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Abstract: We previously studied the association between fish consumption and prevalence of type
2 diabetes (T2D) in Manitoba and Ontario First Nations (FNs), Canada and found different results.
In this study, we used a difference in difference model to analyze the data. Dietary and health
data from the First Nations Food Nutrition and Environment Study, a cross-sectional study of 706
Manitoba and 1429 Ontario FNs were analyzed. The consumption of fish was estimated using a food
frequency questionnaire. Fish samples were analyzed for dichloro diphenyldichloro ethylene (DDE)
and polychlorinated biphenyls (PCBs) content. Difference in difference model results showed that
persistent organic pollutant (POP) exposure was positively associated with T2D in a dose-response
manner. Stronger positive associations were found among females (OR = 14.96 (3.72–60.11)) than in
males (OR = 2.85 (1.14–8.04)). The breakpoints for DDE and PCB intake were 2.11 ng/kg/day and
1.47 ng/kg/day, respectively. Each further 1 ng/kg/day increase in DDE and PCB intake increased
the risk of T2D with ORs 2.29 (1.26–4.17) and 1.44 (1.09–1.89), respectively. Our findings suggest that
the balance of risk and benefits associated with fish consumption is highly dependent on the regional
POP concentrations in fish.

Keywords: persistent organic pollutants; type 2 diabetes; fish consumption; difference in difference
model; long chain n-3 fatty acids; First Nations

1. Introduction

Type 2 diabetes (T2D) has become increasingly prevalent among Indigenous populations
worldwide [1–3]. In Canada, the prevalence of T2D among First Nations is 3–5 times higher
compared to the general population [4,5]. In addition, T2D has an earlier age of onset, is associated
with greater micro- and macrovascular complications, and causes higher mortality among First
Nations compared to the general Canadian population [4,5]. Lifestyle factors such as obesity,
unhealthy diet, and lack of physical activity are well-recognized risk factors for T2D. However,
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other potential risk factors such as an exposure to environmental contaminants may also contribute
to the high rates of T2D [6]. Epidemiological studies have confirmed positive associations between
exposure to certain persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs)
and dichlorodiphenyldichloroethylene (DDE), and T2D in general [7–12] and among Indigenous
populations [13–18]. First Nations were reported to be exposed to higher levels of PCBs and
DDE compared to the general Canadian population through traditional food, in particular, fish
consumption [19]. On the other hand, traditional food provides significant nutritional benefits by
contributing to the intake of essential nutrients including long chain omega-3 fatty acids (n-3 FAs) [20,21].

Fish consumption is widely promoted because of its beneficial health effects on cardiovascular
diseases and mortality [22–24]. Recent evidence suggests that consumption of fish, rich in long-chain
n-3 FAs (eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) may help prevent T2D since
their improved lipid profile, reduces insulin resistance and inflammation [25,26]. Epidemiological
studies reported contradicting results on the association between fish, n-3 FAs, and T2D. Some studies
found inverse or protective associations [27–29], no association [30], or positive association between
fish and n-3 FA intake, and T2D [31,32]. The discrepancy between the findings on the relationship
between fish, n-3 FAs, and T2D may be possibly explained by differences in fish consumption patterns
(n-3 FA content) as well as levels of contaminants present in fish [33]; however, these important
factors were not considered in the previous studies. Wallin et al. found a statistically non-significant
inverse association between fish consumption and T2D after adjustment for dietary PCBs and mercury
exposure [34]. Turyk et al. reported that inverse associations between fish and blood glucose were
stronger and statistically significant after adjustment for DDE exposure [35].

We previously reported differences in the association between fish consumption and the
prevalence of T2D in First Nations living on reserve in Manitoba and Ontario, Canada. A negative
dose–response relationship between the frequency of fish consumption and self-reported T2D was
found in First Nations in Manitoba [36], whereas a positive association was observed in First Nations
in Ontario [37]. The availability of traditional food species varies by ecozones and communities;
however, the Manitoba and Ontario First Nations generally share similar cultural backgrounds and
dietary preferences [38,39]. Demographic characteristics and other known risk factors were comparable
between First Nations at the provincial level; however, significant differences in dietary POP exposure
from fish consumption were found between Manitoba and Ontario. We hypothesized that the direction
of the association was driven by dietary POP exposure. Due to the relatively higher intake of POPs
from fish among Ontario First Nations than in Manitoba First Nations, it was thought that the adverse
association of POPs may outweigh the protective associations of fish on T2D. Since dietary POPs were
highly correlated with fish intake in the two groups of First Nations, it could be that regression analysis
does not fully control and separate their individual effects.

To test our hypothesis, we used a difference in difference (DID) model. The DID model is a
statistical method widely used to evaluate the effectiveness of health care policy [40]. It allows the
estimation of causal relationships between policy and outcome of interest using a series of observational
studies [41]. The DID is considered a powerful method since it controls for unobserved background
confounders that may influence the outcomes and thus allows for an assessment of the true impact of
a predictor of interest [40]. The DID is also used in a cross-sectional setting [42,43]. This study aims
to examine if dietary exposure to POPs may outweigh the benefits of fish on the prevalence of T2D,
which helps to interpret our previous inconsistent findings in Manitoba and Ontario First Nations.
Furthermore, we estimate the levels of dietary DDE and PCB exposure that increase the risk of T2D.

