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Abstract: The aim of this study was to assess regional differences in temperature–mortality relationships
across 21 hospital districts in Finland. The temperature dependence of the daily number of all-cause,
all-aged deaths during 2000–2014 was studied in each hospital district by using daily mean temperatures,
spatially averaged across each hospital district, to describe exposure to heat stress and cold stress.
The relationships were modelled using distributed lag non-linear models (DLNM). In a simple model
version, no delayed impacts of heat and cold on mortality were taken into account, whereas a more
complex version included delayed impacts up to 25 days. A meta-analysis with selected climatic
and sociodemographic covariates was conducted to study differences in the relationships between
hospital districts. A pooled mortality-temperature relationship was produced to describe the average
relationship in Finland. The simple DLNM model version without lag gave U-shaped dependencies
of mortality on temperature almost without exception. The outputs of the model version with a 25-day
lag were also U-shaped in most hospital districts. According to the meta-analysis, the differences in
the temperature-mortality relationships between hospital districts were not statistically significant on
the absolute temperature scale, meaning that the pooled mortality–temperature relationship can be
applied to the whole country. However, on a relative temperature scale, heterogeneity was found,
and the meta-regression suggested that morbidity index and population in the hospital districts
might explain some of this heterogeneity. The pooled estimate for the relative risk (RR) of mortality
at a daily mean temperature of 24 ◦C was 1.16 (95% CI 1.12–1.20) with reference at 14 ◦C, which is
the minimum mortality temperature (MMT) of the pooled relationship. On the cold side, the RR at
a daily mean temperature of −20 ◦C was 1.14 (95% CI 1.12–1.16). On a relative scale of daily mean
temperature, the MMT was found at the 79th percentile.
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1. Introduction

Mortality-temperature association is often schematically described as a U-shaped (or V-, J-shaped)
curve with a trough at a so-called minimum mortality temperature (MMT) and increasing mortality
towards both hot and cold tails of the temperature distribution. However, the exposure–response
relationship is quite complex because of the non-linear and delayed impacts of thermal stress on
human health. The shape of this relationship also varies regionally and in relation to sociodemographic
factors [1–4].

The MMT is lower in cooler compared to warmer climatic zones [5,6], meaning that differences
in MMT across climatic zones can be considered as an indicator of acclimatization of a population to
their typical climatic environment. According to Guo et al. [6], on the basis of data from 12 countries in
different climatic zones, the MMT is found at approximately the 75th percentile of the temperature
distribution, varying between the 66th and 80th percentiles. However, Tobias et al. [7] detected a much
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wider range for the MMT among cities in Spain. Earlier studies indicated that in Finland the MMT is
about 12–17 ◦C, while, in Mediterranean countries, the lowest mortality is found at 22–25 ◦C [5,8,9].

No systematic climate zone dependence has been found otherwise in the shape of the
temperature-mortality relationship, thus in the steepness of the slopes around the minimum mortality
temperature [5,6]. However, for example Curriero et al. [10] found a strong association of the
temperature–mortality relationship with latitude in U.S. cities. People in colder climates are more
sensitive to high temperatures than people in warm climates. Meta-analyses across European and
U.S. cities [11–13] have also indicated heterogeneity in temperature–mortality relationships. The risk
varies by community and country [6], and differences in vulnerability and sensitivity of the population
to temperature extremes depend also on socioeconomic and non-climatic environmental factors.
For instance, in a study comparing U.S. cities, Hondula et al. [14] concluded that places with a greater
risk had a developed urban environment, higher percentage of children, elderly, and minority residents,
and lower income and educational attainment; however, the key explanatory variables varied from
one city to another.

The effects of hot temperatures on mortality appear immediately on the same day and usually
last a few days, while the effects of cold appear typically after a couple of days and last about
10 days [6,15,16] or even weeks [4]. The impacts of extreme temperatures vary seasonally, and for
instance the impacts of heat waves in early summer may be more severe than later in the season.
Short-term acclimatization to seasonal variation takes place typically within a couple of weeks [17].
Furthermore, the heat and cold stress may lead to a displacement of mortality, called “harvesting”,
with death taking place earlier than it would have happened otherwise [2].

