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Abstract: Extreme urban heat is a powerful environmental stressor which poses a significant threat
to human health and well-being. Exacerbated by the urban heat island phenomenon, heat events
are expected to become more intense and frequent as climate change progresses, though we have
limited understanding of the impact of such events on vulnerable populations at a neighborhood
or census block group level. Focusing on the City of Portland, Oregon, this study aimed to
determine which socio-demographic populations experience disproportionate exposure to extreme
heat, as well as the level of access to refuge in the form of public cooling centers or residential central
air conditioning. During a 2014 heat wave, temperature data were recorded using a vehicle-traverse
collection method, then extrapolated to determine average temperature at the census block group
level. Socio-demographic factors including income, race, education, age, and English speaking ability
were tested using statistical assessments to identify significant relationships with heat exposure
and access to refuge from extreme heat. Results indicate that groups with limited adaptive capacity,
including those in poverty and non-white populations, are at higher risk for heat exposure, suggesting
an emerging concern of environmental justice as it relates to climate change. The paper concludes
by emphasizing the importance of cultural sensitivity and inclusion, in combination with effectively
distributing cooling centers in areas where the greatest burden befalls vulnerable populations.
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1. Introduction

Extreme heat poses a growing threat to human populations, with numerous implications for
public health, economic stability, and quality of life [1–3]. Past heat waves have had devastating,
deadly outcomes worldwide [4–6], and such events are expected to increase in intensity, frequency,
and duration as climate change progresses [7,8]. Although human settlements of any type may
experience the negative effects of extreme heat, these are and will continue to be most pronounced in
urban areas, the development practices of which are highly correlated with rising temperatures [9–11].
Currently, more than 50% of the world’s population is located in urban areas, and that figure is expected
to reach over 66% by 2050 [12]; with so many people potentially at risk of exposure, it is imperative
that local governments and planning practitioners recognize varying degrees of vulnerability among
urban residents.

Urban heat events—defined as those above the 90th percentile of historic temperatures [13]—are
an environmental stressor, placing economic, infrastructure, and human health burdens on society [14–16].
As a stressor, urban heat can create vulnerabilities, which may be understood as a combination of three
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factors [17]: exposure, sensitivity, and adaptive capacity. Exposure refers to an individual’s contact with
a stressor, either from living, working, or spending time in an affected location. Sensitivity is the point
at which exposure becomes dangerous to an individual’s health [18]. Finally, adaptive capacity refers to
one’s ability to change exposure or sensitivity, or to cope with an extreme event. Regarding urban heat,
indicators believed to enhance adaptive capacity include high income, social cohesion, and knowledge
of hazardous environments [19,20]. Given these conditions, it may be reasonable to categorize extreme
heat exposure as an environmental justice issue.

The phenomenon central to this study is the urban heat island (UHI) effect, which has been
known to researchers since the mid-19th century, and indicates a strong correlation between urban
environments and high temperatures [21,22]. Impervious surfaces and anthropogenic activity within
cities portend rising temperatures, as does the relative scarcity of heat-ameliorating elements such as
trees and grasses [23–25]. A higher frequency of regional extreme heat events, as such, will amplify
temperatures [8], and generate UHI in areas that have greater amounts of heat absorbing surfaces.
While early studies focused on the comparative temperatures between urban and non-urban regions,
the emergence of mobile sensors, highly accurate global positioning systems, and computational
software allows for the comparison of intra-urban spaces, measuring variation in temperature
distribution across a single city [26,27]. Past research has utilized infrared satellite data for this
purpose [10,28,29], though vehicle-based traverse measurements (used in this study) can provide
a detailed representation of heat exposure at a smaller scale [30–33].

From an environmental justice point of view, the existing research emphasizes point source
pollution [34–36], though it has become clear that climate change affects communities differentially
and creates novel impacts never before witnessed in traditional environmental research. As such, we
argue that climate change is catalyst for injustice. While some of the effects can be easily observed
at the national level, particularly in the world’s poorest countries [37,38], there is relatively little
understanding of the impact at a more granular scale. Needed are approaches—methodological,
conceptual, and pragmatic—that help us to identify those communities disproportionately affected
by UHI, and strategies that can help to reduce vulnerabilities. This study provides new evidence of
disproportionate exposure to climate change at a local level, as well as access to refuge, an understudied
facet of adaptive capacity.

