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Abstract: Silver nanoparticles (AgNP) are increasingly emitted to the environment due to a rise in
application in various products; therefore, assessment of their potential risks for biota is important.
In this study the effects of AgNP at environmentally relevant concentrations (0.6–375 µg kg−1 soil)
on the soil invertebrate Folsomia candida in OECD (Organisation for Economic Co-operation and
Development) soil was examined at different soil water contents. Animals were retrieved by heat
extraction, which had an efficiency of about 90% compared with the floatation method. The tested
water content range is set by OECD Guideline 232 (40–60% of the maximum water holding capacity,
WHC), and we detected significant differences in toxicity due to these. With AgNO3, used as an
ionic control, the number of juveniles significantly decreased only at 40% WHC, which might be due
to dilution of the toxicant at higher soil water content. In turn, at 60% WHC, the reproduction of
F. candida significantly increased in the presence of AgNP compared with in the control. However,
at this water content, the required number of juveniles in the control treatment was not reached in
three independent tests. The fact that the OECD validity criterion is not met indicates that the soil
conditions are not suitable for reproduction at 60% WHC.
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1. Introduction

In recent years the use of silver nanoparticles (AgNP) has become increasingly widespread across
many areas of application. These range from cosmetics and medical technologies to construction
materials and coatings of textiles [1,2]. The main characteristic for which AgNP are applied is their
antimicrobial effects. AgNP can be emitted during production, use, and disposal of such products
and therefore pose a risk to the environment. Modelling of AgNP life cycles predicts that major
proportions of emissions will end up in soils. Currently the environmental concentrations are still very
low, for example, 20–350 ng·kg−1 [3] in Denmark, but are expected to increase. Numerous studies have
examined the toxicity of AgNP to soil invertebrates and detected negative effects on reproduction,
survival, biomass, and gene expression (e.g., [4–9]). Species-, particle-, and concentration-dependent
effects were found. It was also detected that soil properties influence the behavior and, consequently,
the toxicity of AgNP in soil. The pH, organic matter content, ionic strength, and clay content have been
identified as important factors in this context [9–14]. This means that depending on the characteristics
of the soil used in a study, the observed effects of AgNP might vary, causing a different risk assessment
of this new contaminant.
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To standardize toxicity testing across institutes around the world, the OECD (Organisation for
Economic Co-operation and Development) has established guidelines for toxicity testing of chemicals.
It has been agreed upon by various experts that there is a need to amend the existing guidelines to make
them more suitable for the testing of nanomaterials [15,16]. In a meeting for the OECD Working Party
on Manufactured Nanomaterials, it was discussed that most OECD guidelines for ecotoxicological
testing are generally applicable to the use of nanomaterials, yet the experts also identified a long
list of open questions and research needs [15]. OECD Guideline 232 in this study specifies that the
composition of an artificially mixed soil used for testing the collembolan Folsomia candida should be
74% sand, 20% kaolin clay, and 5% peat and the water content should be adjusted to 40 to 60% of the
maximum water holding capacity of the soil [17].

The aim of this study is to test whether the soil water content influences the toxicity of the standard
AgNP, NM-300K, and AgNO3 in OECD soil. We propose that the bioavailability of Ag changes when
the water content in the soil changes, which can affect its toxicity to F. candida. Low concentrations in
the µg range are tested to ensure environmental relevance.

2. Materials and Methods

2.1. Chemicals

AgNP NM-300K were obtained from the Joint Research Center as they are recommended for
testing of nanomaterial hazards by the European Commission and the OECD [18]. NM-300K contains
10.16% w/w Ag in nano form and is stabilized by the agents polyoxyethylene glycerol trioleate
and polyoxyethylene (20) sorbitan mono-laurat (Tween 20), each 4% w/w, which prevents particle
aggregation because of sterical repulsion [19]. From this solution, a 2% w/w stock solution in deionized
water was prepared. This vial (20 mL) was sonicated (Bandelin, Sonorex AK100H, Mörfelden-Walldorf,
Germany) for 15 min before a 100 mg L−1 concentration was prepared for the test. All NM-300K
solutions were stored in the dark at room temperature. Additionally, a NM-300K dispersion without
silver was purchased from the Joint Research Center and stored in the same way as NM-300K.

