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Abstract: Extremely high fine particulate matter (PM2.5) concentration has been a topic of special
concern in recent years because of its important and sensitive relation with health risks. However,
many previous PM2.5 exposure assessments have practical limitations, due to the assumption that
population distribution or air pollution levels are spatially stationary and temporally constant
and people move within regions of generally the same air quality throughout a day or other time
periods. To deal with this challenge, we propose a novel method to achieve the real-time estimation
of population exposure to PM2.5 in China by integrating mobile-phone locating-request (MPL)
big data and station-based PM2.5 observations. Nationwide experiments show that the proposed
method can yield the estimation of population exposure to PM2.5 concentrations and cumulative
inhaled PM2.5 masses with a 3-h updating frequency. Compared with the census-based method,
it introduced the dynamics of population distribution into the exposure estimation, thereby providing
an improved way to better assess the population exposure to PM2.5 at different temporal scales.
Additionally, the proposed method and dataset can be easily extended to estimate other ambient
pollutant exposures such as PM10, O3, SO2, and NO2, and may hold potential utilities in supporting
the environmental exposure assessment and related policy-driven environmental actions.

Keywords: air pollution exposure; human mobility; mobile phone data; dynamic assessment

1. Introduction

Air pollutants, especially fine particulate matters such as PM2.5 (particles with an aerodynamic
diameter less than 2.5 µm), have been the focus of increasing public concern because of its strong
relation with health risks [1,2]. Numerous epidemiologic studies have established robust associations
between long-term exposure to PM2.5 and premature mortality associated with various health
conditions—such as heart disease, cardiovascular and respiratory diseases, and lung cancer—that
substantially reduce life expectancy [2–7]. With the unprecedented economic development and
urbanization over the past three decades, the severe and widespread PM2.5 pollution has been one
of the biggest health threats in China [8,9]. The Ministry of Environmental Protection reported
that only eight of the 74 monitored cities meet China’s ambient air quality standards (annual mean:
35 µg/m3; and 24-h mean: 75 µg/m3) in 2014 [10], and the number of cities was only three in 2013 [11].
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The country environmental analysis report from the Asian Development Bank shows that only <1% of
500 largest cities in China could meet the air quality guidance [12] (annual mean: 10 µg/m3; and 24-h
mean: 25 µg/m3) suggested by the World Health Organization (WHO) [13].

Numerous studies have attempted to estimate ground PM2.5 concentration levels over the past
decade. As ground monitoring stations provide temporally continuous records of air pollutant
concentrations, the most straightforward method applied in previous researches is using the
station-based PM2.5 observations directly to interpolate point- or surface-based PM2.5 concentration
levels [14,15], thereby offering the near real-time estimations of PM2.5 pollution levels from local to
regional scales. However, these stations are always limited in number and unevenly distributed,
resulting in potential biases from interpolating local point-based measurements to surface-based
estimations at a large spatial scale. Fortunately, the satellite-derived atmospheric aerosol optical
depth (AOD) [16–18] has greatly advanced our understanding of spatially- and temporally- explicit
changes of PM2.5 concentrations at both regional and global scales. Over the past decade, a number
of pioneering works have been devoted to quantifying the relationship between satellite-based AOD
retrievals and ground-measured PM2.5 concentrations. Here we categorize them into three major
groups, (i) the chemical transport models. This type of models is based on characteristics of the
vertical distribution and dispersal of aerosols, and it can further integrate aerosols’ components and
the effects of other pollutants to predict ground-level PM2.5 concentrations. For example, Liu et
al. [19] coupled the global atmospheric chemistry model (GEOS-CHEM) with AOD retrieved by the
Multiangle Imaging Spectroradiometer (MISR) to map annual mean ground-level PM2.5 concentrations
over the contiguous United States. By simulating factors that affect the relation between AOD
and PM2.5, van Donkelaar et al. [17] estimated a global field of surface PM2.5 concentrations with
the AOD retrieved from both the Moderate-resolution Imaging Spectroradiometer (MODIS) and
MISR observations. (ii) The semi-empirical models. This type of models is generally based on the
modeling of the AOD-PM2.5 relationships by incorporating environmental factors. For example, several
semi-empirical models have been developed ranging from simple linear relationships to complex
nonlinear relationships involving meteorological and geographic variables [20,21]. (iii) The statistical
regression models. This type of models is based on statistical regressions by regarding ground-based
PM2.5 measurements as the dependent variables, and the satellite-based AOD retrievals and other
factors including topography, land cover/use types, humidity, temperature, wind speed, wind
direction, vertical visibility, and the height of boundary layer, etc., as the independent variables [22–27].
Despite the integration of satellite- and station-based observations has proven to be useful in improving
the retrieval accuracy of PM2.5 concentrations, the available datasets are still with a coarse temporal
resolution from daily, to monthly or yearly scales, rather than depicting the spatiotemporal variation
of PM2.5 concentrations within a day.

Another critical issue relating to the estimation of population exposure to PM2.5 pollutants is
that most of existing exposure assessments always regard population as static, without considering
the temporal dynamics of population distribution [14,28]. Currently, demographic data based on
administrative units are the most widely used data source for estimating air pollution exposure risks.
It provides accurate population census information over a certain time period based on the smallest
administrative unit (i.e., census block) and often includes kinds of socio-economic attributes such as age,
gender, education, and income. However, such kind of data has limitations for estimating the real-time
exposure risks to air pollutants since it just regards population as a homogeneous entity for each census
block without diving into the spatial heterogeneity of population distribution. More importantly,
it does not consider spatiotemporal dynamics of the human mobility due to the very low updating
frequency. In contrast, recent studies have demonstrated the necessity of considering spatiotemporal
variability of air pollution and human mobility in exposure assessments [14,29–31]. That is because,
first, air pollution concentrations are not only spatially varied but also changing across temporal scales
from minutes to hours, and second, population exposure to air pollutants is actually determined by
both the specific location and how much time spent on that location, rather than the assumption that
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people move within regions of generally the same air quality throughout a day or other time periods.
Thus, how to obtain real-time estimations of population exposure to PM2.5 concentrations is urgently
needed for instant or short-time assessments (e.g., hourly or short-term PM2.5 concentrations are more
relevant to vulnerable population groups than the daily or monthly concentrations on average [14])
and cumulative exposure effects (the aggregation of short-term assessments is more robust than the
monthly or annual average).