2. Methods

2.1. Manitoba and Ontario First Nations

Data from the First Nations Food Nutrition and Environment Study (FNFNES) were analyzed.
FNFNES is a cross-sectional study aimed to assess total diet and exposure to contaminants through
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traditional food consumption in First Nations adults living on reserves, south of the 60th parallel across
Canada. Detailed information about the study design is available at www.fnfnes.ca. In brief, First
Nations communities were randomly selected using a combined ecozone/cultural area framework
to warrant that the diversity in ecozones and cultural areas were represented in the sampling
strategy [38,39]. The sampling was completed in three stages: first, First Nations communities within
each ecozone were randomly selected; second, within each selected community, 125 households
were randomly sampled; and third, one adult in each household who was self-identified as being
a First Nation person living on reserve aged 19 years and older was asked to participate in the
study [38,39]. Estimation weights were calculated to obtain representative estimates of the total First
Nations population. The current study combined data from First Nations in Ontario and Manitoba.
Figure 1A,B show the geographic locations of the communities included in the survey. Participation
rates were 82% in Manitoba and 79% in Ontario. Pregnant and breastfeeding women who reported
having diabetes (n = 3) were excluded from the analyses in order to avoid potential misclassification of
gestational diabetes. The total sample included 2132 participants (706 from Manitoba and 1426 from
Ontario) aged 19 years and over.
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Ethics approvals were obtained from the Ethical Review Boards at Health Canada, the University
of Northern British Columbia, the University of Ottawa, and the Université de Montreal. In addition,
the Assembly of First Nations (AFN) Chiefs-in-Assembly passed resolutions in the support of this
research. Participation in the study was voluntary. Written consent was obtained from each individual
after an oral and written explanation of the project [38,39].

2.2. Data Collection

Household interviews were used to collect dietary data (24-h recall, a traditional food
frequency questionnaire (FFQ)) and demographic characteristics (a socio, health, and lifestyle (SHL)
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questionnaire). The detailed information has been described previously [38,39]. The traditional FFQ
consisted of 153 traditional food items in Manitoba and 150 in Ontario. Traditional food consumption
was assessed over four seasons in the past year. The SHL Questionnaire included data on age, gender,
weight, and height (measured or self-reported), physical activity, household size, education, and
employment status and diagnosis of type 2 diabetes. All individuals were asked a question: Have you
ever been told by a health care provider that you have diabetes? If participants responded “yes”, they
were further asked about the type of diabetes and how long ago they had been diagnosed with diabetes.

2.3. Fish Sampling and Contaminants Analysis

Fish samples collected for contaminant analyses were representative of all fish species consumed
by members in each community. Each community identified the most commonly consumed fish
species and those that are of the most concern from an environmental perspective. The collected
fish samples were analyzed for several POPs including total PCBs and DDE at Maxxam Analytics in
Burnaby British Columbia and ALS Global, in Burlington, Ontario.

2.4. Estimation of Fish, Dietary POPs (DDE, PCBs), and Long-Chain Omega-3 FA Intake

FFQ was used to estimate fish consumption. Daily fish intake (g/day) was calculated as follows:
the total number of days over the past year when fish consumption was reported was multiplied by the
age- and gender-specific portion size of fish species (g) reported through the 24-h recalls. To estimate
total dietary PCBs and DDE intake, the amount of PCBs and DDE (nanograms/gram) in each fish
species was multiplied by the total amount (grams) of each fish species consumed per day, summed up
the amounts of PCBs and DDE from all fish species eaten per day, and divided by the body weight of
each participant (ng/kg of body weight/day). Community-specific data of POP concentrations in fish
species were applied to estimate PCBs and DDE intake for each participant. If no community-specific
data were available, ecozone or regional contaminant data were used.

Dietary assessments were validated through correlation analysis between mercury exposure from
traditional food estimated using the FFQ and mercury concentrations in hair measured in First Nations.
The correlation was statistically significant (Pearson correlation coefficient = 0.53).

The Canadian Nutrient File was used to estimate n-3 FA concentrations in fish species [44]. The n-3
FA concentrations were assumed to be the same for the same fish species in Ontario and Manitoba.
For the purpose of the study, n-3 FAs means EPA + DHA from fish. The data are expressed as mg of
EPA + DHA per gram of raw fish.

2.5. Statistical Analyses

We use DID model to test our hypothesis. In the present study, the prevalence of T2D is the
outcome of interest. Since a positive dose–response relationship between the frequency of fish
consumption and self-reported T2D was previously found in Ontario First Nations, this cohort serves
as the treatment group (exposed to POPs through fish consumption), whereas Manitoba First Nations
serves as the comparison group (no/low exposure to POPs through fish) (Figure S1). The amount of
fish consumption was used as a second source of difference. We explored a dose–response relationship
by further separating fish consumers into two categories based on extent of intake (medium/high fish
consumers).

Preliminary analyses included the calculation of crude and standardized T2D prevalence,
proportions for categorical variables, and means with standard deviations for continuous variables.
The direct method was used to calculate the standardized prevalence of T2D, with the 2015 Canadian
population as the standard population. For this analysis, fish consumption was divided into three
categories: <5 g/day, 5–10 g/day, and >10 g/day. Logistic regression was performed using province,
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levels of fish intake and their interaction terms, with potential confounders as independent variables.
This can be seen in Equation (1).

Logit(outcome) = α + β1 ∗ON + β2 ∗ FM + β3 ∗ FH + β4 ∗ FMON + β5 ∗ FHON + γX + ε (1)

In Equation (1), α is the intercept, the exponential form of β values are the odds ratios of each
group, γX is a set of control variables, and ε is the model residual. Odds ratios (ORs) of having T2D
were calculated for Ontario First Nations and fish consumption categories. The low fish consumer
category (<5 g/d) served as a reference group. The beta (β) coefficients of main interest were β4 and
β5. The β1 captures the difference in T2D prevalence between the Ontario and Manitoba First Nations,
β2 and β3 capture the effect of fish consumption (n-3 FAs) on the prevalence of T2D, and β4 and β5, the
interaction terms, capture the effect of POPs on the prevalence of T2D. Three underlying assumptions
made in this study are (1) that n-3 FAs in fish decrease the risk of T2D; (2) that POPs from fish increase
the risk of T2D, and (3) that the associations between fish (n-3 FAs) and POP exposure with T2D are
similar in Ontario and Manitoba First Nations.