The complexity of the mortality–temperature relationship creates challenges for modelling
and assessing the overall impacts of hot and cold stress on mortality. In simple statistical models,
mortality and temperature on the same day are compared. However, in recent years, more complex
distributed lag non-linear models (DLNM) have been developed and applied in studies on the
mortality–temperature relationship [2,18–21]. DLNM has been applied in several multi-country, (e.g., [6,22]),
and multi-city studies including Helsinki, the capital of Finland [23], and at the country level, e.g., in
Estonia, a neighbouring country of Finland [24].

In vulnerability assessment of the elderly to climate change in Finland [25], one mortality-temperature
relationship was applied to the whole country. However, there are substantial regional differences in
mortality (Figure 1, right) and morbidity in Finland. According to a morbidity index of the National
Institute of Health and Welfare in Finland, people in western and southern Finland are healthier than
in eastern and northern Finland, and there are significant differences between municipalities in the
prevalence of chronic disease [26]. The main motivation for modelling the mortality–temperature
relationship regionally is to further improve the vulnerability assessment.

Thermal stress experienced by people depends not only on temperature but also on humidity,
wind, and radiation balance. Thermal indices based on human energy balance describe the thermal
environment more realistically than air temperature alone [27]. However, so far there is no consensus
on the best thermal index for predicting temperature-related mortality. Based on a comparison of two
indices, Physiologically Equivalent Temperature (PET) and outdoor air temperature, Ruuhela et al. [28]
concluded that although PET appeared to better describe impacts of cold stress, the latter was applicable
as well. Therefore, in this study, temperature is used as the indicator for heat and cold stress.

Our initial hypotheses were that: (1) there are regional differences in the mortality–temperature
relationships between hospital districts in Finland; (2) these differences can be partly explained by
climatic and sociodemographic factors. In this paper, we show that these hypotheses could not be fully
confirmed. Furthermore, we study applicability of spline modelling methods in sparsely populated
areas using models with and without delayed temperature impacts.
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Figure 1. Hospital districts (left; 2011 regionalization), annual mean temperature in Finland in the
climate normal period 1981–2010 (middle, [29]) and mortality (1/100,000) by hospital district in 2014
(right, [30]).

2. Materials and Methods

2.1. Data

The regional administrative level of health services in Finland consists of 21 hospital districts (HD)
(Figure 1, left). All-cause daily number of deaths and annual population in the HDs for the study
period of 2000–2014 were obtained from Statistics Finland. Finland is a sparsely populated country
with a somewhat higher population density in the southern part of the country. The population is
highest, about 1.5 million, in the Helsinki-Uusimaa hospital district (HD1) (Supplementary Materials
Table S1). In five hospital districts, the population is less than 0.1 million and, in the remaining hospital
districts, it varies between 0.1 and 0.5 million. The share of elderly (75 years of age and older) in the
hospital district population varies from 5 to 10%, and the highest values are found in eastern Finland
HDs. The daily number of deaths in HD1 varied between 11 and 57, with a median of 30 deaths per
day during our study period (Table S1). In the smallest hospital districts, the median of daily deaths
was less than five, while in most of the hospital districts the median of daily deaths was about 10
with a maximum of around 20 deaths per day. In meta-regression analysis we also used hospital
district-level morbidity indices from the National Institute for Health and Welfare (THL). In these
indices, selected disease groups are weighted on the basis of their significance for mortality, disability,
quality of life, and health-care costs in the population [26,31]. The morbidity index varied between 66
and 147, with the highest values in eastern Finland hospital districts.

Daily numbers of deaths were compared to daily mean temperatures that were calculated as a
spatial average over each hospital district on the basis of a FMI (Finnish Meteorological Institute) daily
gridded (10 km × 10 km) temperature data. The gridded data were produced by kriging interpolation,
in which topography and water bodies are taken into account besides the measured temperature
observations [32]. As the distance from the southernmost to the northernmost point in Finland is more
than 1000 km, there are substantial temperature differences between southern and northern parts of the
country (Figure 1, middle). In southwestern hospital districts, the spatially averaged daily temperature
varied between –25 ◦C and +25 ◦C during our study period. More continental climatic conditions,
with a wider temperature range, are found in eastern and northern hospital districts, e.g., in Northern
Carelia (HD12 = Pohjois−Karjala) the range was from –35 ◦C to +27 ◦C. The spatial temperature
variation on the daily level within each hospital district greatly depends on the prevailing weather
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conditions. The spatial temperature differences may be negligible, less than 0.5 ◦C, during cloudy
weather, while the differences may be more than 20 ◦C in clear sky conditions during winter in Lapland,
largely because of topographic variations in the region.