Addressing these ubiquitous challenges, more information on human space-time location is
required. Some of previous studies have tried to use surveying data, such as travel questionnaire
surveys, personal GPS or smart sensor based devices [14,31,32] to delineate how an individual move
in the city during his/her daily life. For example, Lu and Fang [32] used the GPS-equipped portable
air sensor to measure air pollutant intakes in individual’s immediate surroundings and space-time
movement trajectories in Huston, Texas. However, their high expenses and limited samples within
local areas barricade the data availability. The alternative approaches are to use mathematical models to
simulate population mobility patterns, such as gravity model [33] and radiation model [34]. This kind
of methods allow us to draw more quantitative conclusions from a larger population size, but their
results are only valid for situations with similar initial parameters in the simulation process [29].
Recently, Park and Kwan [14] simulated 80 possible daily movement trajectories based on daily trip
distribution data from the Congestion Management Program Report to reflect the actual commuting
tendency of Los Angeles (USA) county residents, and estimated exposure risks by considering the
interactions between air pollution and individuals’ location. However, such kind of studies are
still constrained to limited spatial and temporal scales. With the rapid growth of mobile internet,
especially the location-based services of applications (apps) in the smartphones, it makes us possible
to access direct spatiotemporal records of human activities [35,36]. Additionally, the high correlation
between the mobile-phone locating-request records and the spatiotemporal characteristics of human
activities has been revealed by many studies [37–39]. A growing number of studies have started to
use mobile phone data in the field of environmental exposure assessments [29,30,40]. For example,
Dewulf et al. [29] collected mobile phone data of approximately five million mobile users in Belgium to
calculate the daily exposure to NO2. Gariazzo et al. [30] conducted a dynamic city-wide air pollution
(NO2, O3, and PM2.5) exposure assessment by using time resolved population distributions derived
from mobile phone traffic data, and modelled air pollutants concentrations. Yu et al. [40] combined cell
phone location data from 9886 SIMcard IDs in Shenzhen, China to assess the misclassification errors
in air pollution exposure estimation. Although all these pioneering studies highlight the promising
advantages of incorporating population dynamics in estimating air pollution exposure, the available
datasets are still limited to sample sizes and spatiotemporal scales due to the cost and time for collecting
fine-resolution data, data privacy and confidentiality issues, and computational complexities [41].

To investigate the nationwide PM2.5 concentration risks for population in China, spatially explicit
and temporally continuous studies are needed to detect hotspots, estimate vulnerability, and assess
population exposure at finer temporal scales. In this paper, we propose a novel approach to achieve
the real-time estimation of population exposure to PM2.5 by integrating mobile-phone locating-request
(MPL) big data and station-based PM2.5 observations. Compared with previous studies regarding
ambient pollution exposure assessments, it has the following highlights. First, the proposed method
introduces the dynamics of population distribution into the nationwide exposure estimation, thereby
providing an improved way to better assess the actual exposure risk to PM2.5 at different temporal
scales. Second, to the best of our knowledge, it is the first time to provide the real-time estimation of
nationwide population exposure to PM2.5 at pixel-based level (~1.2 km) in China. Third, the proposed
method and dataset can be easily extended to estimate other ambient pollutant exposures such as
PM10, O3, SO2, and NO2, and may hold potential utilities in supporting the environmental exposure
assessments and related policy-driven environmental actions.
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2. Materials and Methods

2.1. Ground-Station PM2.5 Measurements

Hourly ground-station PM2.5 measurements from 1 March to 31 March 2016 were collected
from the official website of the China Environmental Monitoring Center (http://113.108.142.147:
20035/emcpublish/). According to the Chinese National Ambient Air Quality Standard (CNAAQS),
the station-based PM2.5 data in China were obtained using the tapered element oscillating microbalance
method (TEOM) or the beta-attenuation method, combined with the periodic calibration. In this study,
we used a total of 1465 monitoring stations (Figure 1) that have been established in all provinces for
monitoring ambient air quality.

Int. J. Environ. Res. Public Health 2018, 15 4 of 14 

 

(http://113.108.142.147:20035/emcpublish/). According to the Chinese National Ambient Air Quality 

Standard (CNAAQS), the station-based PM2.5 data in China were obtained using the tapered element 

oscillating microbalance method (TEOM) or the beta-attenuation method, combined with the 

periodic calibration. In this study, we used a total of 1465 monitoring stations (Figure 1) that have 

been established in all provinces for monitoring ambient air quality. 

 

Figure 1. Spatial distribution of nationwide monitoring stations for PM2.5 concentrations (red dots) 

and meteorological stations (black triangles) in China. 

2.2. Ground-Station Meteorological Measurements 

Ground-station meteorological variables, including air temperature (AT), surface wind speed 

(WS), and horizontal visibility (VIS) were used from Global Telecommunication System (GTS) 

established by World Meteorological Organization (https://rda.ucar.edu/datasets/ds461.0/). In this 

study, the 3-h measurements (from 2:00 a.m. to 23:00 p.m. local time) from 411 stations in China and 

128 stations within the 0.01-degree buffer zones around the boundary of China (Figure 1) were 

collected from 1 March to 31 March 2016. 