Covariates were added into the model step by step to show the relative contribution of other
risk factors and their influence on the magnitudes of β4 and β5. The control variables included in the
final model were age, sex, body mass index (BMI), physical activity, total energy intake, education,
and estimated intake of EPA + DHA, total PCBs, and total DDE. Age, BMI, total energy intake,
education, and estimated intake of EPA + DHA, total PCBs, and total DDE were used as continuous
variables. Physical inactivity and gender were used as dummy variables. The total sample size for
regression analyses included 2080 participants (1326 females and 751 males) due to missing values for
the control variables.

Segmented logistic regression was fitted to examine if the associations between dietary PCB/DDE
intake and T2D prevalence changed at different doses. The adjusted ORs associated with each increase
of 1 ng/kg/day in dietary PCB and DDE intake were reported. A forward procedure was adopted to
show the relative contribution of other risk factors and their influence on the PCB/DDE effect size and
the breakpoints. The final sets of covariates include age, sex, smoking, BMI, physical activity, education,
total energy intake, and total fish intake. The proportion of missing data was less than 5%. All statistical
analyses were performed using weighting variables in order to obtain representative estimates at the
regional level. Results with a p-value of less than 0.05 were considered statistically significant. STATA
statistical software, 14.2 (StataCorp, College Station, TX, USA) was used to perform statistical analyses.
The segmented logistic regressions were performed with R (R Core Development Team).

3. Results

The study population included 2132 First Nations participants (706 from Manitoba and 1426 from
Ontario). Table 1 summarizes demographic characteristics of Ontario and Manitoba First Nations men
and women. The crude prevalence of T2D was 22.9% in Ontario participants and 17.4% in Manitoba
First Nations. After standardization to the 2015 Canadian population, the prevalence of T2D was
higher among Manitoba participants (28.4%) compared to Ontario individuals (25%). The average age
of the study sample was lower in Manitoba (42.3 years) compared to the Ontario sample (46.5 years).
The mean BMI was comparable between men and women in both Manitoba and Ontario provinces,
ranging from 29 to 31 kg/m2. Physical activity combines moderate and vigorous groups. In Ontario,
adults tended to report more physical activity, a higher average total energy intake, and higher fruit
and vegetable consumption than Manitoba adults.
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Table 1. Descriptive characteristics of Ontario and Manitoba First Nations (FNs) participants.

Variables
Ontario Manitoba

Total Male Female Total Male Female

Sample size 1426 533 893 706 229 477
Type 2 diabetes 327 110 217 123 47 76

Type-2 diabetes weighted (%) 24.4 23.5 24.6 22.0 26.0 20.0
Type-2 diabetes standardized (%) 25.0 23.7 25.7 28.4 32.1 26.5

Age 46.5 (15.8) 47.3 (16.0) 45.9 (15.6) 42.3 (14.4) 43.1 (14.3) 42.0 (14.5)
BMI (kg/m2) 30.9 (5.9) 30.4 (5.4) 31.1(6.1) 30.3 (6.4) 29.0 (5.8) 30.9 (6.6)

Moderate to vigorous physical
activity 498 (34.9) 241 (45.2) 257 (28.8) 189 (26.8) 85 (37.1) 104 (21.8)

Smoking (%) 723 (50.7) 276 (51.8) 447 (50.1) 444 (62.9) 136 (59.4) 308 (64.6)
Years of education 11.1 (3.8) 10.5 (3.5) 11.5 (3.9) 9.8 (2.5) 9.6 (2.7) 9.9 (2.4)

Total energy (kcal/day) 2042.1
(1026.8)

2344.5
(1222.1)

1861.6
(840.4)

1979.0
(1056.0)

2315.8
(1219.5)

1817.3
(926.5)

Fruit and vegetable intake (g/day) 157.6 (234.6) 141.7 (219.7) 167.1 (242.7) 113.1 (242.8) 88.8 (161.1) 124.8 (272.9)
Household size 3.4 (2.0) 3.0 (2.0) 3.6 (2.0) 4.4 (2.6) 3.9 (2.8) 4.6 (2.5)

Values are N (%) or mean (SD) unweighted; weighted estimates on type-2 diabetes prevalence represent provincial
First Nations only and are not comparable between Manitoba and Ontario; type 2 diabetes standardized estimates
represent prevalence, standardized to the 2015 Canadian population.

Table 2 presents the average consumption of the top five fish species and the concentrations of
n-3 FAs and POPs in those fish. The most consumed fish species in both Manitoba and Ontario were
walleye, lake whitefish, lake trout, northern pike and yellow perch. On average, they contributed 79%
and 78% to the total fish intake in Manitoba and Ontario, respectively. Total fish consumption and
total n-3 FA intake were higher among Ontario participants than in Manitoba individuals. Besides
the top five consumed fish species, n-3 FA concentrations in other fish species were higher in Ontario.
In regard to POP content, all selected fish species had higher concentrations of contaminants in Ontario
than in Manitoba. In Ontario, DDE levels in the top five fish species ranged from 1.85 to 26.64 ng/g,
and PCB levels ranged from 8.98 to 63.7 ng/g. In Manitoba, neither DDE nor PCBs were detected in
walleye and yellow perch, but DDE levels ranged from 0.15 to 11.73 ng/g and PCB levels ranged from
0.03 to 9.24 ng/g in the rest of the fish species. The average concentrations of DDE and PCBs of all top
five fish species were estimated to be 5 and 36 times higher in Ontario than in Manitoba, respectively.
Lake whitefish and lake trout, compared with other commonly consumed fish species, contained the
highest levels of n-3 FAs (1.24 and 0.73 g/100g of fish, respectively).

Table 2. EPA + DHA and persistent organic pollutant (POP) concentrations in the top five fish species
in Ontario and Manitoba First Nations.

