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Abstract: Urban lakes play a vital role in the sustainable development of urbanized areas. In this
freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and
regulate the water quality. However, water bacterial and fungal communities in the urban lakes
are not well understood. In the present work, scanning electron microscopy (SEM) was combined
with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to
determine the diversity and composition of the water bacterial and fungal community in three urban
lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City
(Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies.
The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times
higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L
and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results
demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon
source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894
and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively.
Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common
phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while
Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for
95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA)
highlighted the dramatic differences of water bacterial communities among three urban lakes.
Meanwhile, the profiles of fungal communities were significantly correlated with the water quality
parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp.)
related to human diseases, such as infectious diseases, were also found. The results from this study
provides useful information related to the water quality and microbial community compositions
harbored in the aquatic ecosystems of urban lakes.
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1. Introduction

Urban lakes play a pivotal role in reclaimed water resource utilization and the development
of urban environments [1]. In the past few decades, an increasing number of man-made urban
lakes used for recreation have been built around city parks in order to increase the quality of the
living environment for citizens [2,3]. Recently, urbanization has been improved due to the rapid
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industrialization in developing countries [4]. However, numerous quantities of pollutants from
industrial and human activities are frequently discharged into the lakes [1,5]. Therefore, urbanization
has a detrimental influence on the water body through pollution discharge and contribution to
climate change [4,6]. Interestingly, Xu et al. [6] studied the relationship between urbanization-related
factors and bacterial communities in the soil of urban park. This study revealed that urbanization
had a dramatic effect on the composition of the bacterial community in urban park soils. Heavy
metal and microplastics in the surface soil around the urban lake can be flushed into the water
body during the storm events [5,7]. The water quality and biological characteristics of unban lake
will be influenced, with water quality deterioration and algal bloom frequently occurring [3,5,7].
Unfortunately, the characteristics of water quality and water microbial community living in urban lake
ecosystems are not well understood because urbanization can shape the diversity of environmental
bacterial communities [6].

The diversity of aquatic microbial communities has been widely investigated using a combination
of culture-dependent and molecular techniques [8–10]. A culture-dependent method named
BIOLOG was employed to investigate the functional diversity of water bacterial communities
based on the community level physiological profiles (CLPPs) [8,9]. With the development of
next generation sequencing technique (NGST) and bioinformatics, high-throughput Illumina Miseq
sequencing has greatly improved our understanding of microbial communities living in water and
sediment environmental conditions [11]. During the past few decades, multiple works have been
undertaken, which examine the microbial community associated with freshwater ecosystems [7–12].
These ecosystems have also been compared to massive reports focused on revealing the water microbial
communities in urban water supply reservoirs [8,9,11,12], polluted urban rivers [13] and wastewater
treatment systems [14]. Few studies have focused on examining the water bacterial and fungal
community structure associated with urban lakes, especially in regions of water shortage as well as
arid and semi-arid areas of developing countries.

Water quality can be regulated by microbe metabolism and complex microbial compositions
due to microbes carrying out most of the essential biogeochemical process in urban lakes, such as
iron, sulfur, phosphorus and nitrogen recycling [1,3,5]. Almeida-Dalme et al. [15] investigated the
water bacterial and archaeal communities in the north arm of Great Salt Lake (Utah, United States),
and demonstrated that the seasonal dynamics of community diversity was influenced by lake elevation
and salinity. Recently, Morrison et al. [16] conducted a spatiotemporal survey of the water microbial
communities in Grand Lake and found that bacterial communities could mediate organic matter
recycling and regulate algal bloom in this stratified lake. Rosińska et al. [17] found that algal bloom and
cyanobacteria species changed dramatically before and during the restoration process of the heavily
polluted Swarzędzkie Lake, which suggested that higher water temperature stimulated cyanobacteria
growth. However, the characteristics of water fungal community structure and composition in urban
lake ecosystems remains unclear.

Therefore, the general objective of this work is to explore the water quality and microbial
community diversity associated with urban lakes, including Xingqing lake (LX), Geming lake (LG)
and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The specific aims of present
study are: (1) to assess the general water quality parameters; (2) to reveal morphological features of
water microbial community using scanning electron microscopy (SEM); (3) to determine the functional
diversity of water bacterial communities based on community level physiological profiles (CLPPs) as
well as water bacterial and fungal community compositions using 16S rRNA and Internal Transcribed
Spacer (ITS) genes in the Illumina Miseq sequence in LX, LG and LL urban lakes; and (4) to investigate
the relationship between water quality and microbial community structure. This study will improve
the foundational database for evaluating the biological characteristics of water quality and enhance
assessments of the urban lake ecosystem inhabitants.
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2. Materials and Methods