2.3. Mobile Phone Locating-Request Big Data 

By retrieving real-time locating requests from mobile phone users’ activities in apps, the mobile 

phone locating-request (MPL) data was used in this study to monitor human movement. The MPL 

data are from Tencent big data platform in China, which is one of the largest Internet service 

providers both nationwide and worldwide. All of the MPL data are produced by active smartphone 

users using apps, which have been enabled to report real-time locations from the mobile devices. Due 

to the widespread usage of Tencent apps (e.g., WeChat, QQ, Tencent Map, etc.) and their location-

based services, the daily locating records have reached 36 billion from more than 450 million users 

globally in 2016 [42]. Thus, the MPL big data can be represented as an indicator to characterize human 

activities and population distribution in a fine spatiotemporal scale. The Tencent MPL dataset used 

in this study was collected from 1 March to 31 March 2016 via the application program interface (API) 
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and meteorological stations (black triangles) in China.

2.2. Ground-Station Meteorological Measurements

Ground-station meteorological variables, including air temperature (AT), surface wind speed (WS),
and horizontal visibility (VIS) were used from Global Telecommunication System (GTS) established by
World Meteorological Organization (https://rda.ucar.edu/datasets/ds461.0/). In this study, the 3-h
measurements (from 2:00 a.m. to 23:00 p.m. local time) from 411 stations in China and 128 stations
within the 0.01-degree buffer zones around the boundary of China (Figure 1) were collected from 1
March to 31 March 2016.

2.3. Mobile Phone Locating-Request Big Data

By retrieving real-time locating requests from mobile phone users’ activities in apps, the mobile
phone locating-request (MPL) data was used in this study to monitor human movement. The MPL
data are from Tencent big data platform in China, which is one of the largest Internet service providers
both nationwide and worldwide. All of the MPL data are produced by active smartphone users using
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apps, which have been enabled to report real-time locations from the mobile devices. Due to the
widespread usage of Tencent apps (e.g., WeChat, QQ, Tencent Map, etc.) and their location-based
services, the daily locating records have reached 36 billion from more than 450 million users globally in
2016 [42]. Thus, the MPL big data can be represented as an indicator to characterize human activities
and population distribution in a fine spatiotemporal scale. The Tencent MPL dataset used in this
study was collected from 1 March to 31 March 2016 via the application program interface (API) from
the Tencent big data platform (http://heat.qq.com). The original Tencent MPL dataset was recorded
by aggregating the real-time locations of active apps users every five minutes within a mesh grid at
a spatial resolution of 30 arc-second (~1.2 km). All the information regarding users’ identities and
privacies were removed in this publicly available dataset.

2.4. Population Census Data

The latest city-level population census of China in 2014 obtained from the national scientific data
sharing platform for population and health (http://www.ncmi.cn/) was used in this study. This dataset
was established and maintained by infectious disease network reporting system, and it was derived
based on population census released by the State Statistics Bureau. It collected all population census
including permanent resident and registered resident at the county level by gender and age group
since 2004.

2.5. Estimation of Spatiotemporal Continuous PM2.5 Concentrations

Due to the difference in geographic locations between PM2.5 monitoring stations and
meteorological stations, all datasets were processed to be consistent in spatial and temporal domains.
The meteorological variables were first interpolated by ordinary Kriging method [43] to obtain data
that covering the entire study area with a spatial resolution of 30 arc-second (~1.2 km). To mitigate
the interpolation biases, we averaged all meteorological observations with a 30 arc-second search
radius around each PM2.5 monitoring station, and then assigned the result to the corresponding
PM2.5 monitoring station. In addition, the widely used Geographically Weighted Regression (GWR)
model [44] with adaptive Gaussian bandwidth was adopted to build the statistical relationship between
meteorological variables and PM2.5 concentrations. Specifically, we grouped all variables within
a month into 8 time points (i.e., from 2:00 a.m., 5:00 a.m., . . . , 23:00 p.m.), and then developed 8 GWR
models for each time point in this study as follows:

PM2.5,i,t = β0,i,t + β1,i,tVISi,t + β2,i,t ATi,t + β3,i,tWSi,t (1)

where PM2.5,i,t denotes the PM2.5 concentration at the location i at time t, VISi,t, ATi,t, and WSi,t denote
the visibility (m), air temperature (◦C), and surface wind speed (m/s), respectively, at location i at time
t. β0,i,t, β1,i,t, β2,i,t, and β3,i,t are corresponding regression coefficients at location i at time t.

A 10-fold validation analysis [45] was adopted to evaluate the modeling performance by
comparing the estimated and measured PM2.5 concentrations (details can be found in Supplementary
Materials). With the iterative cross validations, the optimal coefficients in each time point were
retrieved to interpolate the entire study areas with a spatial resolution of 30 arc-second (~1.2 km),
and then were used to estimate gridded PM2.5 concentrations.

2.6. Estimation of Real-Time Population Distribution by Integrating MPL and Census Data

The mobile phone locating-request (MPL) data can be served as an indicator to delineate the
spatiotemporal pattern of population distribution, however, the MPL data do not represent the actual
population sizes. In this study, we first aggregated the 5-min MPL data into 3-h MPL data, making
its temporal resolution consistent with that of the estimated PM2.5 concentrations, and calculated the
pixel-based population density using the MPL data, and then applied the MPL-based population
density map to downscale the census data. Consequently, we can obtain the 3-h pixel-based population
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approximations. Given the difference of physical environment and socio-economic development
in various areas of China, downscaling the MPL data with population census at the national scale
will undoubtedly result in the underestimation of population in under- and less-developed areas
and overestimation of population in those developed areas. To solve this problem, we decided to
estimate real-time population distribution by integrating MPL and census data at the city level. The 3-h
MPL map was used to redistribute the census data for each city by Equations (2) and (3), under the
assumption that the inter-city mobility will not dramatically influence the total population of a city
within a short time window. Finally, we could obtain the 3-h pixel-based population approximation
for each city, and then conducted the image mosaic to produce the 3-h national-scale population
distribution map in China.

Wij =
pij

∑n
i=1 pij

(2)

popij = TR×Wij (3)

where pi,j is the amount of locating-request times within the i-th pixel at the hour j, n is the total number
of pixels within a city, Wi,j is the weight for redistributing population and TR is the total population in
the city from the census data. Popi,j denotes the population approximation in the i-th pixel at the hour j.