Fish Species
Ontario Manitoba

Fish
Intake

EPA +
DHA DDE PCBs Fish

Intake
EPA +
DHA DDE PCBs

g/day g/100 g ng/g ng/g g/day g/100 g ng/g ng/g

walleye 5.6 (13.5) 0.31 (0.05) 2.69 (3.36) 14.75 (19.44) 3.7 (9.1) 0.31 (0.05) - -
whitefish 2.5 (9.6) 1.24 (0.56) 5.89 (7.21) 14.56 (24.27) 2.0 (8.1) 1.24 (0.56) 1.28 (0.79) 0.21 (0.26)
lake trout 1.1 (5.6) 0.73 (0.14) 26.65 (24.32) 63.69 (83.54) 1.4 (5.9) 0.73 (0.14) 11.73 (5.76) 9.24 (2.58)

northern pike 1.7 (7.5) 0.27 (0.07) 1.85 (1.94) 8.98 (11.65) 1.0 (4.0) 0.27 (0.07) 0.15 (0.31) 0.03 (0.10)
yellow perch 0.5 (2.8) 0.25 (0.04) 3.11 (4.18) 33.18 (62.47) 0.2 (1.7) 0.25 (0.04) - -

subtotal 11.5 (28.0) 0.56 (0.42) 6.28 (11.82) 22.01 (40.49) 8.4 (18.4) 0.56 (0.42) 1.06 (2.92) 0.59 (2.21)
total 14.7 (34.1) 0.67 (0.48) 10.08 (19.62) 35.21 (68.06) 10.7 (24.5) 0.53 (0.28) 2.05 (4.37) 2.00 (5.40)

Values are mean (SD); “-”: not detected; EPA: eicosapentaenoic acid, DHA: docosahexaenoic acid, DDE:
dichlorodiphenyldichloroethylene; PCBs: polychlorinated biphenyls; unweighted estimates of fish intake.

Table 3 summarizes total fish, dietary n-3 FAs, and POP intake by three categories of fish
consumption (<5 g/d, 5–10 g/d, and >10 g/d) in First Nations men and women in Ontario and
Manitoba. Men consumed more fish and omega-3 FAs that women did in both Ontario and Manitoba.
Dietary exposure to DDE and PCBs, and n-3 FA intake was significantly higher in Ontario participants
compared to Manitoba responders.



Int. J. Environ. Res. Public Health 2018, 15, 539 7 of 19

Table 3. Dietary EPA + DHA and POP intake by three categories of fish consumption.

Variables <5 g/day 5–10 g/day >10 g/day

Ontario Mean 95% CI Mean 95% CI Mean 95% CI

Male

n 225 86 222
Total fish intake (g/day) 1.28 0.93–1.64 7.11 6.58–7.63 62.19 41.48–82.89
EPA + DHA (mg/day) 22.04 12.50–31.59 119.87 90.14–149.60 935.09 636.61–1235.36
DDE (ng/kg/day) 0.08 0.04–0.12 0.31 0.13–0.50 3.19 1.60–4.76
PCBs (ng/kg/day) 0.37 0.25–0.49 1.41 0.69–2.12 11.28 7.20–15.37

Female

n 573 113 207
Total fish intake (g/day) 0.97 0.83–1.11 6.94 6.78–7.09 39.21 27.49–50.93
EPA + DHA (mg/day) 14.65 12.00–17.31 115.24 100.57–129.90 550.63 398.00–703.28
DDE (ng/kg/day) 0.06 0.04–0.09 0.5 0.26–0.65 3.61 1.39–5.84
PCBs (ng/kg/day) 0.249 0.17–0.32 1.723 1.05–2.39 9.86 4.47–15.24

Manitoba

Male

n 104 32 93
Total fish intake (g/day) 1.61 0.66–2.57 6.9 6.29–7.50 34.4 19.74–49.07
EPA + DHA (mg/day) 6.27 2.58–9.97 28.6 21.45–35.74 195.4 72.73–318.07
DDE (ng/kg/day) 0.012 0.001–0.02 0.02 0.003–0.71 0.63 0.07–1.21
PCBs (ng/kg/day) 0.012 0.002–0.03 0.02 0.005–0.09 0.45 0.09–0.81

Female

n 346 55 76
Total fish intake (g/day) 1.31 1.08–1.54 7.02 6.75–7.29 30.85 26.92–34.78
EPA + DHA (mg/day) 5.22 4.00–6.44 31.71 27.65–35.76 183.12 144.41–221.85
DDE (ng/kg/day) 0.004 0.001–0.007 0.06 0.03–0.09 0.34 0.26–0.41
PCBs (ng/kg/day) 0.003 0.0004–0.006 0.07 0.003–0.14 0.26 0.17–0.35

EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; DDE: dichlorodiphenyldichloroethylene; PCBs:
polychlorinated biphenyls; weighted estimates.

The associations between fish consumption, dietary POPs, and T2D prevalence are shown in
Table 4. Model 1 shows the crude ORs, Model 2 was adjusted for age and gender, and Model 3 was
further adjusted for BMI, physical activity, total energy intake, smoking, and education. Overall,
the Ontario First Nations had a lower prevalence of T2D (OR = 0.53 (95% CI: 0.33–0.87) than the
Manitoba Fist Nations. Medium and high consumption of fish was associated with lower T2D
prevalence; however, the estimates were marginally or not statistically significant. The ORs of the two
interaction terms reflect the association between POPs and the prevalence of T2D, after subtracting
the association between fish intake (n-3 FAs) and T2D. Dietary POPs were positively associated with
T2D. The magnitude of ORs became more prominent after additional adjustment for risk factors across
models. In Ontario, the OR in the high fish consumers (3.53 (95% CI: 1.47–8.45)) was almost two times
higher than that in the medium fish consumers (OR = 2.22 (95% CI: 0.86–5.68)). That translates into a
nearly four-fold increase in the prevalence of T2D from low to high POP exposures. The magnitude
of the association between POPs and T2D outweighed that between fish intake (n-3 FAs) and T2D
(Figure 2). The association between frequency of fish consumption, dietary POPs, and T2D was also
tested using fish consumption as a continuous variable (Table S1) and resulted in similar conclusions
to analyses using categorical fish variables.
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Table 4. Odds ratios (ORs) of the association between frequency of fish consumption and dietary POP
exposure with type 2 diabetes prevalence (T2D) in Ontario compared to Manitoba First Nations.

