.72 µg/m3 [10]. In addition,
they reported that bus stop direction and design were correlated with local exhaust emissions and
meteorological factors contributing to differences in PM levels inside and outside of bus stations [10].

Onat and Stakeeva (2013) assessed the personal exposure of commuters in public transport
to PM2.5 in central Istanbul, Turkey. The highest average PM2.5 exposure of bus passengers was
120.4 ± 73.5 µg/m3 and 84.5 ± 42.8 µg/m3 during rush hours and non-rush hours, respectively [20].
Further, they evaluated wind speed, temperature, and relative humidity affecting PM2.5 concentration
distribution. The PM2.5 concentration was positively associated with humidity and wind speed (0.70 for
inside bus and bus shelter), and negatively correlated with temperature (temperature increased as
particle concentration decreased).

Fondelli et al. (2008) evaluated urban fine particle exposure concentrations inside and outside of
bus stations in Florence, Italy [67]. At fixed-site monitoring stations, the average PM2.5 concentration
was 32 µg/m3 (in the range of 22–52 µg/m3). According to the report of time-microenvironment-
activity-diary data, the average exposure of Florentines was about 12% of personal PM2.5 exposure.

5.2. PM Exposure Levels in Americas

Hess et al. (2010) evaluated waiting passengers’ exposure to PM2.5 inside and outside bus stations
in Buffalo, New York by investigating 840 min of concurrent exposure [66]. They used a multivariate
regression model to assess the relationship between PM2.5 exposure and three vectors of determinants
including time and location, environmental factors, and physical setting and location. This model
suggested that personal exposure to PM2.5 inside the bus shelters was 17.24 ± 16.60 µg/m3, higher
than that outside by 14.72 ± 8.19 µg/m3, due to cigarette smoking. The cigarette smoking, which was
found to increase PM2.5 exposure to 22.74 µg/m3, was the largest factor enhancing personal exposure
while passengers wait at bus stations.

In addition, Moore et al. (2012) also conducted an empirical study of PM exposure for passengers
waiting at bus stations in Portland, USA [7]. This study compared the personal exposure at two-sided
bus shelters which either face roadway traffic or are oriented away from it. The mean values of PM10

and PM2.5 were 25.00 and 21.97 µg/m3 relative to independent variables (e.g., shelter orientation,
vehicle flow, wind speed, wind direction, temperature, and humidity). Particularly, with an opening
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oriented towards the roadway, the PM concentration inside the bus shelter was higher than that outside.
By contrast, the inside of shelters oriented away from roadway traffic had a lower PM concentration
than did the outside. Besides, they reported that vehicle flow showed a significant correlation with PM
concentration at bus stations.

The correlation of particulate air pollution at bus stops and vascular reactivity in Ottawa, Canada
was demonstrated by Dales et al. [8]. In this study, which included 39 healthy volunteers waiting
outside bus shelters for 2 h, the flow-mediated vasodilation (FMD) of the brachial artery increased with
in PM2.5 exposure. The authors indicated that a 30 µg/m3 increase in PM2.5 led to a 0.48% reduction
in FMD.

5.3. PM Exposure Levels in Asia

Velasco and Tan (2016) measured the exposure of passengers to particles while waiting at bus
stops in the humid and hot weather of Singapore [9]. In this study, they used a set of portable
battery-operated sensors to evaluate traffic particle concentrations at the bus stations. It was estimated
that traffic exhaust particles at these bus stops contained mostly PM1, PM2.5, and PM10 ranging from
89% to 94% of total exhaust particles. Although waiting times at bus stations in Singaporean are
generally short (average 20 min a roundtrip per day), commuters might be exposed to concentrations
1.5–3 times greater than reported by local authorities with an average PM2.5 exposure of 23–57 µg/m3.

In China, Xu et al. conducted an empirical study on individual and population intake fractions
of PM at bus stops to estimate personal exposure as well as the correlation between diesel PM and
emissions [6]. The PM pollution was mainly caused by diesel vehicle emission (28%), crustal dust
(26%), coal combustion (22%), cement (4.9%), and other sources. In addition, the PM10 concentration at
bus stations during rush hours, at 254 ± 128 µg/m3, was much too high, compared with ambient 24 h
and intercity bus terminal PM concentrations of 103 and 80 µg/m3, respectively. They also pointed out
that bus stations near roadsides could accumulate high particles, thus causing high level of exposure
to direct vehicle emissions.