2.2. Methods

In modelling the relationship between the number of daily deaths and daily mean temperatures
in the hospital districts, we applied the distributed lag non-linear model (DLNM) and quasi-Poisson
distribution for the number of deaths [19,20,33]. The general model definition is:

g(µt) = α+ s(xt;β) +
J

∑
j=1

hj(cti;γi)

where g is a log link function of the expectation µt ≡ E(Yt), with Yt being the time series daily mortality
counts in hospital district, α is an intercept, s(xt;β) is an exposure-response function to temperature
(xt) defined by β and it is chosen as quadratic B-spline defined by internal knots. In addition,
the cross-basis matrix of coefficients also describes lag effects of temperature, defined by knots for
lag on a logarithmic scale. Here, we studied delayed temperature effects on mortality with a lag of
up to 25 days. Confounding factors (cti) in this study were day of the week and elapsed time from
the beginning of the time series. Day of the week is modelled as a categorical variable and elapsed
time as a natural cubic spline with 7 degrees of freedom (df) per year to control seasonal variation and
long-term trend.

We applied different versions of DLNM, with varying lags and internal knots and with or
without confounding factors. A simple version of the model, with no delayed temperature impacts
(lag = 0), no confounding factors, and 4 internal knots for temperature distribution, was first applied
for each hospital district (HD) separately. After this first-stage modelling, we studied potential
regional differences in mortality–temperature relationship between the hospital districts with the aid
of meta-regression analysis, following the method developed by Gasparrini et al. [34]. In order
to reduce the effects of random variation in the relationships, especially in the less populated
HDs, best linear unbiased predictions (BLUP) were applied. These BLUP estimates converge
the HD-specific relationships towards a pooled, averaged exposure–response relationship. In the
meta-analysis, Cochran Q test and I2 were used to study heterogeneity across the BLUP estimates
of the relationships in hospital districts. Because temperature ranges deviate between the hospital
districts, the meta-regression was done on both absolute and relative temperature scales.

We used selected characteristics of the hospital districts as covariates in meta-regression in order
to assess their effect in explaining potential heterogeneity in temperature-mortality relationships
between hospital districts. These covariates were climatological mean temperature, ranges of daily
mean temperatures, morbidity indices, population, and share of elderly (75 years of age and older)
in the hospital districts. LR test and Wald test were also applied to study the significance of these
covariates to explain heterogeneity.

For sensitivity analysis of the modelled temperature-mortality relationship, we used three slightly
different versions of the simple model: (i) three knots for temperature range; (ii) a model with the
confounding effects of weekday and seasonal variation and long-term trend; (iii) a model with an
exposure term of a moving average of daily mean temperature on the same and five previous days.
The last analysis covers part the lagged effects of the heat and cold exposure.

For studying the impacts of temperature on mortality with long delay, we applied a more complex
DLNM with lag up to 25 days. Here, the first modelling was performed using the lowest Akaike
Information Criteria (AIC) value as a criterion for selecting the number of knots for the model in each
hospital district. Thereby, the lag structure and optimal knots for the temperature distribution could
be determined. The AIC-based number of knots varied from only one knot for both temperature and
lag, to five knots for temperature and three knots for lag. On average, the best models had three knots
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for temperature and two knots for lag, and in the following step the modelling was done using these
fixed numbers of knots for each hospital district.

The temperature–mortality relationships were concretized by reporting the relative risks of
mortality (RR), with 95% confidence intervals (CI) at selected values (+24, +20, –15, –20, and –25 ◦C)
of spatially averaged temperature (Tavg). The baseline for RR is the mortality at minimum mortality
temperature. MMT and its 95% confidence intervals (CI) were determined with the help of a simulation
method developed in Tobias et al. [7]. Furthermore, the lag distributions were drawn from the DLNM
output. The R packages dlnm [20] and mvmeta [34] were used to conduct the studies.