2.7. Real-Time Estimation of Population Exposure to PM2.5

Since the levels of PM2.5 concentration and population distribution are spatially and temporally
varied, here we adopted the population-weighted metric (Equation (4)) to estimate the real-time
exposure risks to PM2.5 concentrations, which was likely to be more representative of population
exposure to PM2.5 across different temporal scales [46]:

PWP =
N

∑
i=1

(popi · pmi)/
N

∑
i=1

popi (4)

where popi and pmi denote the population and PM2.5 concentration level in the i-th pixel, N is the
total number of pixels within the corresponding administrative unit. PWP is the population-weighted
PM2.5 concentration level for the targeted administrative unit.

With the PM2.5 concentrations and population distribution estimated in previous sections,
we could integrate them based on Equation (4) to provide the estimation of population exposure
to PM2.5 with a 3-h updating frequency, thereby being able to track the real-time dynamics of exposure
risks by considering the spatiotemporal variation of PM2.5 concentration and population distribution.

2.8. Estimation of Cumulative Inhaled PM2.5

PM2.5 concentration causes acute and chronic adverse effects on human health mainly by means
of inhalation exposure. To our understanding, deriving the estimations of cumulative inhaled PM2.5

masses will be one of the most important prerequisites to model the accurate relationship between
PM2.5 exposure and human health [47–49]. Thus, we proposed to incorporate human respiratory
volume and the spatiotemporal variation of PM2.5 concentration and population density to present
a better estimation of cumulative inhaled PM2.5:

InPM2.5 =
N

∑
i=1

T

∑
t=1

pi(t) · hi · di(t) ·m(t) + pi(t) · hi · (1− di(t)) ·m(t) · α (5)

where pi and hi denote the population and the inhaled volume of air for the i-th age group, N is the total
number of the age group. t denotes the time (hours in this study), m(t) denotes the PM2.5 concentration
level at time t, T is the target temporal period, di is the percentage of outdoor population, α is the
outdoor-indoor ratio of PM2.5 concentration.
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However, recent advances regarding the outdoor-indoor ratio of PM2.5 concentrations are all
limited to local scales for the purpose of experimental tests [50], as it is difficult to acquire such
valid observations relating this ratio on a large scale. More importantly, the outdoor-indoor ratio
is influenced by several factors such as geographic location, building structures, and living habits.
In addition, the inhaled volume of air is also different, not only in terms of age differences but of
physical activities, gender, and size, all of these factors would affect the inhaled value [51,52]. Thus,
we have to simplify the ideal model in Equation (5) for being suitable to nationwide estimates of
cumulative inhaled PM2.5 masses by neglecting the difference between outdoor and indoor PM2.5

concentration exposure and the inhaled volume of air among different age groups, gender, and other
related factors. In this way, we can directly obtain the estimation of cumulative inhaled PM2.5 masses
using the following equation:

InPM′
2.5 =

T

∑
t=1

pi(t) · h ·m(t) (6)

where InPM′
2.5 denotes the cumulative inhaled PM2.5 mass from the simplified model, and h denotes

the empirical inhaled volume of air. A measurement conducted by Adams [51] based on 200 individuals
showed that the hourly average volume of air breathed by adults when they are sitting or resting were
ranging from 0.42 to 0.63 m3 (i.e., 10.08 to 15.12 m3/day), and the volumes for walking were from 1.20
to 1.44 m3/h, and for running were from 3.10 to 3.48 m3/h. Thus, the average inhaled volume of air
for an individual is assumed to be 15 m3/day in this study [52].

2.9. Comparison of Exposure Assessments from the MPL-Based and Census-Based Methods

In order to investigate whether the improvement of incorporating dynamic population
distributions does make a difference in the exposure assessment, we intuitively compared
the MPL-based and census-based calculations of cumulative inhaled PM2.5 masses and
population-weighted PM2.5 exposure concentrations in China’s 359 cities across different temporal
scales (i.e., 3-h, 1-day, 1-week, and 1-month). For each city, the population from the census data was
directly used in the census-based method, while the redistributed population dynamics was used in
the MPL-based method.

3. Results

3.1. Different Facets of Population Exposure to PM2.5

The spatiotemporal integration of PM2.5 concentration and population density was used to
produce thematic information that document different facets of population exposure to PM2.5. Figure 2
shows an extracted example from the time-series analysis of population exposure to PM2.5 in China.

Figure 2a shows the real-time nationwide estimation of population distribution (11:00 a.m.) on
1 March 2016, which is derived by integrating MPL and census data at a city-level scale in Section 2.6.
The intensity represents the specific population number in each gridded pixel with stretched colors
from blue to red denoting varied population size. Figure 2b shows the real-time nationwide estimation
of PM2.5 concentrations (11:00 a.m.), which is derived from incorporating ground-station PM2.5

measurements and meteorological variables based on GWR models in Section 2.5. Figure 2c shows
the nationwide estimation of 24-h cumulative inhaled PM2.5 masses. Figure 2d shows the estimation
of 24-h cumulative inhaled PM2.5 masses based on the census data. Figure 2e–h show insets from
Figure 2a–d for part of the Northern China as a zoomed visualization in different facets of population
exposure to PM2.5 concentrations.
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Figure 2. Different facets of population exposure to PM2.5. (a) Map of population distribution in China
on 1 March 2016 (11:00 a.m.). (b) Map of PM2.5 concentration levels in China on 1 March 2016
(11:00 a.m.). (c) Map of cumulative inhaled PM2.5 masses in China based on the MPL data on
1 March 2016. (d) Map of cumulative inhaled PM2.5 in China based on the census data on 1 March 2016.
(e–h) show the insets from (a–d) for part of the Northern China.