For characterization, we summarize the findings of Klein et al. (2011) [18] and Köser et al.
(2017) [7]; for further details, refer to these publications. NM-300K are about 15 nm in size and 99% of
the silver particles are below 20 nm [18]. In demineralized water, NM-300K particles (10 mg Ag L−1)
have an average hydrodynamic diameter of about 40 nm and a zeta potential of −15 mV [20].
The 10 mg Ag L−1 NM-300K dispersion was colloidally stable for 14 days [20].

AgNO3 powder (≥99.0% purity, Sigma-Aldrich, Munich, Germany) was used as an ionic control
and the stock solution (100 mg Ag L−1) was prepared immediately before application to the soils with
demineralized, filtered water.

2.2. Toxicity Test

The miniaturized form [21] of OECD Guideline 232 for testing chemical toxicity was applied.
For this, four 9- to 12-day-old animals were introduced to 10 g (dry mass) previously spiked and
thoroughly mixed OECD soil. The pH of the soil was adjusted to 6.1 with CaCO3. AgNP were
tested at 0.6, 3, 15, 75, and 375 µg Ag·kg soil−1 AgNP, and AgNO3 was applied at 0.6, 15, and
375 µg Ag·kg soil−1. The dispersant controls contained the same amount of NM-300K dispersant
as the 0.6, 15, and 375 µg kg−1 treatments. All these treatments were performed at 40, 50, and 60%
maximum water holding capacity (WHC) each and were replicated 5 times. A water control of each
soil water content was replicated 8 times. In addition to this test, the controls with three different
water treatments were independently conducted at two other points in time. During the test, the
temperature was set to 20 ◦C and the light/dark rhythm in the incubator was 12:12 h. Bakers’ yeast
(Dr. Oetker, Bielefeld, Germany) was provided as food at the test start and added again after 14 days.
The water content was checked gravimetrically in a weekly rhythm and adjusted when needed. At the
end of the 28-day reproduction test, a dynamic heat extraction with a MacFadyen Extractor (ecoTech
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Umwelt-Meßgeräte GmbH, Bonn, Germany) was performed. The temperature regime was set to
increase by 5 ◦C every 12 h, starting at 25 ◦C and ending at 40 ◦C. After the extraction into ethylene
glycol, the animals were counted under a stereoscope (Olympus SZH10 Research Stero, Tokio, Japan).

2.3. Pre-Test of Extraction Method

In a pre-test, the extraction efficiency of the heat extraction was identified. The goal was to
establish whether the water content influenced the extraction efficiency. Control treatments of 40, 50,
and 60% WHC were prepared the same way as described above and after the 28 day test a dynamic heat
extraction was performed. The abovementioned temperature regime was applied and an additional
floatation extraction was done with the soil after the heat extraction.

2.4. Data Analysis

In each sample, the number of juveniles and adults was determined at the end of the test. Statistical
analyses were performed with R Studio (version 1.1.383, RStudio Inc., Boston, MA, USA). The data
was first checked for normality with the Shapiro-Wilk test (p > 0.05). If necessary and possible, the data
was transformed and a one-way ANOVA and post hoc Dunnett test (p < 0.05) were applied. If this was
not possible, Wilcoxon tests or Kruskal-Wallis tests with post hoc Dunn tests (p < 0.05) were used.

Additionally, interactions between the chemical applied (AgNP, AgNO3, dispersant, water control)
and the soil water content were tested with a generalized linear model (p > 0.05). Here, a quasi-Poisson
distribution was chosen.

3. Results

Adult mortality was not affected by any of the tested treatments; therefore, only data on F. candida
reproduction is shown in the following.

The extraction efficiency was not significantly different between treatments with the three different
soil water contents. In all treatments the efficiency of the heat extraction was 90% of the total number
of juveniles or higher (Figure 1).

Figure 1. Extraction efficiency of the dynamic heat extraction at different soil water contents.
Mean number of juveniles ± SE (n = 8) in untreated water controls after a 28 day reproduction test.