In addition to city center bus stops, intercity bus terminals can also accumulate high particle
levels, especially in waiting areas. Cheng et al. determined short-term exposures to PM10 and PM2.5 for
passengers at a Taipei bus terminal station [76]. This study estimated PM10 and PM2.5 levels of 74 ± 30.5
and 50.75 ± 26.25 µg/m3, respectively, which had been exhausted directly from cruising and idling
buses and outside traffic surrounding waiting areas. In another study, Salama et al. (2017) assessed air
quality in bus terminal stations in the Kingdom of Saudi Arabia by applying dust collection calibrated
devices [77]. By this method, PM10, PM4, PM2.5, and PM1 levels were measured as 185.1 ± 21.5,
118.8 ± 18.4, 112.8 ± 13.3, and 85.5 ± 9.9 µg/m3 in the morning and 172.3 ± 4.8, 137.8 ± 18.2,
93.8 ± 10.23, and 99.2 ± 4.3 µg/m3 in the evening, respectively, as compared with Saudi Arabia’s
standard air quality guidelines.

6. Future Directions for Reduction in Personal PM Exposure

6.1. Pollution Prevention and Control

PM emissions can be minimized by pollution prevention and control technologies. Some typical
regulations and air quality management actions have been applied to reduce pollution from concerning
sources (traffic, industry, and human activities). Pollution prevention includes choosing clean fuels
(natural gas) instead of diesel fuel, whose substitution can reduce the formation of secondary particles
(NO2 and NH3) in traffic emission; utilizing cleaner processes such as advanced coal combustion
technologies (coal gasification and fluidized-bed combustion) that may lower concentrations of
products by incomplete combustion, and replacing older devices with cleaner ones enables better
burning and fewer PM emissions [78,79]. Particularly, in order to reduce personal exposure indoors
and outdoors, especially at bus stations, passengers should avoid smoking in bus shelters, reduce
traveling during rush hour, and avoid outdoor activities when pollution levels are high [80].
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In addition, a variety of PM-removal technologies with different physical and economic
characteristics have been applied, such as impingement separators and electrostatic precipitators.
Impingement separators rely on the inertial properties of the particles to separate them from the carrier
gas stream, thereby collecting medium-size and coarse particles, while electrostatic precipitators show
a high efficiency in collecting PM2.5 with well-designed, well-operated, and well-maintained systems,
that can remove PM by using an electrostatic field to attract particles onto their electrodes [79].

6.2. Forecasting of PM Pollution

In order to avoid high pollution exposure, commuters should check current and forecasted air
quality levels before undertaking outdoor and public transport. Forecasting of pollution is an important
tool for taking effective pollution control measures that can provide an early warning against harmful
air pollutants [81]. Among these various predictive models, modes of artificial intelligence such as
artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) models are
classic methods used to forecast air pollution quantitatively [81,82].

6.2.1. Artificial Neural Network (ANN) Models

ANN is a powerful data modeling method with proven efficacy in solving complex problems in
the fields of alignment, prediction, and classification [82]. A number of recent studies have used ANN
models to predict hourly or daily PM concentrations with low error values [82–85]. It is a mathematical
model based on a collection of artificial neurons connected or functionally-related to each other, which
behave like neurons in the biological brain [83,85]. Generally, its architecture consists of arrangement
of neurons within several layers including an input layer, hidden layers, and an output layer (Figure 8);
all neurons in a layer are connected to all neurons in adjacent layers by synaptic weights acting
as signaling coefficients on the corresponding connections [83,85,86]. In ANN models, signals are
transmitted from the first layer (the input layer) to the final layer (the output layer); the connecting
signals between artificial neurons are real numbers, and the output of each of the artificial neurons is
analyzed by a number of linear or non-linear statistical techniques [83,87]. In addition, ANN models
have been developed on two popular neural network architectures including the Multilayer Perceptron
(MLP) neural network and the Radial Basis Function (RBF) network.
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Multilayer Perceptron Neural Network (MLP)

MLP, along with feed-forward network (FFN), is the most popular neural network architecture,
and is used to analyze the relationships between different variables and to predict the outcome of
response variables. Used when the number of independent variables is greater than one, the MLP
model with the given i observation is shown in Equation (1),

Y = β0 + ∑n
i=1 βiXi +εi (1)
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where Xi is the value of the input variable I, Y is the prediction calculated by a linear combination,
the constant β0 and the regression coefficients βi being computed by ordinary least-squares equation,
and ε is a residual error [83].