Previous studies indicate a relationship between socio-demographic factors and heat-related
morbidity/mortality [39,40]. Income is quite predictive of vulnerability (inverse relationship) [41–43],
though it is possible that other indicators also play a role. If so, urban heat exposure may be framed
as an environmental justice or ‘climate justice’ [44] issue, disproportionately affecting marginalized
socio-demographic groups with limited adaptive capacity. This study aims to identify such populations
in Portland, Oregon by assessing (1) disproportionate heat exposure among socio-demographic groups;
and (2) disproportionate access to refuge (either public refuge facilities or residential central air
conditioning), resulting in heightened or lowered adaptive capacity. An in-depth statistical and spatial
analysis will reveal significant, inequitable relationships, validating the application of an environmental
justice lens in addressing urban heat resilience.

2. Materials and Methods

2.1. Study Area

Our assessment occurs in a Pacific Northwest city of the United States. The City of Portland,
Oregon is located at approximately 45.5◦ North, 122.6◦ West, at the confluence of the Willamette and
Columbia Rivers. The city covers approximately 345 square kilometers, with of a population of nearly
640,000 as of 2016 [45]. The City of Maywood Park, Oregon is located within northeast Portland
and, though an enclave of the City of Portland, has been excluded from the study. Due to the fact
that summer temperatures have an average monthly highs of 22.7 ◦C, 26.4 ◦C, and 26.7 ◦C for June,
July, and August, respectively [46], Portland offers several advantages to conducting an assessment
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of disproportionate effects of urban heat. First, historical high temperatures have rarely exceeded
35 ◦C, which reduces public concern for heat related illnesses. Second, as of 2013, fewer than 35% of
households had air conditioning [47], and communities may not have immediately available private
residences to consider refuge from heat waves. Finally, Portland Climate Action Plan (2015) explicitly
addresses the importance of reducing disproportionate exposure to urban heat waves, yet few actions
have materialized.

2.2. Data

Three main data types were used in this study, all at the U.S. census block group level:
socio-demographic indicators, distribution of ambient temperatures in the study location, and refuge
availability. Socio-demographic data used include: income (percent of the population below 50% of
the poverty line); race (percent of the population who do not self-identify as white); education
(percent of the population over 25 years old without a high school degree or equivalent); age
(percent of the population over 65 years old that lives alone); and English speaking ability (percent
of the population that claims to have poor or no English skills). Obtained from the U.S. Census
Bureau’s American Community Survey 5-year estimates, 2009–2013 [47], these data reflect categories
into which individuals have self-identified. Another, non-census piece of data used to highlight
socio-demographic status is presence of affordable housing, obtained from Oregon Metro’s Regional
Land Information System [47]. In order to differentiate “low” and “high” categories used in the analysis,
a model-based clustering algorithm was used to split each variable [48].

Following an established protocol [13], we collected approximately 60,000 temperature readings
during one day of an extreme heat event on 25 August 2014, in Portland, Oregon, when the average
temperature during the hottest hour of the day was in the 90th percentile of 30-year historic daily
temperatures for the study region. We sampled temperatures for one hour at 3 times during the day
(6 a.m., 3 p.m., and 7 p.m.) using vehicle traverses (cars with a mounted temperature sensor and
global positioning system (GPS)) in six predetermined sections of the city. The temperature sensor
consisted of a type T-fine (30 gauge) thermocouple in a plastic shade tube (12 cm in length and 2.5 cm
in diameter) mounted on the passenger-side window approximately 25 cm above the roof of each
of 5 vehicles deployed. Each temperature sensor was connected to a data-logging device with an
estimated system accuracy of ±0.5 ◦C and a 90% response time of less than 60 s in 1 m/s airflow.
A GPS unit on each vehicle paired temperature measurement and location.