All but one treatment with 40% WHC did not show any significant difference in the number of
juveniles to the control (Figure 2). Only soil with 15 µg Ag·kg−1 AgNO3 showed a significant decrease
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in juveniles compared with the control (Wilcoxon test). There was also significantly less reproduction
in this AgNO3 treatment compared with the 15 µg Ag·kg−1 AgNP (Wilcoxon test).

Figure 2. Effects of NM-300K dispersant (a), silver nanoparticles (AgNP) NM-300K (b), and AgNO3 (c)
at 40% maximum water holding capacity on F. candida reproduction. Results of a 28-day reproduction
test based on the miniaturized OECD (Organisation for Economic Co-operation and Development) test
of Filser et al. (2014) [21]. The unit is µg Ag·kg−1 soil, and the dispersant treatments contain the same
amount of dispersant as the AgNP treatment labeled with the same concentration. Asterisks indicate
significant statistical differences to the respective control (Wilcoxon test, p > 0.05). Mean number of
juveniles ± SE, n = 5; control: n = 8.
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In the treatments with 50% WHC, none of the treatments with AgNP, dispersant, or AgNO3 were
significantly different from the control (Figure 3).

Figure 3. Effects of NM-300K dispersant (a), AgNP NM-300K (b), and AgNO3 (c) at 50% maximum
water holding capacity on F. candida reproduction. Results of a 28-day reproduction test based on the
miniaturized OECD test of Filser et al. (2014) [21]. The unit is µg Ag·kg−1 soil and the dispersant
treatments contain the same amount of dispersant as the AgNP treatment labeled with the same
concentration. Mean number of juveniles ± SE, n = 5; control: n = 8.
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When the WHC was 60%, the two highest AgNP concentrations showed significant increases
in reproduction compared with the control (Wilcoxon test). At the concentration of 375 µg Ag·kg−1,
the treatment with AgNP had significantly more juveniles than the one with AgNO3 (Figure 4).
A significant interaction between the chemical applied and the soil water content was detected
(generalized linear model, p > 0.05).

Figure 4. Effects of NM-300K dispersant (a), AgNP NM-300K (b), and AgNO3 (c) at 60% maximum
water holding capacity on F. candida reproduction. Results of a 28-day reproduction test based
on the miniaturized OECD test of Filser et al. (2014) [21]. The unit is µg Ag·kg−1 soil and the
dispersant treatments have the same amount of dispersant as the AgNP treatment labeled with the
same concentration. Asterisks indicate significant statistical differences to the respective control
(Wilcoxon test, p > 0.05). Mean number of juveniles ± SE, n = 5; control: n = 8.
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When comparing the controls of the three different water contents, a significant difference
(Kruskal–Wallis and post hoc Dunn test) in number of juveniles between the 40%, 50%, and the
much lower 60% WHC treatments becomes apparent (Figure 5). In contrast, the 40% and 50% are not
significantly different from each other. This relationship was also detected in two other independent
repetitions of the water controls with eight replicates each (data in Supplementary Figure S1).

Figure 5. F. candida reproduction in the control treatments with different water contents. The mean
number of juveniles after a 28 day reproduction test. The three treatments differ in percent of the
maximum water holding capacity (WHCmax) of OECD soil. Mean ± SE, n = 8.

The other treatments were also compared between WHCs and no differences were found between
40% and 50% WHC in any treatment (Table 1). The number of juvenile F. candida was significantly
lower in the 15 µg Ag·kg−1 AgNP treatment with 60% WHC than in the 40% and 50% WHC treatments
(ANOVA and post hoc Dunnett test). The same was the case in the highest AgNO3 treatment.
When 15 µg Ag·kg−1 AgNO3 was added, the treatment with 50% WHC had significantly higher
reproduction than did the 60% treatment.

Table 1. Comparison of F. candida reproduction between treatments with different water content
(percent of maximum water holding capacity). The unit is µg Ag·kg−1 soil and the dispersant
treatments contain the same amount of dispersant as the AgNP treatment labeled with the same
concentration. n.s. indicates no significant difference in the number of juveniles after the 28-day test.
If there is a significant difference between the respective treatments, the p-value of the post hoc Dunnett
test (p > 0.05) is shown. n = 5.