2.1. Study Site Description

The study site is located in Xi’an City, Shaanxi Province, in northwest China. Xi’an is the capital
city of Shaanxi Province, which is one of the most important cradles of Chinese civilization. It marked
the start of the famous “Silk Road”, which linked China with central Asia and the Roman Empire [18].
It served as the first capital of a unified China and periodically as capital of 11 dynasties. Xi’an City
is geographically located in the center of the fertile Guanzhong Plain, which is surrounded by the
Qinling Mountains to the south and the Wei River in the north [19]. The average annual precipitation is
approximately 450 mm. The temperature varies from a low of −10 ◦C in January to a high of 38 ◦C in
August [18,19]. In order to improve the environmental quality, several urban lakes have been built [18].
However, the water quality of these urban lakes has decreased due to excessive richness of nutrients in
the lake, while eutrophication and algal blooms occur during the warm summer months [18]. During
the past few years, we systematically investigated the water denitrifying bacterial community structure
in lakes [18] and urban source water reservoirs [8,9,11,12,20]. Several effective denitrifying bacterial
strains were isolated from sediments [21], which can be used for bioremediation of polluted water
in urban lake. To fully understand the water microbial community composition of urban lakes in
Xi’an City, Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL) are investigated in the present
study, which are the typical and oldest lakes in Xi’an. The detailed information about lakes are listed
in Table 1.

Table 1. The geographical location of Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL) in
Xi’an City, Shaanxi Province, China.

Urban Lakes Latitude Longitude Surface Area (m2) Built Year Functions

LX 34◦15′33” 108◦58′39” 100,000 1965 Recreation
LG 34◦16′42” 108◦57′69” 20,000 1927 Recreation
LL 34◦16′30” 108◦55′59” 380,000 1916 Recreation

2.2. Sampling Process

The sampling process was conducted in June 2014. As previously described by Kang et al. [18,21],
three representative sampling sites were selected in each urban lake. Water samples were collected
at a depth of 0.5 m in each urban lake with sterile plastic containers [18], stored in ice coolers and
transported to the laboratory in Institute of Environmental Microbial Technology, Xi’an University
of Architecture and Technology (IEMT-XAUAT) within 4 h. One part of water sample was used
for determining the water physicochemical parameters and bacterial community level physiological
profiles (CLPPs) immediately. The rest of the water samples were used for examination of water
bacterial and fungal communities. For these samples, the water was filtered using polycarbonate
membrane (0.22 µm) [18] and stored at −20 ◦C for determination of water microbial communities.

2.3. Water Physicochemical Analysis

To determine the water quality parameters, water temperature, dissolved oxygen (DO) and pH
were determined in situ using the thermometer, portable dissolved oxygen meter and pH meter
(Hach, Loveland, CO, USA) [18]. Meanwhile, the concentrations of total nitrogen (TN), ammonia
nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N) and total phosphorus (TP) were spectrophotometrically

examined using a continuous flow analyzer (Seal Analytical AA3, Norderstedt, Germany) after the
water samples were filtered by a polycarbonate membrane (0.22 µm) [22]. Permanganate index
(CODMn) was measured using spectrophotometer with the DR6000 (Hach, Loveland, CO, USA).
Fe concentration was determined by inductively coupled plasma-mass spectrometry (ICP-MS) (Perkin
Elmer, Norwalk, CT, USA) [22].
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2.4. Scanning Electron Microscopy (SEM) Determination

To view the image of water microbial communities, scanning electron microscopy (SEM) was used.
Briefly, the water microbial community samples were collected on the membrane surface (0.22 µm,
Millipore), before the glutaraldehyde fixative solution and ethanol were added for dehydration.
After this, we sprayed the sample with gold-palladium, before installing the sample onto the sample
holder using SEM (JSM-6510LV, Jeol, Tokyo, Japan) for the photograph to explore the microstructure
and surface morphology of water microbes, especially algal cells [23].

2.5. Determination of Water Microbial Community Functional Diversity

To determine the functional diversity of water bacterial communities, community level
physiological profiles (CLPPs) technique named BIOLOG was used to explore metabolic fingerprints of
the water bacterial communities [8]. To examine the functional diversity of water bacterial communities,
ECO plates were selected. A total of 31 sole carbon sources were located in each ECO plate [9]. In the
clean workbench, 150 µL of the water samples was added into each hole of ECO plate using eight
electronic pipettes (Eppendorf, Hamburg, Germany). The inoculated ECO plates were put into the
chamber and incubated at 28 ◦C in darkness [9]. The carbon source utilization (amines, amino acids,
carbohydrate, carboxylic acid, phenolic compound and polymers) were monitored at intervals of 24 h
for 10 days at an optic density (OD) of 590 nm (BIOLOG, Hayward, CA, USA) [11]. The average well
color development (AWCD590nm), Richness diversity (R), Shannon’s diversity (H’) and carbon source
utilization were calculated based on 96 h of incubation data, with these indices calculated as previously
described [8,9,11]. The assays were performed in triplicate (n = 3).