The MLP model consists of three layers of neurons, each of which uses a linear combination
function, and the input signal is processed in several steps in one direction: the input variables activate
the first layer (input layer), the signal is then transmitted to the second layer (hidden layer), where this
signal is elaborated, and finally, the activation states of the second layer are then passed to the last
layer [82,83]. In detail, the number of neurons in the first layer corresponds to the number of input
variables, the number of nodes in the second layer is chosen to limit the total number of weights that
can avoid an important problem known as overtraining of the network, and the last layer includes a
single neuron representing the output of the network [83].

Supervised training algorithms such as backpropagation (BP) play an important role in the ANN
network. With BP, also known as “training”, repetitive inputs are presented to the neural network,
the output is compared to the desired output, and an error is evaluated. After BP, the neural network
adjusts the weights to reduce the error with each iteration and to improve outcomes closer and closer
to the desired output. Indeed, this training is relatively easy and provides good support for predictive
applications [82].

In fact, in a study of Feng et al. (2015), the MLP type of back-propagation neural network was
applied to forecast PM2.5 pollution based on respective pollutant predictors as well as meteorological
forecast variables as input data [88]. In this study, 85% of data was set for training, and the remaining data
was used for testing. There were 10 variables in the first layer, as shown in Figure 9 (PM concentration,
temperature max and min, wind, humidity, neighbor weighted, general condition, month of year,
and day of week), and the prognostic predictors (wind, temperature, and humidity) were extracted
from the predicted values published by meteorological authorities instead of real-time values.
The hidden layer of this neural network contained 8 neurons that can obtain the best validation
data for an optimal MLP structure. It has been reported that with the high daily level of PM2.5 in China,
applications of this neural network can achieve an average accurate prediction of 90% compared to
real-time values of PM2.5 concentrations prevalent at the same time.
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Furthermore, Bianofiore et al. developed a recurrent architecture based on the MLP model for
analysis and forecast of PM10 and PM2.5 [83]. In this model, the input layer was set with the activation
state of the nodes in the intermediate layers, the processed signal was then transmitted back to
the input level, and the neurons in the second layer contained the compressed information on the
meteorological and chemical parameters of the previous time step, and so this architecture displayed
a dynamic memory of the types of events provided as the inputs of the network. Meteorological
conditions, real-time PM10 and PM2.5 concentrations from training data, and CO concentrations were
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used as the inputs to simulate PM10 and PM2.5 concentrations via the recurrent neural network.
It was determined that this model is a potential tool for obtainment of the real-time PM10 and PM2.5

concentration information.

Radial Basis Function (RBF) Neural Network

Radial basis function (RBF) also is an effective feed-forward neural network. Although less
well-known than the MLP model, the main advantages of the RBF network are its affording of the
minimum approximating error of any function as well as the global optimum, and its generally much
faster training [83,89–91]. Therefore, it has been widely used in a considerable number of applications
(e.g., classification, regression problems, function approximation, prediction, and signal processing)
with good results.

The RBF network consists of three different layers (Figure 10). The first layer has the same structure
and function as the input layer of the MLP network, including various input neurons connected to
each input, and the input neurons then feed the values to each of the neurons in the second layer
(hidden layer). The main difference between RBF and other types of neural network is the hidden
layer [83,91]. The hidden layer is a center nonlinear function that is symmetric to the local distribution,
and includes a width parameter and a center position with the RBF based on the Gaussian distribution
function (Equation (2)) [90,91]:

∅j(χ) = exp (−

∣∣∣∣∣∣χ− µj

∣∣∣∣∣∣2
2σ2

j
) (2)

where ∅j is the nonlinear function of unit j in the RBF, χ is the input data vector, µj is the center of unit
j in the RBF unit, and σj is the spread of the Gaussian basis function with respect to unit j.

The third layer of the RBF network is connected by linear units and creates output [83,89].
The extracted signal from the hidden layer is processed and the problem is solved by learning processes
in the output layer. There are two sets of weights measuring the distance concerning input data and
the output layer. In the first set of weights, the radial distance is computed for every unit between the
non-linear inputs and the center of the basis function using the Euclidean distance algorithm, while the
second weight is combined with the activation function known as the RBF, which generates outputs in
the linear form [91]. The output can forecast pollutant concentrations following Equation (3):

Yk(x) =
M

∑
j=1

Wkj∅j(X) + Wk0 (3)

where M is the number of basic functions, x is the output data vector, Wkj is the connection weight
between the basis function and the output layer, ∅j is the nonlinear function of unit j in the RBF,
and Wk0 is the weighted connection in the output layer.
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6.2.2. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Model