Treatment Concentration (µg·kg−1) 40%–50% 40%–60% 50%–60%

AgNP 375 n.s. n.s. n.s.
AgNP 75 n.s. n.s. n.s.
AgNP 15 n.s. 0.003 0.007
AgNP 3 n.s. n.s. n.s.
AgNP 0.6 n.s. n.s. n.s.

dispersant 375 n.s. n.s. n.s.
dispersant 15 n.s. n.s. n.s.
dispersant 0.6 n.s. n.s. n.s.

AgNO3 375 n.s. 0.004 0.004
AgNO3 15 n.s. n.s. 0.036
AgNO3 0.6 n.s. n.s. n.s.

4. Discussion

The pre-test showed that the extraction efficiency of F. candida is independent of the water content
of the OECD soil. Therefore, any observed differences between soil water contents can be attributed to
the respective treatments and not to the methods applied.
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4.1. No Dose-Response Curves for Silver Treatments

Within the tested range of concentrations of silver, no dose–response effect of silver was observed
in any of the soil water treatments. This might be due to the low concentrations chosen for this toxicity
assay which show low or no effects on the reproduction of F. candida. Other authors, who examined
AgNP in a Collembola reproduction test, used much higher exposure concentrations and, depending
on the particles and soil used, the EC50 values ranged from 540 to >1855 mg Ag·kg−1 [9,22,23]. The goal
of the present study was, however, to focus on environmentally relevant concentrations to increase
the realism of the conducted experiment [11]. This is not the first study to find no dose–response
relationships when nanoparticles were applied. Simonin et al. (2017) [24] exposed ammonia-oxidizing
bacteria and archaea as well as nitrite-oxidizing bacteria to low concentrations of TiO2NP and did
not find an increase in toxicity with concentration for any of the microorganisms. In their study,
several tests with low and high concentrations caused the highest toxicity. Studies with various cells,
bacteria, and higher biological models have shown hormetic dose–responses to AgNP (reviewed
by [25]). The increase of reproductive output in the 60% WHC treatment might also show hormesis
from AgNP exposure. Further research is needed to assess the molecular mechanisms of hormesis
caused by AgNP and other nanomaterials [25].

4.2. Different Effects of AgNP and AgNO3 with Different Soil Water Contents

Overall, the results of the reproduction test can be summarized as in Table 2. AgNP did not show
any effects at 40% and 50% WHC, while they were significantly beneficial at 60% WHC with the tested
concentrations. The dispersant did not significantly influence the reproduction of F. candida at any
soil water content. AgNO3 significantly decreased reproduction at 40% WHC; however, this effect
disappeared at higher water contents. The varying effects of the chemicals at different water contents
were supported by a significant interaction between the tested chemical and soil moisture effect on
F. candida reproduction.

Table 2. Summary of the effects of AgNP, AgNO3, and dispersant on F. candida reproduction with
different soil water contents in the tested concentration range. ++ = strong increase, 0 = no difference,
− = decrease.

Treatment 40% WHC 50% WHC 60% WHC

AgNP 0 0 ++
AgNO3 − 0 0

dispersant 0 0 0

At the two highest AgNP concentrations, the reproduction of F. candida increased at 60% WHC,
which might be due to indirect effects within the soil community [11]. AgNP have antimicrobial effects
and can therefore kill microorganisms in the soil that might be harmful to Collembola [26], freeing
F. candida from pathogens and allowing higher reproduction. A second possibility is that the food
availability for Collembola changed due to AgNP exposure in the soil [27]. Fungi are an important
part of the collembolan diet and F. candida has been shown to be fungivorous [28]. Findings by
Carbone et al. (2014) [29] indicate that bacteria are more sensitive to AgNP than fungi and it is known
that fungi are more resistant to metal stress than bacteria [30]. This might cause higher reduction of
bacteria than of fungi in AgNP-treated soil, possibly reducing the competition for fungi and releasing
nutrients from dead bacteria for fungi to grow on. With an increase in fungi growth, Collembola would
have more available food, allowing stronger reproduction. As the beneficial effect of AgNP to F. candida
was only detected with the highest soil water content, this indicates that the potential indirect effects
are stronger when more water is available. Bacteria proportions in soil microbial communities increase
with higher water content while fungi thrive in soil with less water [31], which would cause a shift in
the fungi/bacteria ratio, opposite of the described changes that would cause an increase in fungal food.
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However, due to the lack of information on the microbial community compositions in the applied
test system, no clear explanation can be given for the observed effects. Further studies investigating
these aspects are therefore needed. Overall, the favorable effects of AgNP in comparison with the
control with 60% WHC in this test should not be overinterpreted because the test does not meet the
OECD validity criteria. However, independent of whether these results can be used for official risk
assessment, they give interesting new insights on the complexity of AgNP effects in soil systems.