2.6. Water Microbial Community DNA Extraction

To extract total water microbial genomic DNA, 500-mL water samples were filtered onto
polycarbonate membrane filters (0.22 µm), before the microbial DNA was extracted using a Water
DNA Kits (Omega Bio-tek, Palo Alto, CA, USA). DNA samples were further purified using a DNA
Purification Kits (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocols.
Purified DNA was stored at −20 ◦C [11].

2.7. Determination of the Water Bacterial and Fungal Community Compositions

To explore the water microbial community structure, Illumina Miseq sequence method was
used [24]. In the present study, water bacterial and fungal communities were determined. For water
bacterial community examination, the specific bacterial primers of 515-f (5′-GTGCCAGCMGCCGC
GG-3′) and 907-r (5′-CCGTCAATTCMTTTRAGTTT-3′) were used in the amplification of the 16S
rRNA genes [25]. For water fungal community determination, the internal transcribed spacer (ITS)
gene region was amplified by primers ITS1-f (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2-r
(5′-GCTGCGTTCTTCATCGATGC-3′) [26]. The 20-µL mixture in each PCR tube contained 10 ng of the
DNA template, 2 µL of dNTP (2.5 mM), 4 µL of 5×FastPfu Buffer, 0.8 µL of each forward and reverse
primers (5 µM), 0.4 µL of FastPfu Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and a
balance of ddH2O. The PCR amplification program was carried out under the following conditions:
95 ◦C for 5 min, followed by 27 cycles of denaturation at 95 ◦C for 30 s; and annealing at 55 ◦C for
30 s and extension at 72 ◦C for 45 s. A final extension phase was performed at 72 ◦C for 10 min
and 12 ◦C until halted from a PCR thermal cycler (C-1000, Bio-Rad, Hercules, CA, USA). The PCR
product samples were checked using 1.5% agarose gel electrophoresis (Bio-Rad), before being purified
by a PCR product purification kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions. The concentration of purified PCR product was determined using a
Nano Drop™ 2000 (Thermo Fisher Scientific, Waltham, MA, USA). Amplicons were subsequently sent
to Shanghai Majorbio Bio Pharm Technology Co., Ltd. (Shanghai, China) and sequenced using the
Illumina Miseq high through put sequencing platform.
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2.8. Nucleotide Sequence Accession Number

The 16S rRNA gene and ITS sequences derived from Illumina Miseq data were deposited at the
National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/)
with the accession number SRP044894.

2.9. Data Analysis

To test the significant difference of water quality parameters among three urban lakes, one-way
analysis of variance (ANOVA) was used and followed by a Tukey HSD post-hoc test (SPSS 22.0,
SPSS Inc., Chicago, IL, USA). For BIOLOG data, AWCD590nm, Richness diversity (R) and Shannon’s
diversity (H’) were calculated as described by Zhang et al. [8,11] and Yang et al. [9]. One-way ANOVA
was used to determine differences among urban lakes. As previously described [11], quantitative
insights into microbial ecology (QIIME) (http://bio.cug.edu.cn/qiime/) was used to analyze Ilumina
Miseq sequence data [25]. Specifically, primers were trimmed and the low-quality sequences were
excluded if the length was less than 35 bases [26]. Operational taxonomic units (OTUs) grouped at the
significance level of 0.97 were taxonomically assigned using the Ribosomal Database Project (RDP)
classifier PyNastat a 50% bootstrap confidence level (http://rdp.cme.msu.edu/classifier/classifier.jsp).
Water fungal OTUs were taxonomically assigned following the databases of Fungorum (http:
//www.indexfungorum.org/) and MycoBank (http://www.mycobank.org/). Reads that did not
match any microbial sequences were identified as unclassified. The alpha diversity of bacterial
and fungal communities was measured using abundance-based coverage estimators (ACE), Chao1,
Simpson diversity (D) and Shannon’s diversity (H’) indices (MOTHUR software version 1.22.2,
The University of Michigan, Ann Arbor, MI, USA, http://www.mothur.org). Heat map fingerprints
of representative bacterial and fungal community structure at genus level were performed using
R software (version 3.2.3, Lincoln, NE, USA). Redundancy analysis (RDA) was employed to build
models explaining relationships between water quality and water microbial community structure.
The statistical significance in the regression was evaluated using Monte Carlo based permutation
test (MCP) based on a significance level of 5% [27]. Multivariate statistics for microbial community
data was performed by CANOCO 5 for Windows statistical packages (version 5.02, Wageningen,
The Netherlands, http://www.canoco5.com/) [28].