3.2. Temporal Dynamics of Population Exposure to PM2.5

In the form of Figure 2a–c, we can also provide the temporal variation of population, PM2.5

concentrations, and cumulative inhaled PM2.5 masses with a 3-h temporal resolution from 1 March to
31 March 2016. In this way, the pixel-based dynamics of population exposure to PM2.5 concentrations
at the nationwide scale with a nearly real-time updating frequency (i.e., 3-h in this study) were
retrieved. In order to better present the experimental results with an entire month in March 2016,
we further aggregated the pixel-based estimations into 359 cities in this study. Results demonstrate
that both the population-weighted PM2.5 concentrations (Figure 3a) and cumulative inhaled PM2.5

masses (Figure 3b) exist distinguished diurnal and daily variations, which also verify the necessity
of considering the spatiotemporal variability of both air pollution and population distribution in air
pollution exposure assessments.
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3.3. Comparison of Exposure Assessment Methods

From the visual inspection from Figure 2c,d, it can be found out that the MPL-based method yields
the gridded cumulative inhaled PM2.5 masses, whereas the census-based assessments are only based
on administrative units (cities in this study), which informs us that the MPL-based method improves
the spatial resolution of basic cells from administrative units to gridded pixels in exposure assessments.
In addition, by comparing the cumulative inhaled PM2.5 masses and population-weighted PM2.5

exposure concentrations in China’s 359 cities across different temporal scales, results in Figure 4 show
that without introducing the dynamics of population distribution into the exposure assessment, the
maximum biases (over- or under- estimation) of cumulative inhaled PM2.5 mass reach to over 100%
across different temporal scales. Meanwhile, the maximum biases of population-weighted PM2.5

concentrations will be approximately 30 µg/m3. By aggregating the experimental tests in China’s
359 cities from 1 March to 31 March 2016, the biased percentage between the MPL-based and the
census-based estimations will be the level of 14.9% (3-h), 5.8% (1-day), 4.7% (1-week), and 3.9%
(1-month) on average.
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4. Discussion

Compared with previous methods for air pollution exposure assessment, the proposed method in
this study considered well the spatiotemporal variability of both population distribution and PM2.5

concentration levels, thereby contributing to a better exposure assessment. The relative reasonability
of our method may be due to the following strengths. First, the spatiotemporal variability of PM2.5

concentrations and population distribution are incorporated in air pollution exposure assessments.
Given that the level of PM2.5 concentrations is continuously changing over space and time and human
beings are also mobile across spatiotemporal scales [14], both of these dynamic characteristics and their
interactions at finer spatiotemporal scales should be well considered to estimate population exposure
risks. However, many previous studies always used the census data with the assumption that people
are non-mobile or moving within regions of generally the same air quality throughout a day or other
time periods, thus leading to considerable biases in actual air pollution exposure assessments. In reality,
people in different areas experience different levels of PM2.5 concentrations across different temporal
scales. In order to characterize the interaction between population dynamics and PM2.5 concentrations,
here we used the mobile-phone locating-request (MPL) big data to quantify the dynamics of population
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distribution. By integrating the MPL and census data, we then derived real-time pixel-based population
dynamics at the nationwide scale. Combing this nationwide population dynamic information and
surface-based PM2.5 concentrations simultaneously will be of great importance to assess the actual
population exposure to PM2.5 at different temporal scales. Second, the characterized dynamics of PM2.5

concentrations and population dynamics in the proposed method keep a consistent spatiotemporal
scale. The MPL data used in this study were initially retrieved at a 5-min updating temporal resolution
from the Tencent big data platform. We further aggregated the 5-min updating MPL data into
3-h synthetic data, making it temporally comparable to the updating frequency of the nationwide
surface-based PM2.5 concentrations. Meanwhile, the spatial resolution of PM2.5 concentrations is
also set to be with a 30 arc-second (~1.2 km) spatial resolution, which is the same with that of MPL
data. These efforts contribute much to achieving near real-time (3-h) estimates of national population
exposure to PM2.5 at the pixel-based level in China. Third, the presented model incorporated human
respiratory volume and the spatiotemporal variation of PM2.5 concentration and population density
to estimate cumulative inhaled PM2.5 masses. It will contribute to advancing the development of
modelling the relationship between PM2.5 exposures, health risks, and life expectancies quantitatively.

Besides PM2.5, the ground monitoring stations are always coupled with sensors measuring
other air pollutants such as PM10, SO2, NO2, and O3. With the similar framework by integrating
mobile phone big data and air pollutant concentrations, the proposed method can also be customized
to estimate population exposure risks to these ambient pollutants in China. Compared with the
census-based method, the MPL-based method can yield near real-time estimations of population
exposure to ambient pollutants. That is, we can achieve the estimation of air pollution exposure
risks at any specific location and time on a large scale by combining the spatiotemporal variability
of population distribution and air pollutant concentrations. By aggregating the short-term exposure
assessments into longer temporal scales, we can also derive more robust and reliable estimations
related to the chronic effects from air pollutants. Additionally, the proposed framework can be also
applied to estimate the real-time number of people exposed to poor air quality as a result of updating
the population distribution and air pollutant concentrations.

Meanwhile, some potential concerns regarding the implementation of the proposed method
should be pointed out. First, in order to redistribute the census data to derive real-time population
dynamics using the MPL data, we assume that the total population of each administrative unit
(359 cities in this study) is constant since the inter-city mobility (the trade-off of inflow and outflow
population) will not dramatically influence the total population of a city within a short time window.
Thus, human movements and migrations across administrative units are neglected in this study.
Second, volunteer-produced geospatial big data, such as MPL records in this study tend to leave
out some population groups of the society because the children, the elderly, and the poor are
less-frequent active users. Nevertheless, such data can still well quantify actual population distribution
patterns [35,37,38] because of the massive volumes of data records. Here we take the MPL records in
China on 1 March 2016 for example, the total number of locating-request records reaches 1.71 billion.
By aggregating all MPL records from 1 March to 31 March 2016, the total number of locating-request
records will be approximately 60 billion, thereby providing a robust measurement of population
dynamics. Third, although the nationwide PM2.5 concentrations used in this study are estimated
by incorporating the meteorological variables and ground-based PM2.5 measurements with the
GWR models, the spatial interpolations are still the limits to affect the estimation accuracy in
areas without sufficient inputs of station-based variables. As a result, even there is much greater
spatial variations in the population data, there will be relatively less spatial variations in PM2.5