3. Results

3.1. Model without Lag and Meta-Analysis

The simple model version without lag produced U-shaped relationships in all hospital districts,
except for the two least-populated ones, which have populations of less than 50,000. Another district,
HD22, located in an archipelago in the Baltic Sea, was left out from the subsequent analysis. In Figure 2b,
hospital district-specific mortality–temperature relationships, based on the first-stage modelling,
are presented together with the pooled, average relationship. The HD-specific, first-stage modelling
results show large differences and variation, especially on the cold temperature scale, but the BLUP
estimation converges the relationships towards the average, and the differences between hospital
districts almost disappear (Figure 2c). Examples of how the BLUP estimations differ from the first-stage
models and from the pooled average in the hospital districts are presented in Figure 2d,e. In the
Helsinki–Uusimaa hospital district (HD1), all the three relationships are fairly similar for typical
temperatures, but in the cold extreme of the temperature distribution (below −20 ◦C), the first stage
model outcome is remarkable higher than the BLUB estimate. In the less populated HD12 in eastern
Finland, the BLUP estimate is drawn towards the average throughout the temperature scale more
strongly than in HD1.

Exposure to high or low temperatures increased the mortality risk: the pooled estimate for the
relative risk (RR) of mortality at a daily mean temperature of 24 ◦C was 1.16 (95% CI 1.12–1.20) when
compared to mortality at 14 ◦C, which is the MMT of the pooled relationship. On the cold side, at a
daily mean temperature of −20 ◦C, RR was 1.14 (95% CI 1.12–1.16). On the relative scale of daily mean
temperature, the MMT was at the 79th percentile.

The pooled relationship had relatively narrow confidence intervals (Figure 2a), and the meta-analysis
confirmed that there was no statistically significant heterogeneity in mortality–temperature relationships
among the hospital districts when the analysis was made on an absolute temperature scale (Table 1).
However, on the relative temperature scale, heterogeneity was found (Q test p = 0.029), and 21% of
variation in the relationships would be explained by heterogeneity (I2 = 21.1%). According to the Wald
test, morbidity index and population in the hospital districts explain heterogeneity on a statistically
significant level, but the LR tests do not support these findings. The climatological mean temperature
and temperature range do not explain a considerable amount of heterogeneity. Figure 3 demonstrates
the small impacts of selected meta-regression covariates and the differences in mortality–temperature
relationship at the 25th and 75th percentiles of the covariate. On the basis of this meta-analysis,
we can conclude that, since there are no statistically significant differences in temperature–mortality
relationships between hospital districts on the absolute temperature scale, the same relationship can
be applied in all parts of the country. On the other hand, the meta-analysis on the relative temperature
scale suggests that morbidity index and population in the hospital districts might explain some of the
small regional heterogeneity of the temperature–mortality association.

The sensitivity analysis of the modelled temperature–mortality relationships supports the finding
above that there is no statistically significant heterogeneity in the temperature–mortality relationship
across the hospital districts on the absolute temperature scale, while some heterogeneity is found on
the relative temperature scale. Sensitivity analysis was performed using the simple model relationship
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with different parameterizations, and pooled outcomes of the results are presented in Supplementary
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Figure 2. Temperature-mortality relationships based on the model without lag. (a) Pooled, average
relationship (solid curve) with 95% confidence interval (shaded), dots indicating location of knots (up),
relative risk (RR) reference at T = 14 ◦C; (b) hospital district (HD)-specific models (dash curves) with the
pooled relationship (solid curve); (c) best linear unbiased predictions (BLUP) estimations for hospital
districts. Examples on how BLUP estimation pulls the relationships towards the average in two hospital
districts: (d) HD1, in southern Finland and (e) HD12, in eastern Finland.
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Table 1. Heterogeneity tests on absolute and relative temperature scales. The hospital district
(HD)-level meta-analysis covariates are the following: long-term climatological mean temperature;
range of daily mean temperatures, THL’s morbidity index, population, and share of elderly (75+ years).
Statistically significant p-values with bold.