3. Results and Discussion

3.1. Water Quality Parameters

Water physicochemical properties in urban lakes are shown in Table 2. There were no significant
differences in water temperature (p > 0.05) and pH value (p > 0.05) among the LG, LL, and LX urban
lakes. Dissolved oxygen (DO) of the lake water was in the range of 8.3–10.2 mg/L. The nitrate
concentration in LG was 5.3 mg/L, which was significantly higher than that of LX (p < 0.001) (Table 2).
The highest total nitrogen (TN) was observed in LL with a value of 12.1 mg/L, which was 2 times
higher than that of LG (p < 0.01). However, total phosphorus (TP) in LG was 0.21 mg/L. The CODMn

concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01)
(Table 2). The lowest Fe concentration was observed in LX with a value of 0.01 mg/L (p < 0.01)
(Table 2). The only source of water in these lake is the reclaimed water resource from the wastewater
treatment plant in Xi’an City. The drainage waters are high in TN and organic carbon, which can
induce algal bloom during the summer season. In Xi’an City, the urban expansion around the lake
began in the 1980s, with a large amount of wastewater having already been discharged into the
lakes. The water quality in other urban lakes was monitored by Kang et al. [18], who found that
the highest TN in Fengqing lake was 6.5 mg/L, while the CODMn was 13.12 mg/L. A similar study
conducted by Kozak et al. [29] showed a TN of 4 mg/L, NO3

−-N of 1.9 mg/L and a TP of 0.08 mg/L
in the urban Lake Głębokie, Poland. The nutrients in the urban lakes of Xi’an City had higher
levels than that of the largest freshwater lake in China, Lake Poyang, where the water quality was

https://www.ncbi.nlm.nih.gov/
http://bio.cug.edu.cn/qiime/
http://rdp.cme.msu.edu/classifier/classifier.jsp
http://www.indexfungorum.org/
http://www.indexfungorum.org/
http://www.mycobank.org/
http://www.mothur.org
http://www.canoco5.com/
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assessed using eutrophication and ecological indicators [30]. In order to improve the water quality,
several restoration efforts can be conducted, such as removing the nutrient-laden sediments and
manipulation of the fish population [31]. A large number of urban lakes suffer from algal bloom
due to the endogenous N and P released from the sediment, especially in warm summer months [3].
Cyanobacteria blooms are associated with offensive odors, while the water-soluble neurotoxins are
released from cyanobacterial cells [18,31,32]. Neurotoxins are harmful to children playing with water of
urban lakes, because the main function of urban lakes is entertainment for citizens, such as recreational
boating activities. It is suggested that the water quality in urban lake has significant influence on
microbial community structure.

Table 2. Water quality parameters associated with Geming lake (LG), Lianhu lake (LL), and Xingqing
lake (LX) in Xi’an City, Shaanxi Province, China.

Water Quality Parameters LG LL LX ANOVA

Temperature (◦C) 24.1 ± 1.2A 25.3 ± 1.1A 23.6 ± 1.4A NS
pH 9.6 ± 0.8A 9.4 ± 0.9A 8.3 ± 1.2A NS

Dissolved oxygen (mg/L) 10.2 ± 0.02A 8.3 ± 0.01B 9.1 ± 0.04AB *
NO3

−-N (mg/L) 5.3 ± 0.4A 5.1 ± 0.5A 1.2 ± 0.07B ***
NH4

+-N (mg/L) 2.8 ± 0.06A 1.9 ± 0.04B 1.5 ± 0.05B *
Total nitrogen (mg/L) 5.6 ± 0.03C 12.1 ± 0.04A 8.4 ± 0.04B **

Total phosphorus (mg/L) 0.21 ± 0.01A 0.08 ± 0.00B 0.06 ± 0.01B **
CODMn (mg/L) 21.6 ± 2.3B 35.4 ± 2.9A 28.8 ± 1.6AB **

Fe (mg/L) 0.08 ± 0.01A 0.07 ± 0.01B 0.01 ± 0.00C **

Values shown as means and standard deviations (three replicates). Different capital letter represents statistical
significance.* p < 0.05, ** p < 0.01 and *** p < 0.001 represent statistical significance using one-way ANOVA.
NS represents no statistical significance.