Variables
Total Population Female Male

Model 1 Model 2 Model 3 Model 3 Model 3

T2D in Ontario First
Nations

0.53 **
(0.33–0.87)

0.52 **
(0.30–0.91)

0.53 *
(0.27–1.03)

0.64
(0.29–1.44)

0.32 **
(0.12–0.82)

Medium fish consumers 0.43 **
(0.22–0.84)

0.58 *
(0.31–1.09)

0.59
(0.29–1.18)

0.29 ***
(0.13–0.62)

1.45
(0.46–4.56)

Medium fish consumers
in Ontario

3.05 ***
(1.32–7.08)

2.12 *
(0.94–4.77)

2.22 *
(0.86–5.68)

3.08 **
(1.13–8.42)

1.79
(0.27–11.67)

High fish consumers in
Ontario

2.76 **
(1.25–6.09)

3.39 ***
(1.49–7.68)

3.53 ***
(1.47–8.45)

14.96 ***
(372–60.11)

2.85 **
(1.14–8.04)

n 2080 2080 2080 1329 751

T2D: type 2 diabetes; low fish consumers: <5 g/day (reference group); medium fish consumers: 5–10 g/day; high
fish consumers: >10 g/day; values are ORs (95% CI); Model 1: crude estimates; Model 2: adjusted for age and
gender; Model 3: additionally adjusted for BMI, total energy intake, physical activity, smoking, and education;
Ontario First Nations served as a treatment group and Manitoba First Nations served as a comparison (control)
group; *** p < 0.01, ** p < 0.05, * p < 0.1.

Int. J. Environ. Res. Public Health 2018, 15, x  8 of 18 

 

Model 1 Model 2 Model 3 Model 3 Model 3 

T2D in Ontario First Nations 
0.53 **  

(0.33–0.87) 
0.52 **  

(0.30–0.91) 
0.53 *  

(0.27–1.03) 
0.64  

(0.29–1.44) 
0.32 **  

(0.12–0.82) 

Medium fish consumers 
0.43 **  

|(0.22–0.84) 
0.58 *  

(0.31–1.09) 
0.59  

(0.29–1.18) 
0.29 ***  

(0.13–0.62) 
1.45  

(0.46–4.56) 
Medium fish consumers in 
Ontario 

3.05 ***  
(1.32–7.08) 

2.12 *  
(0.94–4.77) 

2.22 *  
(0.86–5.68) 

3.08 **  
(1.13–8.42) 

1.79  
(0.27–11.67) 

High fish consumers in 
Ontario 

2.76 **  
(1.25–6.09) 

3.39 ***  
(1.49–7.68) 

3.53 ***  
(1.47–8.45) 

14.96 ***  
(372–60.11) 

2.85 **  
(1.14–8.04) 

n 2080 2080 2080 1329 751 

T2D: type 2 diabetes; low fish consumers: <5 g/day (reference group); medium fish consumers: 5–10 
g/day; high fish consumers: >10 g/day; values are ORs (95% CI); Model 1: crude estimates; Model 2: 
adjusted for age and gender; Model 3: additionally adjusted for BMI, total energy intake, physical 
activity, smoking, and education; Ontario First Nations served as a treatment group and Manitoba 
First Nations served as a comparison (control) group; *** p < 0.01, ** p < 0.05, * p < 0.1. 

 
Figure 2. The prevalence of type 2 diabetes by categories of fish intake in Manitoba and Ontario First 
Nations males and females. 

Effect estimates were also examined in fully adjusted sex-stratified models (Table 4). A  
dose–response relationship for fish consumption was statistically significant in females, but not in 
males. In females, medium and high fish consumption showed statistically significant negative 
associations with T2D with OR = 0.29 (0.13–0.62) and OR = 0.16 (95% CI: 0.04–0.61), respectively. This 
translates into a nearly 80% decrease in the prevalence of T2D in high-fish-consumer, compared to 
low-fish-consumer, females. In males, the point estimate of ORs decreased from 1.45 to 0.99 from 
medium to high fish consumers but was not statistically significant. Dietary POP exposure was 
positively associated with the prevalence of T2D in both First Nations females and males. In females, 
the magnitude of the association in high fish consumers was about five times higher than that in 
medium fish consumers ((OR = 14.96 (95% CI: 3.72–60.11) and OR = 3.08 (95% CI: 1.13–8.42), 
respectively). This indicates that high exposure to dietary POPs resulted in a 15-fold increase in the 
prevalence of T2D compared to the low exposure to dietary POPs in First Nations females. In males, 
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Nations males and females.

Effect estimates were also examined in fully adjusted sex-stratified models (Table 4).
A dose–response relationship for fish consumption was statistically significant in females, but not
in males. In females, medium and high fish consumption showed statistically significant negative
associations with T2D with OR = 0.29 (0.13–0.62) and OR = 0.16 (95% CI: 0.04–0.61), respectively.
This translates into a nearly 80% decrease in the prevalence of T2D in high-fish-consumer, compared
to low-fish-consumer, females. In males, the point estimate of ORs decreased from 1.45 to 0.99 from
medium to high fish consumers but was not statistically significant. Dietary POP exposure was
positively associated with the prevalence of T2D in both First Nations females and males. In females,
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the magnitude of the association in high fish consumers was about five times higher than that
in medium fish consumers ((OR = 14.96 (95% CI: 3.72–60.11) and OR = 3.08 (95% CI: 1.13–8.42),
respectively). This indicates that high exposure to dietary POPs resulted in a 15-fold increase in the
prevalence of T2D compared to the low exposure to dietary POPs in First Nations females. In males,
ORs increased from 1.79 (95% CI: 0.27–11.67) in the medium fish consumers to 2.85 (95%CI: 1.14–8.04)
in the high fish consumers, in which the estimate was statistically significant. Thus, the effect of dietary
POP exposure on the prevalence of T2D in males was lower than that in females (Figure 2). Gender
differences in the association of dietary POPs with the prevalence of T2D in Ontario compared to
Manitoba were examined using three-way interaction terms (sex, fish consumption, and location),
which supported a stronger association of T2D with high vs. low fish consumers in Ontario for females
compared with males (Table S2). Associations of T2D with medium vs. low fish consumers in Ontario
did not differ significantly by sex.