Based on the results from the temperature collection and subsequent modeling, we created three
separate heat surfaces, which are continuous descriptions of temperature variation across the study
region, corresponding to the three time periods. The resulting maps consisted of a 32-bit floating
point 1-meter raster format and contain 449,359,188 pixels for each of the three time periods [13,49].
These three urban heat models were created using random forest machine learning on temperature
data collected using vehicle-based traverse measurements. Multiple land uses are included in the model
(e.g., tree cover, building volume), and the temperatures derived are representative of the underlying
urban form. Earlier research suggests that evening temperatures can have the greatest impact on
human health, in part due to the exposure overnight, when physiological responses [50–52] can be
acute among those with pre-existing health conditions. As a result, this study utilizes the evening
temperature model in an attempt to identify areas with prolonged exposure to high temperatures.
The 7 pm model has an R2 of 0.9715 and an RMSE of 0.2078. Using “zonal statistics” in ArcGIS (ESRI,
Redlands, CA, USA), average UHI temperature was calculated for each census block, ranging from
26.4 to 30.1 ◦C. This aggregation method simplifies the UHI dataset, however this alteration of the raw
data is deemed worthwhile in order to assess relationships with demographic data. Additionally,
this is a common practice in geographic analysis [15,53,54].

In the context of this study, “refuge” refers either to public cooling facilities, or availability of
central air conditioning in one’s home; in other words, the availability of coping mechanisms. Public
heat refuge data were obtained from the Multnomah County Office of Aging, Disability and Veterans



Int. J. Environ. Res. Public Health 2018, 15, 640 4 of 14

Services [55]. These include three County cooling centers; 33 places to play in the water; 59 libraries;
and 73 community centers. The heat refuges were geocoded using Google Earth. Nine out of 33 places
to play in the water are not free for personal use, but are treated as such for the purpose of this
study. Residential Central Air Conditioning (CAC) data were obtained from the Multnomah County
Assessment Office [55].

2.3. Analysis

This study assessed multiple facets of vulnerability through the use of mixed spatial and
statistical methods, with the aim of identifying not only those hottest areas of the city, but also
trends of socio-demographic disparity. Elements considered include exposure of sensitive populations,
as well as their ability to cope with heat by accessing refuge.

First, heat exposure was determined by mapping UHI data at the census block group (CBG)
level. Using the “raster” package in R statistical software, the mean of all pixels falling geographically
within an individual CBG polygon was appended onto that polygon’s data table, resulting in a visual
representation of spatial temperature distribution. This indicated areas of the city most exposed to
extreme heat.

Second, the relationship between various socio-demographic groups and high-exposure areas
was assessed using the Student’s t-test method, where α = 0.05 for all tests. This method reveals
which sensitive groups, if any, are disproportionately exposed to extreme heat conditions. In each
case, two groups are compared: those with low adaptive capacity characteristics, and those with
high adaptive capacity characteristics. Indicators included in this analysis, bifurcations of each,
and hypotheses tested are as follows.

H0: Average of low income population − Average of high income population = 0
H1: Average of low income population − Average of high income population > 0

where:
Average of low income population = Mean temperature of low income block group
Average of high income population = Mean temperature of high income block group

H0: Average of non-white population − Average of white population = 0
H1: Average of non-white population − Average of white population > 0

where:
Average of non-white population = Mean temperature of block groups with large non-white population
Average of non-white population = Mean temperature of block groups with small non-white population

H0: Average of low education population − Average of high education population = 0
H1: Average of low education population − Average of high education population > 0

where:
Average of low education population = Mean temperature of block groups with large population with

less education
Average of low education population = Mean temperature of block groups with small population with

less education

H0: Average of isolated elderly population − Average of accompanied elderly population = 0
H1: Average of isolated elderly population − Average of accompanied elderly population > 0

where:
Average of isolated elderly population = Mean temperature of block groups with large population of

isolated elderly
Average of isolated elderly population = Mean temperature of block groups with small population of

isolated elderly
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H0: Average of low English proficiency population − Average of English proficiency = 0
H1: Average of low English proficiency population − Average of high English proficiency

population > 0
where:

Average of low English proficiency population = Mean temperature of block groups with large
population low English proficiency

Average of low English proficiency population = Mean temperature of block groups with small
population with low English proficiency

H0: Average of population in affordable housing − Average of population in non-affordable
housing = 0