3.2. Scanning Electron Microscopy (SEM) Images

As shown in Figure 1, based on the SEM examination, a large number of spherical bacteria
and algae were found to live in the studied lakes. Cyclotella sp. (diameter of 15–20 µm) and
Closteium sp. (length of 10–20 µm) were found in LX. LX was dominated by Chlorella sp. Meanwhile,
Synedra sp. (length of 50 µm) and Cyclotella sp. (diameter of 15–20 µm) were observed in LG (Figure 1).
An artificial urban lake next to Louisiana State University has a water quality problem due to algal
blooms. Identification of algal communities suggested that Bacillariophyceae, Cyanophyceae and
Chlorophyceae were the dominate phyla [31]. More than 100 storm drains currently discharge into the
lake, which can cause serious algal bloom with higher Chl a concentration. This result is different from
previous studies, which have suggested that cyanobacteria blooms are popular in eutrophication lakes.
This may be due to different urban lakes having different water quality, which can shape the structure
and composition of algal communities.
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Figure 1. Scanning electron microscopy (SEM) images of water microbial community composition
associated with Lianhu lake (LL), Xingqing lake (LX), and Geming lake (LG) in Xi’an City, Shaanxi
Province, China.
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3.3. Functional Diversity of Water Bacterial Communities

The carbon source utilization patterns (functional metabolic diversity) of water bacterial
communities are shown in Table 3. AWCD590nm was usually conducted to measure the metabolic
activity of bacterial communities by reflecting carbon substrate utilization performance [8]. The highest
AWCD590nm was observed in LL, while the lowest AWCD590nm existed in the LG (p < 0.01). Assessment
of the functional diversity of water bacterial communities in lakes can be useful for detecting the
self-purification ability of water bodies [8,9]. Richness diversity (R) and Shannon’s diversity (H’)
were higher in LL. Furthermore, utilization of the six types of carbon sources changed significantly
among different urban lakes (Table 2). The lowest utilization of amino acids was observed in LG
(p < 0.001). Interestingly, Yang et al. [9] used the BIOLOG method to explore the water bacterial
functional diversity in an urban drinking water reservoir and revealed that AWCD590nm values
were in the range of 0.38–0.62, which was lower than that of LL and LX. This indicated that the
water bacterial communities in the LL and LX urban lakes had higher carbon source utilization
ability. Community-level physiological profiles (CLPPs) tests have been previously employed
to determine differences in metabolic fingerprints in bacterial communities in the water [8] and
sediment [12] of urban water source reservoir and springs [33]. Similarly, a study conducted by
Gordon-Bradley et al. [33] also suggested that carbon sources utilization profiles of freshwater spring
water bacterial communities during blooming and non-blooming stages changed significantly, while
carbohydrates and polymers were most utilized during the non-blooming stage.

Table 3. Functional diversity of water bacterial communities associated with Geming lake (LG), Lianhu
lake (LL), and Xingqing lake (LX) in Xi’an City, Shaanxi Province, China.

Parameters LG LL LX ANOVA

AWCD590nm 0.49 ± 0.03C 0.90 ± 0.12A 0.67 ± 0.06B **
Amino acids 0.17 ± 0.01C 0.74 ± 0.2A 0.57 ± 0.07B ***

Carboxylic acids 0.30 ± 0.08B 0.78 ± 0.2A 0.44 ± 0.03B ***
Carbohydrates 0.83 ± 0.1B 1.05 ± 0.2A 0.85 ± 0.05B **

Amines 0.55 ± 0.03B 0.96 ± 0.1A 0.68 ± 0.02B **
Phenolic compounds 0.41 ± 0.1B 0.67 ± 0.1A 0.68 ± 0.1A *

Polymers 0.85 ± 0.1B 1.26 ± 0.2A 0.87 ± 0.1B **
Richness diversity (R) 17 ± 1.20B 23 ± 0.9A 20 ± 2.3AB *

Shannon’s diversity (H’) 3.50 ± 0.6C 5.4 ± 0.7A 4.48 ± 0.9B *

Values shown as means and standard deviations (three replicates). Different capital letter represents statistical
significance. * p < 0.05, ** p < 0.01 and *** p < 0.001 represent statistical significance using one way-ANOVA.

3.4. Water Bacterial and Fungal Community Compositions

After high throughput sequencing analysis, based on the 16S rRNA gene sequencing from Illumina
Miseq platform of water bacterial communities, a total of 62,742 reads across the three samples were
passed through the high-quality filters with an average read length of 400 bp (Table 4). In total,
there were 894 different operational taxonomic units (OTUs) for bacterial communities with 97%
sequence similarity, with the rarefaction curves of the OTUs number for each read sampled shown
in Figure 2. For bacterial communities, the abundance-based coverage estimator (ACE) was in the
range of 254–393. The highest Chao1 index was observed in LL, which was 53.3% higher than that
of LG. However, the lowest Shannon diversity (H’) was found in LX with 3.48 (Table 4). Meanwhile,
for water fungal communities, 55,346 high-quality reads were obtained after removing low-quality
reads (Table 4). These sequences were grouped into 305 different OTUs with97% sequence similarity.
Shannon diversity (H’) in LX was 2.59, which was 2.9 times higher than that of LL. ACE index did not
vary greatly between LG and LL. Chao1 was generally higher in LG, compared with LL and LX, with
an average value of 98. Overall, the Simpson diversity index (D) of bacterial community was lower
than that of fungal community from three urban lakes.
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Table 4. Water bacterial and fungal community diversity index based on the Illumina Miseq sequencing
data from Geming lake (LG), Lianhu lake (LL), and Xingqing lake (LX) in Xi’an City, Shaanxi
Province, China.