concentrations, which may lead to no significant impacts on the exposure assessments. However,
with·the comparison of exposure assessments between the MPL-based and the census-based methods,
we can still figure out considerable differences. Thus, if we can further improve the estimation of PM2.5

concentrations, such as developing spatial-temporal integrated method by combing satellite-based
and station-based observations guided with the diurnal change pattern of PM2.5 concentrations, land
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cover/use types, landscape topography, and related meteorological variables, the combination of
the mobile phone big data and the improved air pollutant concentrations will contribute to a more
reliable exposure assessment. Finally, the simplified model without considering outdoor-indoor ratio
of PM2.5 concentrations and the difference of inhaled volumes of air among different population groups
may be biased to the assessment of actual cumulative inhaled PM2.5 masses. As the Tencent-based
MPL dataset was recorded by aggregating the real-time locations of active apps users within a mesh
grid at a spatial resolution of 30 arc-second (~1.2 km) without differentiating individual’s moving
trajectories and population groups, it was impractical to apply empirical parameters into the exposure
assessment at a nationwide scale since the outdoor-indoor ratio of PM2.5 concentrations is influenced
by several factors such as geographical locations, building materials, living habits, and so on. Similarly,
the gridded MPL data without tracking individuals’ trajectories also prevented us from considering the
commuting patterns or choices of different transports. However, the MPL dataset represents the unique
data source having the best spatial resolution with real-time updating population distribution we can
access right now. Meanwhile, the estimates in the experimental test also represent the trade-off between
over- and under-estimated cumulative inhaled PM2.5 masses. On the one hand, these estimates are
the highest estimates of cumulative inhaled PM2.5 masses since we do not consider the situations that
people are with indoor environments or commuting transportations. On the other hand, the cumulative
inhaled PM2.5 masses could be even higher because we use the constant value representing a low level
of the inhaled air volume for an adult without considering factors such as physical activity, gender,
and size [51]. Thus, these over and under estimates help balance each out in terms of cumulative
inhaled PM2.5 masses to provide the general assessment at large scales.

5. Conclusions

This study sought to combine mobile phone big data and station-based PM2.5 measurements to
achieve real-time estimations of population exposure to PM2.5 concentrations in China. The results
showed that the proposed method can well quantify dynamics of the real-time population distribution
and yield the estimation of population exposure to PM2.5 concentrations and cumulative inhaled PM2.5

masses with a 3-h updating frequency. This study provides a novel framework for environmental
exposure assessments by considering the spatiotemporal variability of both population distribution
and PM2.5 concentrations, which can also be customized to estimate other ambient pollutant exposure
risks. These findings and methods may hold potential utilities in supporting the environmental
exposure assessment and related policy-driven environmental actions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/573/s1,
Table S1. Accuracy of the fitting and 10-fold cross-validation for eight periods. Figure S1: Scatterplots of the
observed and predicted PM2.5 for eight-time periods.

Acknowledgments: The authors thank Tencent Inc. for making the mobile phone location data publicly available.
This work was supported by the Ministry of Science and Technology of China under the National Key Research and
Development Program (2016YFA0600104) and was also supported by a project funded by the China Postdoctoral
Science Foundation (2017M620739). The authors also thank three anonymous reviewers and editors for providing
valuable suggestions and comments, which have greatly improved this manuscript.

Author Contributions: Bin Chen and Bing Xu conceived and designed the experiments; Bin Chen and
Yimeng Song performed the experiments and wrote the paper; Tingting Jiang, Bo Huang, Ziyue Chen and
Bing Xu contributed to the data analysis and manuscript revision.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [CrossRef]
[PubMed]

2. Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste
Manag. Assoc. 2006, 56, 709–742. [CrossRef] [PubMed]

http://www.mdpi.com/1660-4601/15/4/573/s1
http://dx.doi.org/10.1016/j.envpol.2007.06.012
http://www.ncbi.nlm.nih.gov/pubmed/17646040
http://dx.doi.org/10.1080/10473289.2006.10464485
http://www.ncbi.nlm.nih.gov/pubmed/16805397


Int. J. Environ. Res. Public Health 2018, 15, 573 12 of 14

3. Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing global mortality from ambient Environ.
Sci. Technol. 2015, 49, 8057–8066. [CrossRef] [PubMed]

4. Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.;
Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease. Circulation 2010,
121, 2331–2378. [CrossRef] [PubMed]

5. Liu, C.; Yang, C.; Zhao, Y.; Ma, Z.; Bi, J.; Liu, Y.; Meng, X.; Wang, Y.; Cai, J.; Kan, H. Associations between
long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and
glycosylated hemoglobin levels in China. Environ. Int. 2016, 92, 416–421. [CrossRef] [PubMed]

6. Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer,
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287,
1132–1141. [CrossRef] [PubMed]

7. Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United
States. N. Engl. J. Med. 2009, 2009, 376–386. [CrossRef] [PubMed]

8. Xu, B.; Yang, J.; Zhang, Y.; Gong, P. Healthy cities in China: A lancet commission. Lancet 2016, 388, 1863–1864.
[CrossRef]

9. Xu, P.; Chen, Y.; Ye, X. Haze, air pollution, and health in China. Lancet 2013, 382, 2067. [CrossRef]
10. Ministry of Environmental Protection of the People’s Republic of China. China’s Environmental Bulletin in

2014; Ministry of Environmental Protection: Beijing, China, 2014.
11. Babu, S.S.; Manoj, M.; Moorthy, K.K.; Gogoi, M.M.; Nair, V.S.; Kompalli, S.K.; Satheesh, S.; Niranjan, K.;

Ramagopal, K.; Bhuyan, P. Trends in aerosol optical depth over Indian region: Potential causes and impact
indicators. J. Geophys. Res. Atmos. 2013, 118. [CrossRef]

12. World Health Organization; UNAIDS. Air Quality Guidelines: Global Update 2005; World Health Organization:
Geneva, Switzerland, 2006.