H1: Average of population in affordable housing − Average of population in non-affordable
housing > 0

where:
Average of population in affordable housing = Mean temperature within 100 m of affordable housing
Average of population in non-affordable housing = Mean temperature within 100 m of

non-affordable housing

Third, this study examined the accessibility of refuge for various populations, broken out into
specific racial categories, as well as elderly (over 65 years) and young children (under 5 years) age
groups. The race groups included in the analysis are white; black or African American; American
Indian or Alaskan Native (AIAN); Asian; Native Hawaiian and other Pacific Islander (NHPI);
and Hispanic or Latino. Access to public heat refuges was calculated for walking speeds of slow,
normal, and fast. Maximum acceptable walking time was set at 15 min, and analyzed based on
average walking speeds for sedentary elderly (1.4 km/h), average elderly (3.5 km/h), and active adults
(5.6 km/h) [56]. These distances (0.35, 0.875, and 1.4 km, respectively) were applied using “network
distance analysis” in ArcGIS to establish heat refuge catchment areas.

Additionally, differences in walking access to refuges, temperature exposure, and access to
residential central air conditioning (CAC) were assessed for the aforementioned groups using
covariance analysis. Using GeoDa’s “scatter plot” function, percentages of residents with specific
characteristics were used as X variables, and the accessibility of heat refuges, UHI, and the prevalence
of CAC were used as Y variables (Table 1).

Table 1. Variables used in covariance analysis. Socio-demographic factors represented as X variables
(independent); Heat refuge factors represented as Y variables (dependent).

Variables

First Variable (X)

• % of White
• % of Black or African American
• % of American Indian and Alaskan Native (AIAN)
• % of Asian
• % of Native Hawaiian and Other Pacific Islander (NHPI)
• % of Hispanic or Latino
• % of residents under age 5 (young children)
• % of residents over age 65 (elderly)

Second Variable (Y)
• Urban Heat Index (UHI)
• Central air-conditioning units (CAC)/km2

• Accessibility to public heat refuges (fast, average, and slow walking speeds)
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3. Results

Results have been divided into three sections. We begin by providing background on the UHI
and its integration with the CBG data. We follow with outputs from statistical analyses, which identify
relationships between heat exposure and specific socio-demographic groups. Finally, we identify
the accessibility of heat refuge options (public cooling centers or central air conditioning) to those who
have a low level of adaptive capacity.

3.1. Ambient Temperature Distribution

The UHI model employed shows a concentration of high-heat areas to the east side of the city,
while the west side of the city is relatively cool (Figure 1). Also, we note two implications of converting
heat data to CBG. First, the block groups are not coterminous with the UHI data; the boundaries do not
exactly overlap, which means that each block group draws from the nearest temperature. Second, since
the UHI map is at 1 m resolution and the block groups are much larger, all temperature values within
a CBG were averaged. Although these limitations may reduce the overall accuracy of the precise
temperature in each CBG, our purpose is to evaluate broad relationships between socio-demographics
and UHI, rather than a precise household-scale assessment.

Figure 1. Comparison of the original raster format of the distribution of ambient urban heat (left) and
the transformed block group-based urban heat dataset (right).

3.2. Heat Exposure by Socio-Demographic Group

The results of statistical t-tests (Table 2) reveal significant relationships between heat exposure
and populations that are low-income, non-white, minimally-educated, or poor English speakers; all of
these socio-demographic groups, as well as those living in affordable housing, experience higher
temperatures than their wealthy, white, educated, English-speaking counterparts. Isolated elderly is
the only tested indicator that did not significantly correlate with higher temperatures.
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Table 2. Results of Student’s t-tests: Statistical significances. Tests which have a p-value greater than
0.05 are considered to have failed to reject H0.