Urban Lakes Microbe Reads
0.97 Level

OTUs ACE Chao1 Shannon Diversity (H’) Simpson Diversity (D)

LG

Bacteria

13,598 231 254
(243, 276)

257
(242, 290)

3.52
(3.49, 3.55)

0.0766
(0.0742, 0.0790)

LL 26,252 380 393
(386, 407)

394
(385, 414)

4.55
(4.54, 4.57)

0.0198
(0.0194, 0.0202)

LX 22,892 283 302
(293, 321)

305
(292, 335)

3.48
(3.46, 3.51)

0.0854
(0.0833, 0.0875)

LG

Fungi

24,523 102 105
(103, 112)

103
(102, 108)

2.34
(2.32, 2.36)

0.1555
(0.1532, 0.1579)

LL 19,742 83 105
(93, 132)

98
(89, 126)

0.89
(0.87, 0.91)

0.6137
(0.6058, 0.6215)

LX 11,081 93 95
(93, 103)

94
(93, 103)

2.59
(2.56, 2.62)

0.1662
(0.1611, 0.1712)
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Figure 2. Water bacterial (A) and fungal (B) community operational taxonomic units (OTUs) number
at 0.97 level and the reads number sampled based on Illumina Miseq data of Geming lake (LG), Lianhu
lake (LL), and Xingqing lake (LX) in Xi’an City, Shaanxi Province, China.

To further examine the water bacterial community structure, the taxonomic classification of
water bacterial community in phylum levels was performed, with the results shown in Figure 3.
The lake water bacterial community was distributed among 14 different phyla including Proteobacteria,
Actinobacteria, Bactroidetes, Planctomycetes, Firmicutes, Armatimonadetes, Cyanobacteria,
Chloroflexi, Verrucomicrobia, Fusobacteria, Chlorobi, Gemmatimonadetes, Acidobacteria and
Spirochaeate. The most common phyla in LL were Proteobacteria (40.95%), Actinobacteria (19.89%)
and Bacteroidetes (18.12%). Meanwhile, Proteobacteria (40.70%) and Cyanobacteria (35.52%) were
dominant in LX, compared to all classifiable 16S rRNA sequences. A small proportion of sequences
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(0.38%) was unclassified. Approximately 68% of reads could be classified with Cyanobacteria (50.35%)
and Proteobacteria (17.55%) in LG (Figure 3). Interestingly, the Cyanobacteria was the second and
first most dominant phylum in LX and LG, respectively (Figure 3). This is consistent with the SEM
results. This is consistent with related reports [8,9], which suggested that Proteobacteria was the
most dominant phyla in reservoirs [11,12] and other environmental conditions [6]. Bacteroidetes,
Proteobacteria, and Firmicutes have been also observed in wastewater-influenced lakes [34].
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Figure 3. Taxonomic classification of water bacterial community reads of Illumina Miseq sequencing
data of (A) Lianhu lake (LL), (B) Xingqing lake (LX), and (C) Geming lake (LG) into phylum levels
using the Ribosomal Database Project (RDP) classifier.

To explore the fungal community reads of Illumina Miseq sequence, the UNITE database
(http://unite.ut.ee) classifier and NCBI Taxonomy Browser yielded ~99% classified sequences
among eight different phyla, particularly Cryptomycota, Chytridiomycota and Entomophthormycota
(Figure 4). Surprisingly, compared to the bacteria, the fungal community remained quite different.
As shown in Figure 4, the phylum Cryptomycota (98.25%) was particularly dominant in LL, while