The effect of AgNP at 375 mg Ag·kg−1 on reproduction is significantly different from the effect of
AgNO3 at the same concentration in the 60% WHC treatment. A possible explanation for the lack of
promotion of reproduction with AgNO3 might be that it is more toxic to F. candida than AgNP [9,22,23].
Additionally, the indirect effects described above might not be caused by AgNO3 because the ion
dissolution from AgNP is slower and therefore has long-term antimicrobial effects while AgNO3

dissolves much faster [6]. Further chemical analyses of silver in OECD soil would be needed to support
this possible explanation of the results.

AgNO3 was toxic at 40% WHC within the tested concentrations, while not at higher soil water
contents. Dilution is higher in soil with a higher soil water content, which might cause decreased toxic
effects. When van Gestel and van Diepen (1997) tested whether the soil water content affects cadmium
toxicity to F. candida, they detected a difference in reproduction between 28 and 63% WHC. After six
weeks, the number of juveniles increased with a decrease in soil water content. This difference was
particularly pronounced at low concentrations [32], similar to the concentration range tested in the
present study. Another possibility is that silver is spread around more in the soil when there is more
pore water, which increases the likelihood of silver getting in contact with organic material to which it
can bind [20]. Silver bound to organic material or other compounds in the soil is not as easily taken up
by the collembolans and can therefore cause less toxicity [13]. Although at first sight contradictory,
dilution also renders a hypothetical explanation as to why the AgNP effect was only observed at
60% WHC: Nanoparticles tend to agglomerate with increasing concentration, reducing their tendency
to dissolve. Thus, at 60% WHC, more toxic action (in this case towards bacteria, see above) can be
expected. Independently of what causes the dissimilarity in AgNP and AgNO3 effects, it is important
to note that if the test would have been only performed with one of the three water contents, the
assessment of toxicity would have been different even though the test was conducted in accordance
with the OECD guideline.

4.3. Less Suitable Conditions for F. candida with 60% WHC

When comparing the reproduction independently of any contamination, it became apparent that
F. candida reproduction was significantly higher in OECD soil when the soil water content was lower.
This was detected in three independent repetitions of the control treatments with 40, 50, and 60% WHC.
The mean number of juveniles was lower than 100 in the 60% WHC controls and therefore did not meet
the validity criterion of the OECD guideline (OECD Guideline 232). F. candida is resistant to desiccation
and adapted to dry soil conditions [28]. Soil aggregates are larger with a higher water content, which
might cause anoxic conditions within these aggregates. Such conditions can be endured by F. candida
for up to 18 h [28]; however, they might not allow reproduction. Also, the pore space available for
Collembola to inhabit decreases with an increase in soil water content. Therefore density-dependent
competition might become an issue, causing lower reproduction. It has been observed on charcoal
culturing plates that when the water saturation is too high, Collembola hatching is less successful
due to fungal and bacterial growth on the eggs (unpublished data). This might also take place in soil,
further reducing the number of juveniles in OECD soil with a higher water content. Overall conditions
seem less suitable for F. candida reproduction in soil with a higher water content and this might affect
their stress tolerance also when testing other chemicals.
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5. Conclusions

The soil water content influences the effects of AgNP NM-300K and AgNO3 in OECD soil in
the range of tested, environmentally relevant concentrations. Investigating the reasons behind these
differences should be the focus of further studies to assess how ecological and chemical parameters
affect the bioavailability and toxicity of AgNP in complex soil matrices. The results of this study call
attention to possible variability of results and, therefore, differences in risk assessment that can arise
when soil is adjusted to different water contents.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/652/s1,
Figure S1: Reproduction in the controls with 40%, 50%, and 60% maximum water holding capacity (WHC).
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