Covariate
Cochran Q Test I2 Information

Criteria LR Test Wald Test

Q df p (%) AIC BIC Stat df p Stat df p

Absolute scale
Intercept-only 129.2 114 0.156 11.8 −304.8 −229.6
Relative scale
Intercept-only 144.4 114 0.029 21.1 −301.0 −225.7

Climate-Tmean 134.8 108 0.041 19.9 −294.0 −202.0 5.0 6 0.544 5.6 6 0.465
Temperature range 134.1 108 0.045 19.5 −297.6 −205.6 8.6 6 0.196 11.0 6 0.089

Morbidity index 129.1 108 0.081 16.4 −298.5 −206.5 9.5 6 0.146 13.5 6 0.036
Population 127.5 108 0.097 15.3 −298.5 −206.5 9.5 6 0.146 14.9 6 0.021

Share of elderly 131.3 108 0.063 17.7 −295.8 −203.9 6.9 6 0.335 11.4 6 0.077
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Modelled relationships with the 25th and 75th percentiles of hospital district-level covariates: climatological
mean temperature (◦C), temperature range (◦C), share of elderly (%), and morbidity index.

3.2. Model with 25-Day Lag

The modelling with the more complex DLNM version with 25-day lag, day of the week,
seasonal variation, and long-term trend as confounding factors, gave realistic U-shaped relationships
in most of the hospital districts, even in those with a low population. A downside is that increased
complexity in the DLNM version led to increased uncertainty in the model outcomes. In a few hospital
districts, the modelled relationships appeared unrealistic, e.g., with continuously decreasing mortality
with increasing temperature. Examples of 3D visualizations of the DLNM outputs and overall effects
of temperature on the relative risk, aggregated from the 25-day delayed effects, are presented from
two hospital districts in Figure 4. These hospital districts represent different climatic conditions.
Helsinki–Uusimaa, HD1, is located in southern Finland, and its climate is affected by the Baltic Sea.
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During our study period, the daily mean temperature as a spatial average in the HD1 varied between
−24.5 ◦C and +25.6 ◦C, with a median of 5.7 ◦C. Pohjois-Karjala, HD12, in eastern central Finland,
has a more continental type of climate with a wider temperature variation range: the daily mean
temperature varied between −34.1 ◦C and +26.9 ◦C, with a median of 3.2 ◦C.
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Figure 4. Outcomes of DLNM for hospital districts HD1 and HD12 with a model version with 25-day
delayed temperature effects: (a,c) 3D visualizations of the relative risk of mortality as a function of
temperature and lag; (b,d) overall relative risk (curves) with 95% CI (shaded). The point of minimum
mortality temperature is indicated with a solid vertical line (95% CI, dotted vertical lines). HD1 is in
southern and HD12 in eastern-central Finland. Modelling with fixed number of knots: 3 for temperature
and 2 for lag.

Delayed impacts had common characteristics in most of DLNM outcomes: increase in the
heat-related RR was apparent immediately on the same day and it disappeared within a few
days. The cold-related RR appeared after a few days but lasted for several days or even weeks.
Aggregating delayed impacts over 25 days increased the cold impact more than the heat impact.
Examples of the structure of the lagged impacts of heat stress (at T = +24 ◦C) and cold stress (at T = −20 ◦C)
on the all-aged mortality in HD1 are presented in Figure 5.

Examples of how inclusions of the delayed impacts may affect the estimated relative risks of
all-aged mortality at various temperature levels are in Table 2 for two hospital districts. The outcomes
of three model versions are presented: (i) the pooled model results without lag and without seasonal
variation; (ii) hospital district-specific simple models without lag and without seasonal variation;
(iii) a complex DLNM model with 25-day lag, seasonal variation, and a fixed number of knots for
temperature and for lag. Our preliminary results suggest that including delayed impacts with long lag
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may double or triple the mortality risks, but since the meta-analysis of the complex model version was
beyond this study, we cannot make firm conclusions from this model version.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW    9 of 13 
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Figure 5. Examples of the effects of lag on relative mortality risk (RR) at two different temperatures,
(a) Tavg = 24 ◦C, representing heat stress and (b) Tavg = −20 ◦C, cold stress. Examples of all-aged
mortality in HD1, Helsinki–Uusimaa hospital district. DLNM with 3 knots for temperature and 2 for
lag. Tavg: spatially averaged daily mean temperature.