http://unite.ut.ee
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the phyla of Chytridiomycota and Entomophthormycota were the most abundant fungal phylum,
accounting for 95.11% in the LL and 56.06% in the LG, respectively. A small proportion of
sequences (0.38% for LL, 0.12% for LX and 0.39% for LG) were unclassified. The remaining fraction
included Ascomycota, Basidiomycota and Blastocladiomycota. This is consistent with the study
by Rojas-Jimenez et al. [35], which demonstrated that Chytridiomycota and Cryptomycota were
most abundant phyla in the ice-covered lakes of the McMurdo Dry Valleys, Antarctica. The fungal
community associated with the sediment of urban drinking water reservoirs was investigated by
Zhang et al. [36], which was based on Roche 454 GS FLX pyrosequencing data. These results suggested
that Chytridiomycota was the most abundant phylum in the sediments of source water reservoirs.
Ascomycota and Basidiomycota were predominant in the Songhua Rive [37]. Aquatic fungi perform
important roles in water nutrient recycling and regulating water quality, especially in fresh water
lakes [8,35], rivers [13,19,37] and reservoirs [36]. More studies focused on fungal species should be
undertaken in urban lake ecosystems in the future.
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Figure 4. Taxonomic classification of water fungal community reads of Illumina Miseq data of
(A) Lianhu lake (LL), (B) Xingqing lake (LX), and (C) Geming lake (LG) into phylum levels using the
UNITE (http://unite.ut.ee) classifier database.
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To better assess the different microbial communities in the three urban lakes, a more detailed
profile of water bacterial community composition is illustrated by a hierarchically clustered heat-map
at genus level. As shown in Figure 5, notable differences in the bacterial composition were observed
between the three lakes. Novosphingobium sp., and Synechococcus sp. were recorded as the most
dominant categories in the LX lake. LL contained the highest proportion of bacteria, with predominant
genera of Legionella sp., Methylotenera sp., Limnohabitans sp. and Arcicella sp. (Figure 5). The water
bacterial communities of recreational freshwater lakes were investigated by analysis with the
Roche 454 Pyrosequencing technique. From this study, Legionella sp. and Methylotenera sp. were
frequently observed in East Fork Lake, Delaware Lake and Madison Lake [38,39]. The bacterial
communities in the recreational urban lakes play vital roles in both determining water quality and
people’s health, such as Pseudomonas sp., Legionella sp. and Shigella sp., which have potential public
health risks [39]. The water fungal communities at genus level of three urban lakes have changed
significantly. As shown in Figure 6, the genera Amoeboaphelidium sp. (76.91%) was particularly
dominant in LL, while Batrachochytrium sp. (8.20%), Clavulina sp. (1.10%) and Rhizophydium sp. (0.70%)
were dominant in LX. Finally, 89.10% of sequences were unclassified. Schizangiella sp. (26.18%),
Armillaria sp. (0.33%) and Campanophyllum sp. (0.23%) were the most abundant fungal genera in
LG (Figure 6). The most abundant (approximately 72.50%) unclassified fungal group belonged to
the environmental-samples-no rank. The microbial communities among three urban lakes were
significantly distinct, because water quality parameters, such as water temperature, DO, organic matter
and nitrogen compound concentrations, can shape the water bacterial and fungal community structure
and diversity [40,41]. The previous study conducted by Luby et al. [42] reported that the domination
phyla was Proteobacteria, Bacteroidetes and Actinobacteria in hot springs of Lake Magadi and Little
Magadi in Kenya. Previous reports indicated that the genus Rhizophydium sp. (relative frequency
30.98%), Apophysomyces sp. (8.43%), Allomyces sp. (6.26%) and Rhodotorula sp. (6.01%) are common
in the JINPEN reservoir, while Elaphomyces sp. (20.00%) and Mattirolomyces sp. (39.40%) were the
dominant genus in Zhoucun and Shibianyu reservoirs. The fungal communities were more diverse
than our findings [36]. The dominant fungal species in urban lakes were different to those in rivers.
For example, Mrakia sp. and Simplicillium sp. were common species in Songhua River, China [37].

Urban lakes play an important role in supplying water systems for recreation and human
activities, especially for children. In this study, we were surprised to find that several microbes were
related to human diseases, such as infectious diseases, neurogenerative and even metabolic diseases
(Table 5). Flavobacterium sp., Legionella sp. and Streptococcus sp. are harmful to people’s health [42–44].
Meanwhile, Batrachochytrium spp. was dominant in LX lake. Batrachochytrium spp. is a fungal pathogen.
A previous report by Smith et al. [38] revealed that the fungal pathogen Batrachochytrium dendrobatidis
can infect South African tadpoles and contributes to the decline of amphibians. Bandh et al. [45]
assessed the presence of human pathogenic opportunistic fungi in the lake water in Dal Lake, Kashmir,
India. The opportunistic fungal pathogens, including Aspergillus, Candida, Penicillium, Cryptococcus,
Fusarium, Rhizopus and Mucor, were isolated in pure cultures. Approximately 8% isolates were positive
for fungal infections (e.g., human skin infections). Pathogenic microorganisms re directly transmitted
when contaminated urban lake water is consumed or contacted by human. The risk of diseases in
the urban lakes increased with a higher relative abundance of pathogenic bacteria OTUs in the water
(Table 5).
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Table 5. Relative abundance of OTUs related to human diseases.