The ORs of T2D associated with each 1 ng/kg/day in dietary PCB/DDE intake are shown in
Table 5. Segmented logistic regressions with one breakpoint were fitted, and the identified breakpoints
and slopes (i.e., ORs) before and after the breakpoints are shown for PCB and DDE separately.
The breakpoint for DDE was around 2.11 ng/kg/day, before which, no significant increase in the
prevalence of T2D was found, and after which, each 1 ng/kg/day increase in dietary PCB intake was
associated with the OR = 2.29 (95% CI: 1.26–4.17) increase in the prevalence of T2D. The corresponding
estimates for PCB were as follows: the breakpoint was 1.47 ng/kg/day, and each further 1 ng/kg/day
increase was associated with the OR = 1.44 (95% CI: 1.09–1.89) increase in the prevalence of T2D.

Table 5. Segmented logistic regression of the association between dietary DDE/PCB exposure and T2D
in Manitoba and Ontario First Nations *.

DDE Intake PCB Intake

Slope 1 (<BP) BP Slope 2 (>BP) Slope 1 (<BP) BP Slope 2 (>BP)

OR 95% CI ng/kg/day SE OR 95% CI OR 95% CI ng/kg/day SE OR 95% CI
1.03 0.99–1.07 2.11 1.53 2.29 1.26–4.17 1.00 0.96–1.03 1.47 1.95 1.44 1.09–1.89

DDE: dichlorodiphenyldichloroethylene; PCBs: polychlorinated biphenyls; T2D: type 2 diabetes; BP: breakpoint; OR:
odds ratio; CI: confidence interval; SE: standard error; OR measures the odds ratio of having T2D per 1 ng/kg/day
change in DDE/PCB intake from fish; * Model was adjusted for age, gender, body mass index, smoking, physical
activity, total energy, education, and total fish intake.

Furthermore, we calculated the amounts of daily fish consumption (g/day) containing the
concentrations of DDE and PCBs below the estimated breakpoints in Ontario and Manitoba separately
(Figures 3 and 4). The estimates are presented for the top five fish species, which constituted about 80%
to the total fish intake. A body weight of 70 kg was used for the calculations. In Manitoba, only three
fish species are presented since DDE/PCBs were not detected in two out of the five most consumed
fish species (walleye and yellow perch) (Figure 4). These quantities of fish could be recommended
as the maximum daily intake in order to prevent exceeding the DDE/PCB breakpoint exposure.
The estimated amounts of daily intake of the top five fish species were lower in Ontario than in
Manitoba due to significantly higher concentrations of DDE/PCBs in fish species. In Ontario, the
estimated max daily fish consumption ranged from 5.5 (lake trout) to 79.8 g/day (northern pike) with
respect to DDE exposure, and from 1.6 g/day (lake trout) to 11.4 ((northern pike) with respect to
PCB exposure (Figure 3). In Manitoba, amounts of lake trout and whitefish that contain DDE/PCB
breakpoint concentrations were 12.6 g/day and 116.3 g/day regarding DDE, and 11.1 g/day and
487.1 g/day regarding PCB exposure, respectively. In other fish species (northern pike, walleye, and
yellow perch), the concentrations of DDE and PCBs were negligible or not detected. Overall, average
daily consumptions of the top five fish species in Ontario and Manitoba First Nations were below the
estimated amounts (Figures 3 and 4).

The proportions of individuals with total DDE and PCB intake exceeding the estimated breakpoint
exposure were 2.0% and 5.2% in Manitoba, and 9.7% and 27.9% in Ontario, respectively.
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4. Discussion

Using the DID analysis, this study examined if relatively high POP exposure from fish may
outweigh the protective associations of fish (n-3 FAs) on T2D in Ontario and Manitoba First Nations.
Additionally, we examined the non-linear relationship between dietary PCBs and DDE exposure and
T2D prevalence and estimated the threshold of daily dietary DDE and PCB exposure that increase
the risk of T2D. The results show that dietary POPs were positively associated with the prevalence of
T2D in First Nations living in Ontario. Stronger positive associations were observed among females
compared to males. Higher fish (n-3 FAs) consumption was associated with a lower prevalence of T2D
in Manitoba First Nations. When the data were stratified by gender analysis, statistically significant
protective associations were found among females, but not in males. The breakpoints for DDE and PCB
intake were 2.11 ng/kg/day and 1.47 ng/kg/day, respectively. Each further 1 ng/kg/day increase in
dietary DDE/PCB intake increased the risk of T2D with OR = 2.29 (1.26–4.17) for DDE and OR = 1.44
(1.09–1.89) for PCBs, respectively. Based on these estimates, we calculated the approximate amount
of fish consumption (by species) that could be recommended as maximum daily intake to prevent
exceeding the DDE/PCB breakpoint exposure.