Variable Description t-Statistic p-Value 95%
Interval—Low

95%
Interval—High Conclusion

Extreme Poverty Percent of population below
50% of the poverty line 2.0848 0.0378 0.009 ◦C 0.317 ◦C Reject H0

High Racial
Diversity

Percent of population who do
not identify as ‘white’ 5.7579 1.565 × 10−8 0.274 ◦C 0.558 ◦C Reject H0

Low Education
Percent of population without

a high school diploma
or equivalent

7.8371 3.359 × 10−14 0.402 ◦C 0.672 ◦C Reject H0

Isolated Elderly Percent of population who are
65+ years old and live alone −0.0709 0.994 −0.221 ◦C 0.206 ◦C Fail to Reject H0

Poor English
Skills

Percent of population with
poor English speaking abilities 6.0897 2.446 × 10−9 0.297 ◦C 0.580 ◦C Reject H0

3.3. Exposure and Access to Refuge

The network distance analysis of public refuge access shows that 3.4–32.7% of the city’s population
can access a refuge on foot, depending upon walking speed (Table 3, Figure 2). These cooling centers
are most numerous in North and Northeast Portland, while the farthest eastern and western regions of
the city offer fewer options for public refuge.

Table 3. Percentage of the city having access to one or more public heat refuges (cooling centers).

Slow Walking Speed Average Walking Speed Fast Walking Speed

Access to Public Refuges 3.4% 16.9% 32.7%

Figure 2. Catchment areas of public heat refuge access for slow, average, and fast speeds.

Based on the results of covariance analyses, distinct inconsistencies emerge and define
disproportionate exposure to high temperatures, and accessibility to CAC and public refuges (Table 4).
The figures in this table represent expected changes in the dependent variable for a single-unit increase
of the independent variable in question. For example, the −1.515 value between “White” and “UHI”
indicates that for a 100% increase in white population, a 1.515 degree Celsius decrease in temperature
would be expected.
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Table 4. Results of covariance analysis: relationship between socio-demographic factors (independent
variable), heat exposure, and refuge (dependent variables).

Socio-Demographic Indicators

White Black AIAN Asian NHPI Hispanic Children Elderly

Expected Temperature
Change (C)—for single

unit increase of
socio-demo indicators

−1.515 ** 1.949 ** 3.089 1.008 3.471 ** 2.010 ** 4.620 ** −2.114 **

Central Air Conditioning
(CAC units) 96.196 ** −90.034 −552.782 −45.506 −339.324 −111.992 −305.086 * 58.325

Refuge:
Fast Speed −1.290 * 5.917 ** 6.104 −4.839 ** 1.146 −0.767 1.125 −4.103 **

Average Speed −0.365 2.175 ** 2.779 −2.043 ** 0.293 −0.492 0.666 −1.764 **
Slow Speed −0.004 0.293 * 0.280 −0.370 ** −0.056 −0.069 0.144 −0.390 **

Note: * (p ≤ 0.05); ** (p ≤ 0.01).

3.3.1. Exposure to Urban Heat

The white and elderly populations have a negative relationship with UHI (−1.515 and −2.114,
respectively), which is statistically significant. This means that census blocks with a higher number
of white residents and older adults as a percentage of the total census block population are more
likely to have lower temperatures during an urban heat event. For example, for every 10% increase in
the white population, temperatures are lower by 0.1515 ◦C on average during a heat event. By contrast,
a larger black/African American population, along with NHPI, Hispanics, and young children all
have a positive linear relationship with UHI. For example, the coefficient for NHPI is 3.471, meaning
that for every 10% increase in NHPI, of the total census block population, temperatures are higher by
0.3471 ◦C on average. The share of AIAN and Asians do not have a statistically significant relationship.
This analysis is based solely on demographic characteristics as they relate to temperature and does
not explicitly account for the presence of buildings, trees, or other factors which influence urban heat.
However, it may be inferred that those groups experiencing the highest temperatures are located
in areas which lack heat-ameliorating infrastructure, or possess built urban features that exacerbate
heat [21,22].

3.3.2. Central Air Conditioning (CAC) Units per Area

Only the white population has a significant positive relationship with CAC per area (km2).
On the other hand, only young children have a negative linear relationship with CAC, which
is statistically significant. For every 10% increase in white population, of the total census block
population, CAC units are likely to be higher by 9.6 units per square km, and for every 10% increase in
young children, CAC units are likely to be less by 30.5 units on average. The share of black/African
American residents, AIAN, Asians, NHPI, Hispanics, and the elderly do not have a statistically
significant coefficient.