13. Zhang, Q.; Crooks, R. Toward an Environmentally Sustainable Future: Country Environmental Analysis of the
People’s Republic of China; Asian Development Bank: Mandaluyong, Philippines, 2012.

14. Park, Y.M.; Kwan, M.-P. Individual exposure estimates may be erroneous when spatiotemporal variability of
air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [CrossRef] [PubMed]

15. Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2.5 in the urban area of Beijing.
PLoS ONE 2013, 8, e63486. [CrossRef] [PubMed]

16. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates
of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development
and application. Environ. Health Perspect. 2010, 118, 847–855. [CrossRef] [PubMed]

17. Van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth
determined from satellite remote sensing. J. Geophys. Res. Atmos. 2006, 111. [CrossRef]

18. Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5

mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [CrossRef]
19. Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5

concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous
united states. J. Geophys. Res. Atmos. 2004, 109. [CrossRef]

20. Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.; Li, C.; Fung, J.C. Using satellite remote sensing data to estimate the
high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [CrossRef]

21. Tian, J.; Chen, D. A semi-empirical model for predicting hourly ground-level fine particulate matter
(PM2.5) concentration in southern ontario from satellite remote sensing and ground-based meteorological
measurements. Remote Sens. Environ. 2010, 114, 221–229. [CrossRef]

22. Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M. A review on predicting ground
PM2.5 concentration using satellite aerosol optical depth. Atmosphere 2016, 7, 129. [CrossRef]

23. Hu, Z. Spatial analysis of modis aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J.
Health Geogr. 2009, 8, 27. [CrossRef] [PubMed]

24. Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5

exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ.
2011, 45, 6267–6275. [CrossRef]

http://dx.doi.org/10.1021/acs.est.5b01236
http://www.ncbi.nlm.nih.gov/pubmed/26077815
http://dx.doi.org/10.1161/CIR.0b013e3181dbece1
http://www.ncbi.nlm.nih.gov/pubmed/20458016
http://dx.doi.org/10.1016/j.envint.2016.03.028
http://www.ncbi.nlm.nih.gov/pubmed/27148900
http://dx.doi.org/10.1001/jama.287.9.1132
http://www.ncbi.nlm.nih.gov/pubmed/11879110
http://dx.doi.org/10.1056/NEJMsa0805646
http://www.ncbi.nlm.nih.gov/pubmed/19164188
http://dx.doi.org/10.1016/S0140-6736(16)31724-X
http://dx.doi.org/10.1016/S0140-6736(13)62693-8
http://dx.doi.org/10.1002/2013JD020507
http://dx.doi.org/10.1016/j.healthplace.2016.10.002
http://www.ncbi.nlm.nih.gov/pubmed/27914271
http://dx.doi.org/10.1371/journal.pone.0063486
http://www.ncbi.nlm.nih.gov/pubmed/23658832
http://dx.doi.org/10.1289/ehp.0901623
http://www.ncbi.nlm.nih.gov/pubmed/20519161
http://dx.doi.org/10.1029/2005JD006996
http://dx.doi.org/10.1029/2003GL018174
http://dx.doi.org/10.1029/2004JD005025
http://dx.doi.org/10.1016/j.rse.2014.09.015
http://dx.doi.org/10.1016/j.rse.2009.09.011
http://dx.doi.org/10.3390/atmos7100129
http://dx.doi.org/10.1186/1476-072X-8-27
http://www.ncbi.nlm.nih.gov/pubmed/19435514
http://dx.doi.org/10.1016/j.atmosenv.2011.08.066


Int. J. Environ. Res. Public Health 2018, 15, 573 13 of 14

25. Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite
aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states.
Environ. Sci. Technol. 2012, 46, 11913–11921. [CrossRef] [PubMed]

26. Lee, H.; Liu, Y.; Coull, B.; Schwartz, J.; Koutrakis, P. A novel calibration approach of modis aod data to
predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991. [CrossRef]

27. Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite remote sensing.
Environ. Sci. Technol. 2014, 48, 7436–7444. [CrossRef] [PubMed]

28. Hu, X.; Waller, L.; Lyapustin, A.; Wang, Y.; Liu, Y. 10-year spatial and temporal trends of PM2.5 concentrations
in the southeastern us estimated using high-resolution satellite data. Atmos. Chem. Phys. 2014, 14, 6301–6314.
[CrossRef] [PubMed]

29. Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; Van de Weghe, N.
Dynamic assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016,
15, 14. [CrossRef] [PubMed]

30. Gariazzo, C.; Pelliccioni, A.; Bolignano, A. A dynamic urban air pollution population exposure assessment
study using model and population density data derived by mobile phone traffic. Atmos. Environ. 2016, 131,
289–300. [CrossRef]

31. Dewulf, B.; Neutens, T.; Van Dyck, D.; De Bourdeaudhuij, I.; Panis, L.I.; Beckx, C.; Van de Weghe, N. Dynamic
assessment of inhaled air pollution using gps and accelerometer data. J. Transp. Health 2016, 3, 114–123.
[CrossRef]

32. Lu, Y.; Fang, B.T. Examining personal air pollution exposure, intake, and health danger zone using time
geography and 3D geovisualization. ISPRS Int. J. Geo-Inf. 2015, 4, 32–46. [CrossRef]

33. Erlander, S.; Stewart, N.F. The Gravity Model in Transportation Analysis: Theory and Extensions; VSP: Rancho
Cordova, CA, USA, 1990; Volume 3.

34. Simini, F.; González, M.C.; Maritan, A.; Barabási, A.-L. A universal model for mobility and migration
patterns. Nature 2012, 484, 96–100. [CrossRef] [PubMed]

35. Lee, R.; Sumiya, K. Measuring Geographical Regularities of Crowd Behaviors for Twitter-Based Geo-Social
Event Detection. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based
Social Networks, San Jose, CA, USA, 2 November 2010; ACM: New York, NY, USA, 2010; pp. 1–10.

36. Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting ambient geospatial information from social media
feeds. GeoJournal 2013, 78, 319–338. [CrossRef]

37. Cheng, Z.; Caverlee, J.; Lee, K.; Sui, D.Z. Exploring millions of footprints in location sharing services. ICWSM
2011, 2011, 81–88.

38. Frias-Martinez, V.; Soto, V.; Hohwald, H.; Frias-Martinez, E. Characterizing Urban Landscapes Using
Geolocated Tweets. In Proceedings of the Privacy, Security, Risk and Trust (PASSAT), 2012 International
Conference on and 2012 International Confernece on Social Computing (SocialCom), Amsterdam,
The Netherlands, 3–5 September 2012; pp. 239–248.

39. Preoţiuc-Pietro, D.; Cohn, T. Mining User Behaviours: A Study of Check-in Patterns in Location Based Social
Networks. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013;
ACM: New York, NY, USA, 2013; pp. 306–315.

40. Yu, H.; Russell, A.; Mulholland, J.; Huang, Z. Using cell phone location to assess misclassification errors in
air pollution exposure estimation. Environ. Pollut. 2018, 233, 261–266. [CrossRef] [PubMed]

41. Kwan, M.-P. How GIS can help address the uncertain geographic context problem in social science research.
Ann. GIS 2012, 18, 245–255. [CrossRef]

42. Tencent. Annual Report; Tencent: Shenzhen, China, 2016.
43. Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business

Media: Berlin, Germany, 2013.
44. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for

exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]
45. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error

estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef] [PubMed]
46. Chafe, Z.A.; Brauer, M.; Klimont, Z.; Van Dingenen, R.; Mehta, S.; Rao, S.; Riahi, K.; Dentener, F.; Smith, K.R.

Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.
Environ. Health Perspect. 2014, 122, 1314–1320. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/es302673e
http://www.ncbi.nlm.nih.gov/pubmed/23013112
http://dx.doi.org/10.5194/acp-11-7991-2011
http://dx.doi.org/10.1021/es5009399
http://www.ncbi.nlm.nih.gov/pubmed/24901806
http://dx.doi.org/10.5194/acp-14-6301-2014
http://www.ncbi.nlm.nih.gov/pubmed/28966656
http://dx.doi.org/10.1186/s12942-016-0042-z
http://www.ncbi.nlm.nih.gov/pubmed/27097526
http://dx.doi.org/10.1016/j.atmosenv.2016.02.011
http://dx.doi.org/10.1016/j.jth.2015.10.004
http://dx.doi.org/10.3390/ijgi4010032
http://dx.doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
http://dx.doi.org/10.1007/s10708-011-9438-2
http://dx.doi.org/10.1016/j.envpol.2017.10.077
http://www.ncbi.nlm.nih.gov/pubmed/29096298
http://dx.doi.org/10.1080/19475683.2012.727867
http://dx.doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://dx.doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://dx.doi.org/10.1289/ehp.1206340
http://www.ncbi.nlm.nih.gov/pubmed/25192243


Int. J. Environ. Res. Public Health 2018, 15, 573 14 of 14

47. Gamble, J.F. PM2.5 and mortality in long-term prospective cohort studies: Cause-effect or statistical
associations? Environ. Health Perspect. 1998, 106, 535–549. [CrossRef] [PubMed]

48. Gavett, S.H.; Koren, H.S. The role of particulate matter in exacerbation of atopic asthma. Int. Archiv.
Allergy Immunol. 2001, 124, 109–112. [CrossRef] [PubMed]

49. Wong, J.Y.; De Vivo, I.; Lin, X.; Christiani, D.C. Cumulative PM2.5 exposure and telomere length in workers
exposed to welding fumes. J. Toxicol. Environ. Health Part A 2014, 77, 441–455. [CrossRef] [PubMed]

50. Zhang, L.; Wang, F.; Ji, Y.; Jiao, J.; Zou, D.; Liu, L.; Shan, C.; Bai, Z.; Sun, Z. Phthalate esters (paes) in indoor
PM10/PM2.5 and human exposure to paes via inhalation of indoor air in Tianjin, China. Atmos. Environ.
2014, 85, 139–146. [CrossRef]

51. Adams, W.C. Measurement of Breathing Rate and Volume in Routinely Performed Daily Activities: Final Report;
Contract NO. A033-205; University of California: Davis, CA, USA, 1993.

52. Marty, M.A.; Blaisdell, R.J.; Broadwin, R.; Hill, M.; Shimer, D.; Jenkins, M. Distribution of daily breathing
rates for use in California’s air toxics hot spots program risk assessments. Hum. Ecol. Risk Assess. 2002, 8,
1723–1737. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1289/ehp.98106535
http://www.ncbi.nlm.nih.gov/pubmed/9721253
http://dx.doi.org/10.1159/000053685
http://www.ncbi.nlm.nih.gov/pubmed/11306943
http://dx.doi.org/10.1080/15287394.2013.875497
http://www.ncbi.nlm.nih.gov/pubmed/24627998
http://dx.doi.org/10.1016/j.atmosenv.2013.11.068
http://dx.doi.org/10.1080/20028091057574
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Ground-Station PM2.5 Measurements 
	Ground-Station Meteorological Measurements 
	Mobile Phone Locating-Request Big Data 
	Population Census Data 
	Estimation of Spatiotemporal Continuous PM2.5 Concentrations 
	Estimation of Real-Time Population Distribution by Integrating MPL and Census Data 
	Real-Time Estimation of Population Exposure to PM2.5 
	Estimation of Cumulative Inhaled PM2.5 
	Comparison of Exposure Assessments from the MPL-Based and Census-Based Methods 

	Results 
	Different Facets of Population Exposure to PM2.5 
	Temporal Dynamics of Population Exposure to PM2.5 
	Comparison of Exposure Assessment Methods 

	Discussion 
	Conclusions 
	References