Our findings on the positive relationships between POPs and T2D are consistent with a number of
previous cross-sectional studies [10,11,13,15,35,42]. Lee et al. found a strong dose–response relationship
between serum concentrations of six POPs, including DDE and PCBs, and T2D in a study among the US
general population [45]. In a Native-American population, a significant association between diabetes
and serum PCBs (OR = 3.29) and DDE (OR = 6.4) at the highest versus the lowest tertile was observed
by [46]. Similar associations were reported by a study carried out among Inuit population [17] and First
Nations in Canada [13]. Cross-sectional evidence on the relationship between serum POPs and T2D
was also supported by prospective studies [11,47,48]. Former epidemiological studies investigated
serum POP concentrations in relation to T2D prevalence, whereas we assessed dietary exposure
to POPs via locally harvested fish intake. Since fish is considered the main source of exposure to
contaminants among Aboriginal population [19], dietary POP intake from fish is a good indicator of
exposure. Positive correlations between frequency of wild food consumption and serum POP levels
were found in First Nations communities [19,49]. Fish consumption has been positively correlated
with serum POP levels in other studies [11,13,50]. In the present study, traditionally harvested fish
was estimated to be the main source of DDE and PCBs among all reported traditional foods [38,39].

In addition to epidemiological findings, experimental studies provide evidence of a causal
relationship between POPs and insulin resistance [51]. Recent animal studies observed that chronic
exposure to low doses of an environmentally relevant mixture of POPs via salmon oil consumption
induced abdominal obesity, dyslipidemia, glucose intolerance, insulin resistance, and hepatic
steatosis [52]. The in vitro experiment showed that treatment of differentiated adipocytes with
nanomolar concentrations of POP mixtures impaired insulin-stimulated glucose uptake [52,53].
Several possible biological mechanisms have been proposed to explain the increased risk of T2D
with exposure to POPs. Low-dose chronic exposure to POPs with endocrine-disrupting properties
exhibits a diabetogenic effect through impairment of glucose and lipid regulations [54,55]. POPs may
cause mitochondrial dysfunction via mutations in mitochondrial DNA and in nuclear genes, and
through glutathione (GSH) depletion [56,57]. Mitochondrial dysfunction, in turn, plays a crucial role
in chronic low-grade inflammation and may lead to ectopic fat accumulation in liver, muscle, and
pancreas. Low-grade inflammation in adipose tissue is suggested to play an important role in the
development of insulin resistance and T2D [56].

Several epidemiological studies reported that consumption of fish and n-3 FAs may prevent
T2D [27,58,59], insulin resistance, glucose tolerance, and metabolic syndrome [60,61]. Nevertheless,
systematic meta-analyses found geographical differences in the relationship between fish, dietary
n-3 FA intake, and T2D [62]. Lee and Jacobs (2010) suggested that the direction of the associations
between fish consumption and T2D may be driven by concentrations of beneficial nutrients (n-3 FAs)
and harmful chemicals present in fish [33], which significantly vary by fish species and geographical
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location [63]. Additionally, POPs are known to be endocrine disrupting chemicals [64], with their
hormonal effects starting to appear at low doses and diminishing when exposure increases [65].
On the other hand, the beneficial effect of fish (n-3 FAs) shows linear dose–response relations. Thus,
the beneficial effects of fish on T2D may outweigh the harmful effects of POPs in the populations
with relatively high fish consumption [66]. In contrast, in populations with low fish consumption, the
beneficial effects of fish (n-3 FAs) might not be sufficient to outweigh the detrimental effects of POPs [66].

The balance of health benefits and potential risk of fish consumption have not been fully
characterized. Several studies have quantified the risk and benefits of fish consumption to develop
dietary recommendations. Many of those have focused on exposure to mercury only [67–70], while
other studies have considered several POPs [71–73]. The relations between environmental chemicals
and n-3 FAs with respect to coronary heart disease and cancer have been studied [74]. However,
limited data are available on the risk and benefit associated with fish or n-3 FAs and POP exposure on
T2D. Turyk et al. (2015) evaluated the joint effects of POPs and fish consumption on blood glucose
in individuals with and without diabetes [35]. They found that consumption of total and saltwater
fish was inversely associated with blood glucose, and the associations were more prominent after
additional adjustment for DDE exposure. Additionally, Great Lake sport-caught fish (GLSCF) meals
were inversely associated with blood glucose only after adjustment for DDE exposure, whereas positive
associations of DDE and PCBs with blood glucose were strengthened after controlling for GLSCF meals.
The authors emphasized the importance of adjusting for both fish intake and POP exposure in studies
of populations consuming contaminated fish [35]. Christensen et al. (2016) examined cross-sectional
associations between endocrine disorders (i.e., diabetes), fish consumption habits, and biomarkers
among older male anglers in Wisconsin. The authors suggested that the effects of fish consumption
on the risk for endocrine outcomes depend on the balance of the contaminants and nutrients [75].
In a population-based cohort study, Wallin et al. found no association between fish consumption and
incidence of T2D. However, after additional adjustment for dietary PCB and mercury exposure, a
statistically non-significant inverse association was observed between fish intake and the risk of T2D.
The authors suggested that the beneficial effect of fish may be attenuated by the detrimental effect of
POPs. Therefore, the net effect of fish consumption on T2D may depend on POP content in fish [34].

Gender differences in the relationship between certain POPs and diabetes were observed in other
similar studies [7,48,76,77]. Rylander et al. found a strong positive association between diabetes and
serum DDE levels in women only, whereas, in men, a positive association between PCB-153 and
diabetes was observed [76]. In a prospective cohort study, serum PCB levels were positively associated
with diabetes in women, but not in men [48]. In a study carried out in Anniston, Alabama, a city with
a history of PCB manufacturing (1929–1971), adjusted ORs for the prevalence of diabetes in the highest
versus the lowest quintile of serum PCBs was 2.8 in the total population, and 4.9 for women. No
association was observed in men. Similarly, elevated serum DDE levels were associated with diabetes
in women, but not in men [7]. The possible explanation of gender differences in the POP associations
with diabetes may be differences in body fat composition. Women tend to have a higher proportion of
body fat than men, with consequent greater accumulation and storage of lipophilic chemicals in adipose
tissue. Additionally, several POPs are well-known endocrine-disrupting chemicals (EDCs) affecting
the activity of estrogen, a hormone involved in the homeostasis of glucose and lipid metabolism [54].
Gender differences in the relationship between fish consumption and T2D have been observed: the
authors of [59] found an inverse association between fish intake and T2D in women only.