Water Bacterial Species LG LL LX Potential Disease [42–44]

Trichococcus sp. 1 10 4 Intestinal infection
Aeromonas sp. 264 143 2 Diarrhea

Brevundimonas sp. 5 77 64 Intracranial infection
Deinococcus sp. 0 85 2 Infections

Flavobacterium sp. 597 338 207 Bloodstream Infections
Kocuria sp. 1 69 2 Respiratory tract infection

Lactobacillus sp. 0 66 2 Diarrhea
Legionella sp. 10 86 3 Pulmonary infection

Pseudomonas sp. 11 324 102 Respiratory system infection
Streptococcus sp. 0 32 12 Respiratory system infection

Numbers in the table represent OTUs in LL, LX and LG urban lakes.
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classified at the genus level using the UNITE (http://unite.ut.ee) classifier database. LX, LG and LL
represent Xingqing lake, Geming lake and Lianhu lake, respectively.

To assess the relationship between the water microbial community composition of the urban
lakes and the water quality, redundancy analysis (RDA) was performed. The findings highlighted
the dramatic differences among the urban lake samples. The results of the heat map analyses and
RDA were in agreement. Both analyses revealed that the three urban lakes had distinct bacterial
communities. As shown in Figure 7, ordination triplets of first two axes (RDA1 and RDA2) explained
69.99% of the total variance, respectively. RDA results indicated that the differences in bacterial
communities were significantly correlated with the water quality parameters (Figure 7). The first axis
of RDA1 was strongly positively correlated with water DO, TP and NH4

+-N, but negatively correlated
with CODMn and TN, which explained 45.61% of the total variance (p < 0.05, Monte Carlo based on
1000 permutations). DO had a positive effect on Cyanobacteria (p < 0.05). TN and CODMn had a
positive effect on Firmicutes and Proteobacteria (p < 0.05, based on 1000 permutations). NH4

+-N had
a positive effect on Actinobacteria (p < 0.05, based on 1000 permutations). The second axis of RDA2
was strongly positively correlated with water pH, Fe and NO3

−-N, which explained 24.38% of the
total variance (p < 0.05, Monte Carlo based on 1000 permutations). NO3

−-N had a positive effect on
Armatimonadetes, Chloroflexi and Bacteroidetes (p < 0.05), which were apparently most dominant
in LL.

http://unite.ut.ee
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As shown in Figure 8, for fungal communities, the first two RDA axes of water physical-chemical
parameters explained 62.54% of the variation in fungal community structure. CODMn and TN were
positively correlated with RDA1 (p = 0.02, Monte Carlo based on 1000 permutations). RDA2 was
most strongly affected by TP, DO and ammonia nitrogen. Interestingly, previous studies suggested
that the alkalization (pH of 8.5–9.0) of the lake water favors the growth of fungi that cause humans
diseases [46]. Previous studies suggested that the water fungal community in the lakes or reservoirs
were influenced by several factors, such as water physical properties (temperature and dissolved
oxygen) [36], chemicals (chloride, sulfate and nutrients) [46] and microbial parameters (virus and
algal blooms), which drive their increasing numbers in the urban lake. Therefore, the abundance and
structure of water fungal communities particularly depend on the degree of pollution, the concentration
of organic matter and algal biomass in lake [46]. Therefore, water fungi may be a reliable bio-indicator
of lake water quality [36,46].
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Figure 8. Redundancy analysis (RDA) of water fungal communities in LX, LG and LL. RDA1 explained
41.28%, and RDA2 explained 21.26% of the total variance. LX, LG and LL represent Xingqing lake,
Geming lake and Lianhu lake, respectively. Water quality was found to be significantly correlated with
fungal community structure.

4. Conclusions

This study represents an attempt to assess the water quality and microbial community
compositions in urban lakes. Using BIOLOG and Illumina Miseq sequencing techniques, the present
study revealed diverse bacterial and fungal populations in three different urban lakes (Abbr. LL,
LG, and LX). The results clearly showed that the water quality of these three lakes has significantly
deteriorated. The highest total nitrogen (TN) was observed in LL with a value of 12.1 mg/L, which
was two times higher than that of LG (p < 0.01). The CODMn concentration was 35.4 mg/L in LL.
The highest AWCD590nm was observed in LL. The water bacterial communities in the LL and LX
had higher carbon source utilization ability. The lake water bacterial community was distributed
among 14 different phyla, including Proteobacteria, Actinobacteria, Bactroidetes, Planctomycetes,
Firmicutes, Armatimonadetes, Cyanobacteria, Chloroflexi, Verrucomicrobia, Fusobacteria, Chlorobi,
Gemmatimonadetes, Acidobacteria and Spirochaeate. Cryptomycota was particularly dominant in LL,
while the phylum Chytridiomycota and Entomophthormycota accounted for 95% in the LL and 56% in
the LG, respectively. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of
water bacterial and fungal communities among the urban lakes. Meanwhile, the profiles of microbial
communities were significantly correlated with the water quality parameters. We were also surprised
to find that several microbes were related to human diseases, such as infectious diseases. Overall,
these results represent an important advance in our understanding of the biological characteristics of
urban lake water quality and enhancement of the assessment of the urban lake ecosystem inhabitants.
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