3.3.3. Public Cooling Centers

When assuming the average walking speed, only the black/African American population has
a positive relationship with accessibility to public heat refuges. On the other hand, Asians and
the elderly have a negative linear relationship with public heat refuges in the city. For every 10%
increase in black/African American population of the total census block population, the residents have
more access by 0.22 public heat refuges on average, and for every 10% increase in Asians, the residents
have less access by 0.20 public heat refuges. Other tested socio-demographic characteristics do not
have statistically significant relationships with the accessibility to public heat refuges.
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4. Discussion

This study examined socio-demographic factors in relation to the distribution of urban heat in
an attempt to better understand vulnerability based on (1) disproportionate heat exposure among
socio-demographic groups; and (2) disproportionate access to refuge (either public cooling facilities
or residential central air conditioning), resulting in heightened or lowered adaptive capacity. Overall,
results indicate that populations with low adaptive capacity characteristics also experience high
exposure, and that access to refuge is significantly influenced by socio-demographic status.

A series of Student’s t-tests were performed to test the hypotheses that the difference between
“high” and “low” adaptive capacity groups were significantly greater than 0. The results of the study,
with the exception of the variable isolated elderly, allow rejection of the null hypothesis, and indicate
that populations with characteristics of low adaptive capacity do experience higher temperatures
than those with high adaptive capacity within the study area. Additionally, the analysis showed
significantly higher temperatures in the area directly surrounding affordable housing when compared
to a random sample of non-affordable (i.e., regular) housing from similar block groups.

We focused on isolated elderly specifically because they have historically been disproportionately
impacted by heat waves in other parts of the U.S. [39,40], though similar patterns are not statistically
significant in the City of Portland. In fact, the observed non-significance of the isolated elderly (percent
of the population 65+ years old and who live alone) could be related to the spatial nature of the census
block group geographies. A test for spatial autocorrelation conducted using Moran’s I [56] showed
that, while census block groups with a high percent of isolated elderly have statistically significant
clustering (z-score = 2.921, where 0 is random; p-value = 0.0035), they are far more random in spatial
distribution than the variables for extreme poverty (z-score = 6.411; p-value ≈ 0), high racial diversity
(z-score = 15.475; p-value ≈ 0), poor English skills (z-score = 15.673; p-value ≈ 0), and low education
(z-score = 17.787; p-value ≈ 0). This notable difference in spatial autocorrelation shows that block
groups with high levels of isolated elderly populations are more randomly distributed than the other
socio-demographic variables, thus increasing the chances that they will have a more randomized
exposure to extreme heat and a less significant Student’s t-test result.

The accessibility analysis revealed that walking speeds, as they relate to the distribution of cooling
centers, greatly affect the percentage of areas in the city having access to heat refuge. At the slower
walking speed (1.4 km per hour), only 3.4% of residents have access; at the average speed (3.5 km
per hour), the percentage increases to 16.9%; and at the fast speed (5.6 km per hour), it increases to
32.7%. This finding reveals that even in the best case scenario (fast speed), less than one third of
the population can access a public heat refuge. This may be especially meaningful for individuals
with mobility challenges, such as those using wheelchairs, those with pre-existing health conditions,
and bedridden patients, though such groups have not been included in this study.

The covariance analysis found racial and age-related disparities in distribution of UHI, CAC,
and walkable access to heat refuges. Risk factors concentrate on some socio-demographic groups,
especially young children. They are more likely to live in census blocks which are hotter during urban
heat events, and with a smaller number of CAC units. In contrast, white populations tend to live in
census blocks with less UHI effect, and more CAC units. Black/African American populations tend
to have better accessibility to public heat refuges, which may prove helpful if they are concentrated
in high-heat census block groups. While analyses focusing on environmental justice have found that
non-white communities are disproportionately living near point sources, urban heat and the access to
refuge arguably represent novel concern that may further deepen the inequities in society.