Table 2. Comparison of the relative mortality risk, RR (95% CI), in HD1 and HD12 at selected
temperatures in three model versions: pooled model without lag and seasonal variation, a simple
model without lag and seasonal variation, a DLNM with 25-day lag and seasonal variation.

Tavg RR (95% CI)

Pooled Estimate 24 1.16 (1.12, 1.20)
-Without Lag 20 1.04 (1.03, 1.05)

−15 1.13 (1.12, 1.15)
−20 1.14 (1.12, 1.16)
−25 1.16 (1.13, 1.19)

HD1 HD12

Simple Model 24 1.15 (1.10, 1.20) 1.25 (1.14, 1.38)
-Without Lag 20 1.06 (1.04, 1.08) 1.10 (1.05, 1.15)

−15 1.14 (1.11, 1.16) 1.21 (1.17, 1.26)
−20 1.14 (1.09, 1.18) 1.25 (1.20, 1.31)
−25 1.13 (1.06, 1.20) 1.29 (1.21, 1.39)

DLNM 24 1.34 (1.22, 1.48) 1.55 (1.24, 1.94)
-With 25-Day Lag 20 1.10 (1.06, 1.13) 1.18 (1.07, 1.31)

−15 1.20 (1.09, 1.31) 1.26 (1.05, 1.52)
−20 1.25 (1.11, 1.39) 1.34 (1.07, 1.68)
−25 1.32 (1.00, 1.74) 1.37 (1.09, 1.72)

4. Discussion

We conducted regional assessments of the temperature–mortality relationship in hospital districts
in Finland by using different versions of distributed lag non-linear models (DLNM) and meta-analysis.
Finland is a sparsely populated country, which generates challenges and large uncertainties in
modelling. Earlier studies have focused on the capital city of Helsinki [11,23] or on larger areas
such as southern Finland or northern Finland [5,8,9].

To our knowledge, this is the first attempt to model the temperature–mortality relationships
at the hospital district level, i.e., at the regional administrative level of health services in Finland.
The characteristics—e.g., area, population, public health, and climate—of hospital districts vary
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substantially, and our aim was to assess how heat- and cold-related health risks vary between
hospital districts.

Following the conclusions in Ruuhela et al. [28], we used the spatially averaged daily mean
temperature in each hospital district as an indicator for thermal environment. Spatially averaged
temperatures describe the thermal environment in a larger area better than single station-wise
temperatures, since they include the topographic effects on the temperature variation in the area.
We used 10 km × 10 km gridded climate data from the Finnish Meteorological Institute [30].

We found that modelling at the hospital district level gives realistic, U-shaped relationships even
in sparsely populated areas, but with some limitations: the outcomes of the model version without lag
were unrealistic in two hospital districts, possibly because of a small population, of less than 50,000,
in those hospital districts. When complexity in modelling was increased by taking into account 25-day
lag impacts of heat and cold, the uncertainties in the temperature-mortality relationships increased,
and their shapes became unrealistic in a few more hospital districts in the northern and western part
of the country. However, in regions where the modelling with a 25-day lag is possible, these models
can provide a better understanding of the overall health impacts of heat and cold than the model
without lag.

Studies that have found heterogeneity in temperature–mortality relationships were made in larger
areas such as Europe or the USA [11–13]. Our study concentrated only on one country, and we could not
confirm heterogeneity across Finland on the absolute temperature scale. According to the meta-analysis
and BLUP estimates of temperature–mortality relationships in the hospital districts, the small
differences in relationships across hospital districts were not statistically significant and cannot be
explained by climatic or sociodemographic factors. Therefore, a pooled, average mortality–temperature
relationship can be applied throughout the country, e.g., in climate change impact studies.

However, on the relative temperature scale, some heterogeneity was detected in the
temperature-mortality association between the hospital districts. Sociodemographic factors such
as morbidity index and population might partly explain these differences. Yet, we cannot firmly
conclude these outcomes because of the contradicting outcomes of the statistical tests.