The discrepancies in our findings reported in the previous studies in two groups of First Nations
living in Manitoba and Ontario reflect differences in contaminant levels in fish species [36,37]. In fact,
the concentrations of total PCBs and DDE in the most consumed fish species were estimated to be
significantly higher in Ontario than in Manitoba. Consequently, dietary intake of PCBs and DDE in
Ontario First Nations was much higher compared to Manitoba First Nations. Thus, elevated levels
of POPs in fish diminish the beneficial effects of n-3 FAs on T2D. Significant variation in the levels of
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environmental contaminants in fish species between regions and within the same region were reported
by other studies [69,78].

The average concentration of n-3 FAs in all fish species consumed by First Nations was higher in
Ontario compared to Manitoba. Thus, there were background differences in n-3 FA intake between
Ontario and Manitoba First Nations, with the higher n-3 FA intake estimated to be in the Ontario
population. This may suggest that our estimates of the association between POPs and T2D may
be underestimated.

The protective effects of fish consumption on T2D were attributed to n-3 FAs based on evidence
from epidemiological studies as well as our finding in Ontario and Manitoba First Nations. Besides
n-3 FAs, fish contains other beneficial nutrients, such as high-quality protein, vitamin D, and selenium,
which may also contribute to the protective effect of fish on T2D [79]; nevertheless, the results are still
inconsistent [80,81]. Low levels of vitamin D were associated with greater insulin resistance, impaired
beta-cell function, and a greater prevalence of metabolic syndrome in First Nations in Canada [82],
whereas a study among Inuit in Greenland did not support a positive association between vitamin D
levels and the risk of T2D [83].

There are several strengths of this study. First, the sample is large and representative of First
Nations living on reserve across various ecological zones. Second, POP concentrations in locally
harvested fish were measured in this study. The individual total dietary PCB and DDE intake was
calculated based on community-specific data of POP content in fish species. Third, the difference in
difference approach provides more strength in causal inference compared to other statistical methods
when using observational study data. Finally, we found a strong dose–response relationship between
dietary exposure to POPs, fish intake, and T2D.

This study has some limitations. First, the cross-sectional design of the study precludes us from
asserting a causal relationship between POPs and T2D. In a cross-sectional setting, there is a risk
of inverse causation. To examine if individuals diagnosed with T2D tend to change their diets and
lifestyles, we performed sensitivity analyses. First, we compared the dietary intake and lifestyle habits
between participants recently diagnosed with T2D (0–5 years) and individuals who had had T2D
for a longer period of time (>5 years). The results showed that there were no statistically significant
differences in dietary and lifestyle characteristics between the two groups in both Ontario and Manitoba
First Nations [36,37]. Additionally, using data on self-reported dieting status, we examined whether
dieting (i.e., limiting their caloric intake in order to lose weight) and non-dieting individuals with and
without T2D differed by macronutrient intakes. This analysis found that macronutrient intakes were
comparable between groups of First Nations in Manitoba and Ontario [36,37].

Second, given that data on the prevalence of T2D in the FNFNES were self-reported, we validated
the data by comparing our estimates with those estimates reported by the First Nations Regional
Health Survey, 2008–2010 (RHS) collected over the similar period of time [5]. The prevalence of
diabetes in Manitoba and Ontario First Nations reported by the FNFNES was 22% and 24%, which
was similar to the 21% and 21.6% reported by the RHS, respectively [36,37]. This evidence suggests
that the prevalence rate of T2D reported in this study should be a reasonable estimate.

Third, dietary POP exposure and n-3 FA intake were calculated from the same questionnaire
information on fish intake, which can result in collinearity between variables. Dietary POP intake was
estimated using community-specific data on POP content in fish species collected locally. The measured
POP concentrations significantly vary between fish species and within species sampled from different
regions. In contrast, only the n-3 FA concentration reported in the Canadian Nutrient File for each fish
species was used for the estimation. Therefore, the risk of collinearity between POP with EPA + DHA
and fish intake should be significantly decreased.

Finally, there are limitations of the DID methods. First, the DID method assumes that, in the
absence of the treatment (dietary POP exposure in this study), the average outcomes for the treated
and control groups would have followed parallel trends. In this study, the corresponding assumption
is that the associations between fish (n-3 FA) intake and T2D are similar in Manitoba and Ontario First
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Nations. However, we cannot test this assumption due to the cross-sectional nature of the survey.
Second, the DID analysis requires the composition of population in the treatment and control groups
before and after intervention (high vs. low fish intake in the current study) to be stable. We found that
participants from Ontario and Manitoba were not the same in terms of age, gender, and the amounts
and species of fish consumed, and we used multivariate regressions to adjust for the effects of these
confounding factors.

5. Conclusions

Our findings suggest that relatively high dietary exposure to POPs such as PCBs and DDE may
outweigh the beneficial associations between fish and T2D. This helps to explain the inconsistent
findings between previous Ontario and Manitoba studies. Gender differences were found with stronger
positive associations between dietary POP exposure and T2D prevalence among females. Furthermore,
we were able to estimate the threshold of daily dietary DDE and PCB exposure that increase the risk of
T2D. Potential risks or benefits associated with fish consumption were affected by regional differences
in POP concentrations in traditionally harvested fish. Thus, dietary advice and guidelines should be
tailored to reflect the regional differences.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/3/539/s1,
Figure S1: Dietary POP exposure (DDE+PCBs) by fish consumption categories in Ontario and Manitoba First
Nations, Table S1: ORs of the association between fish consumption (continuous) and dietary POPs exposure
and prevalence of type 2 diabetes in Ontario and Manitoba First Nations, Table S2: Gender differences of the
association between frequency of fish consumption and dietary POPs exposure and prevalence of type 2 diabetes
using 3-way interaction.
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