The adaptive neuro-fuzzy inference systems (ANFIS) model, proposed by Jang et al. (1993), is a
hybrid architecture composed of fuzzy inference systems (FIS) enhanced with ANN features [92].
This model compensates for the disadvantages of fuzzy inference systems such as trial–error methods
in tuning membership functions parameters, high time-consumption in design, a continuous and
complete rule base, and a lack of standard methods for transforming human knowledge into a
rule base [93]. On the other hand, the main advantages of the ANFIS model are the lack of any
requirement for a mathematical model, its simulation of human thinking, and its simple interpretation
of results [93,94].

The ANFIS architecture has five layers according to Takagi–Sugeno rules (Figure 11) [94]. The first
layer (adaptive) forms the premise parameters. In the second layer, the products of the involved
membership function are computed. Then, in the third layer, the sum of inputs is standardized. In the
fourth layer, the adaptive if-node computes the contribution of if–then rules to the ANFIS output and
forms the consequence parameters, and the fifth and final layer, sum all of the inputs [94,95].
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In addition, a FIS structure consists of three main components, including a rule base, a database,
and a reasoning mechanism [96]. The rule base has enough if–then rules for the scope of input
variables, while the database determines membership functions applied in fuzzy rules, and the
reasoning mechanism is responsible for an inference procedure [96]. Besides, the ANN portion in
this architecture can improve membership functions related to the FIS structure based on its training
mode, according to a training and checking dataset [93]. The training process is based on a hybrid
learning algorithm or a BP algorithm. The hybrid learning algorithm defines premise parameters with a
gradient method and consequence parameters with a least square model. With the BP algorithm, error
signals are transmitted back, and new premise parameters are calculated using the gradient method.

In fact, Domanska and Wojtylak applied the ANFIS model to forecast concentrations of CO, SO2,
and especially PM10 and PM2.5 pollution. Meteorological data (e.g., time horizon, weather forecast,
meteorological situation, and pollution concentration) in Poland were defined as inputs. It was
estimated that the ANFIS model forecasted PM10 and PM2.5 concentrations for 24–36 h with the lowest
error value [97]. In another study, Polat and Durduran predicted daily air pollution levels including
PM10 concentrations in Turkey using a combined ANFIS/output-dependent data scaling (ODDS)
network model [98]. PM10 forecast was contributed by meteorological variables (e.g., temperature,
humidity, pressure, and wind velocity attributes) as input data, as training data, and actual PM10

concentrations from the air quality statistics database of the Turkish Statistical Institute. The combined
ANFIS/ODDS model was demonstrated to be an effective PM10 prediction method (Figure 12).
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7. Limitation of Study

The limitation of this review is the relatively small number of individual studies evaluating
personal exposure while passengers are waiting at bus stations, especially in heavily polluted countries.
This fact could have been the cause of some negligible estimates.

8. Conclusions

This review identifies levels and factors affecting PM pollution at bus stations and calculates
passenger exposure while waiting at bus stations as well as the health effects of such exposure.
PM pollution at bus stations is primarily attributable to the combustion of fuel in vehicles, the
wear of vehicle components (e.g., tires and brakes), the suspension of road dust, cigarette smoking,
and industrial emissions. In addition, meteorological factors including wind speed, vehicle flow,
temperature, relative humidity, pressure, rain volume, and cloudiness as well as the design and
the direction of bus stations also influence distributions of PM inside or outside bus stops. It was
proven that bus stops can accumulate high PM levels, thereby enhancing personal exposure to PM
and leading to related diseases such as CVD, respiratory health effects, and diabetes. In order to
accurately predict PM pollution, some predictive methods have been developed, typically ANN and
ANFIS networks. In which, ANN is a powerful data modeling method with proven efficacy in solving
complex problems in the fields of alignment, prediction, and classification, while the ANFIS model has
several advantages such as non-requirement of a mathematical model, simulation of human thinking,
and simple interpretation of results relative to other predictive methods. These networks, based on
real PM concentration databases from local authorities, relative meteorological parameters, and some
statistical software, endow PM forecasts with small error values. Consequently, development of air
quality prediction networks at bus stops, which potentially can reduce health risks to a minimum,
is both feasible and necessary. Future research should focus on evaluation of personal exposure during
travels by public transportation, especially at bus stations.
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