This study does not offer a complete exploration of the factors which determine why certain
socio-demographic groups cluster in areas experiencing higher temperatures. This is a complex
question that would require a complete study of its own, though some of the likely contributing
factors are known to researchers. Urban development patterns often feature lower rents in areas
near large roads and buildings [57], both of which can amplify urban heat effects. Assuming
individuals with limited financial means seek out lower rent, this increases their likelihood of locating
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in areas with higher heat stress. A second possible factor relates to socialization and, in some cases,
spatial isolation of minority communities. Such groups have a history of building social capital
by co-locating in neighborhoods, as well as being coercively isolated in specific locations [58–60];
this could result in apparently heightened heat exposure for such groups, simply due to their
proximity. In the case of Portland, local development practices have typically placed large trees
and other heat-ameliorating features in higher-income neighborhoods [61], exacerbating heat exposure
of low-income and minority communities who have historically been excluded from these areas.
These are multifaceted relationships that differ across cities, and are outside the purview of this study.
However, it is useful to consider the underlying causes of physical clustering and resulting exposure.

One major drawback to the analyses in this study is the geographic format of the data.
The irregular polygon geometry of the census block group data relies on areal aggregation to protect
the anonymity of individuals; this aggregation of population and heat data into enumeration units can
‘smooth’ the dataset, eliminating extreme highs and lows in the process of representing the data with
a single mean value. This complication is difficult to avoid, as the block group geometries employed
in this study are the highest resolution datasets available with the required socio-demographic
information. Additionally, the Modifiable Areal Unit Problem (MAUP) may introduce error when
using enumeration units such as census block groups [62]. A potential alternative to this census-based
study would be to create an entirely new survey of randomly sampled households in the region.
This potential new study could allow for a building-level analysis similar the one performed here for
affordable housing, but for all socio-demographic variables. A survey with a sample size high enough
for statistically sound inference and analysis would be time consuming and costly, however it could
potentially reveal more accurate or meaningful results.

This study is also lacking in a key piece of information which would provide a more complete
understanding of vulnerability; though exposure and adaptive capacity have been well explored,
sensitivity has not, mainly because reliable data on health, genetics, and lifestyle choices are difficult to
obtain. For this reason, the definition of vulnerable populations may not be fully accurate because
we do not accurately know whether individuals do not, in fact, have access to other forms of
refuge (e.g., ductless heat pump, swimming pool, alternative residences, etc.). At the same time,
at the population level, the present study finds significant associations between high exposure and low
adaptive capacity, which provide meaningful direction for decision makers to prioritize those areas
and groups that are likely to be at high risk.

Next Steps for Practitioners

The results of this study may serve as a guide for practitioners in Portland, Oregon, directing
attention to those areas of the city most at risk of extreme heat exposure. However, socio-demographic
indicators can only reveal general characteristics of a population; as such, community engagement in
these priority areas will be a key strategy moving forward. These results suggest that practitioners will
need to meet with community members directly to better understand what they experience during
a heat wave, how they adapt, and what they perceive their needs and strengths to be. Rather than
offering strictly external monetary or technological support, sustainable solutions may be reached by
working with local organizations and individuals to build internal capacity.

Given the diverse nature of marginalized groups exposed to extreme heat, it will be helpful for
the City of Portland and Multnomah County to release heat-related materials for such an audience.
Information regarding public refuges and heat safety, as well as heat wave warnings should be issued
in multiple languages and formats (print, online). Messaging tailored to specific groups may also be
helpful. It is further recommended that government agencies work with community organizations to
disseminate information and provide refuge, as marginalized populations may be wary of government
programs. Although this particular study pertains to Portland, the development of inclusive materials
and interventions is a best practice for all cities.
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5. Conclusions

This study provides compelling evidence that extreme heat exposure is an environmental
justice issue. Exposure and adaptive capacity are clearly associated with socio-demographic
differences, and many marginalized, low adaptive capacity groups experience disproportionately
high temperatures. As low-income populations and non-white populations are presumably most
vulnerable to heat-related malady, it is imperative that local governments and practitioners recognize
and address social disparities in heat resilience efforts. A detailed local survey process is recommended
to overcome limitations of available demographic data, though this study should provide a strong
basis for program planning and outreach. Though these results are specific to Portland, Oregon, such
relationships likely exist elsewhere, and it is suggested that an environmental justice lens be applied to
future study of heat resilience.
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