The minimum mortality temperature (MMT) in Finland is clearly lower than among populations
in warmer climates. Based on the pooled, average temperature–mortality relationship, the MMT in
Finland is 14 ◦C. In a relative temperature scale, the MMT is found at the 79th percentile of the daily mean
temperature distribution, thus somewhat higher than in studies from other countries, (e.g., [6]). We did
not find regional differences in MMT, thus we cannot conclude that there would be regional differences
in acclimatization in the Finnish population either. One explanation for this conclusion could be
internal migration, which is substantial in Finland, mainly towards the south. However, in their study
about internal migration and mortality, Saarela and Finnäs [35] found that the birth region is a very
decisive mortality determinant. One limitation in our study was that we were not able to conduct
research at the individual level and track the place of birth for each individual.

The relative risk (RR) of mortality in the hot tail of the temperature distribution appeared quite
similar regardless of the DLNM version. In the cold tail of the temperature distribution, the variation
and uncertainty in the modelled relationship was larger than in the hot tail, at least partly because of the
long-lasting delayed impacts, as can be seen in Figure 5b. In this study, we focused on studying regional
differences in the temperature–mortality relationship and finding the location of MMT, but modelling
with various versions of DLNM model provided interesting outcomes for further studies and
discussions on cold-related mortality. The simple model without lag or controlling seasonality produces
classic U-shaped association between temperature and mortality. When seasonality was included into
the model as a confounding factor, the cold tail of the association became flat, thus mortality risk did
not appear to depend on temperature on the cold side. When delayed impacts were included into the
model, the cold-related mortality risk was again elevated (Figure S1). When extending the lag up to
25 days, the cold impacts become more pronounced (Figure 4).
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These various model versions indicate that more research is needed on the winter mortality and
impacts of cold. The study of Ebi and Mills [36] questioned the assumption that seasonality with
higher mortality in winter than in summer would be attributable to temperature. Higher winter
mortality may also be related to other factors that vary seasonally, such as influenza epidemics [37].
A climatologically interesting candidate to partly explain excess winter mortality, especially in high
latitude countries, might be vitamin D concentration, which typically varies seasonally depending on
solar radiation. In the meta-analysis of Rush et al. [38], vitamin D status was inversely associated with
all-cause mortality. Similar conclusion was reported also in Finland [39].

According to the morbidity index of the National Institute of Health and Welfare, there are
significant regional differences in public health in Finland [26]. We expected that these regional health
differences would reflect into the temperature–mortality relationships as well, but our study did not
fully support that. In the future, the regional differences in health risks due to heat and cold could
be studied using, as additional explanatory variables, also other relevant socioeconomic and health
indicators, such as the incidences of weather-sensitive chronic diseases. However, the small number of
cases would limit the statistical power of such studies.

In areas of northern Finland with larger differences in elevation, the spatially aggregated
temperature data may not describe well the exposure to heat or cold stress, because valleys are
more populated than higher-altitude areas. One way forward in modelling the mortality–temperature
relationship might be using population-weighted gridded temperature data.

The outcomes of this study can be used, e.g., in increasing the awareness of temperature-related
health risks in high-latitude countries and, specifically, in discussions on the potential benefits of early
warning systems in the health sector in Finland.

5. Conclusions

Modelling temperature dependence of mortality by DLNM without delayed impacts produced
U-shaped relationships even in sparsely populated areas if the population is over 50,000. The DLNM
with a 25-day lag also produced U-shaped relationships in most of the hospital districts and could
thus provide a better understanding of the delayed health impacts of heat and cold than the model
without delayed effects.

We did not find statistically significant differences in the temperature–mortality relationships between
hospital districts on the absolute temperature scale, thus no differences in acclimatization between
hospital district populations were found. Therefore, a pooled national average temperature–mortality
relationship can be applied throughout the country in studies about future climate change impacts on
temperature-related mortality in Finland. However, on the relative temperature scale, some heterogeneity
was found, and the meta-regression suggested that morbidity index and population in the hospital
districts might explain part of the heterogeneity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/3/406/s1,
Table S1: Characteristics of the hospital districts in 2000–2014: daily number of deaths, population, share
of elderly, morbidity index, and spatially averaged daily temperature in the hospital districts, Figure S1:
Pooled temperature–mortality relationships with different model parameters.
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