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Abstract: The incidence of tick-borne diseases caused by Borrelia burgdorferi sensu lato, Anaplasma
phagocytophilum and Rickettsia spp. has been rising in Europe in recent decades. Early pre-assessment
of acarological hazard still represents a complex challenge. The aim of this study was to model Ixodes
ricinus questing nymph density and its infection rate with B. burgdorferi s.l., A. phagocytophilum and
Rickettsia spp. in five European countries (Italy, Germany, Czech Republic, Slovakia, Hungary) in
various land cover types differing in use and anthropisation (agricultural, urban and natural) with
climatic and environmental factors (Normalized Difference Vegetation Index (NDVI), Normalized
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Difference Water Index (NDWI), Land Surface Temperature (LST) and precipitation). We show that
the relative abundance of questing nymphs was significantly associated with climatic conditions,
such as higher values of NDVI recorded in the sampling period, while no differences were observed
among land use categories. However, the density of infected nymphs (DIN) also depended on the
pathogen considered and land use. These results contribute to a better understanding of the variation
in acarological hazard for Ixodes ricinus transmitted pathogens in Central Europe and provide the
basis for more focused ecological studies aimed at assessing the effect of land use in different sites on
tick–host pathogens interaction.

Keywords: land use; acarological hazard; Borrelia burgdorferi sensu lato; Anaplasma phagocytophilum;
Rickettsia spp.; normalized difference vegetation index; density of infected nymphs

1. Introduction

Human alteration of natural ecosystems is now evident on more of 75% of the Earth’s ice-free land
mass as a result of urbanization, agricultural and other land uses, with less than a quarter remaining
as intact habitats [1]. Urbanization, in particular, has increased worldwide in recent decades and more
than half of the world’s population now lives in urban areas, with the expectation that 66% will live in
urban areas by 2050 [2,3].

Human land use and exploitation of natural ecosystems represent one of the major drivers
of zoonotic disease emergence by disrupting disease dynamics and cross-species transmission in
multi-host, multi-pathogen systems (‘perturbation hypothesis’) and/or by increasing exposure of hosts
to novel pathogens (‘novel pathogen pool hypothesis’) [4]. However, understanding the mechanisms
by which land use change leads to disease emergence is still rudimentary.

Vector borne diseases, and in particular those transmitted by ticks, appear to be particularly
sensitive to land use changes [5] and, therefore, they represent a valuable model to quantify the
indirect impact of anthropization and land use changes on human and animal health.

The widespread occurrence of the castor bean tick, Ixodes ricinus in Europe, and the pathogens
it transmits, together with the rise of clinical cases of tick-borne diseases (TBDs) in humans and
livestock, have made TBDs one of the major One Health issues in recent years [6]. I. ricinus has
a broad ecological plasticity and capacity to exploit anthropic landscapes, and its distribution has
increased in the last three decades as a result of more favorable biotic and abiotic conditions [5].
Concomitantly, the annual incidences of bacterial diseases such as Lyme borreliosis and rickettsiosis
have also increased steadily [7,8]. Several authors have suggested that the prediction of ‘acarological
hazard’ in different habitat conditions could be useful to public health authorities for planning and
implementing targeted educational and preventive actions for TBDs [9,10]. Hazard is defined in
epidemiological risk assessment procedures as “the set of circumstances that could lead to harm” [11],
i.e., in this case, the occurrence within natural enzootic cycles of certain tick-borne pathogens (TPBs)
with known pathogenic potential. In turn, “risk is the actual exposure of susceptible hosts to TBPs” [11]
that takes into account the interaction between infected ticks and humans [11]. The acarological
hazard depends on the co-occurrence of TBPs, a competent and active vector (e.g., Ixodes ricinus) and
a competent reservoir host enabling the transmission in endemic cycles of the pathogens from infected
to uninfected ticks [12].

Predicting acarological hazard is challenging and, despite significant progress in estimating tick
occurrence and abundance, the approximation of infection rates in ticks is more complex, since this
is related to a series of parameters that are difficult to measure in the field: tick abundance and tick
seasonal activity, as well as the contact rate of infected ticks with reservoir hosts (where reservoir
capacity varies according to vertebrate species and their immune status) [13].
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The seasonal abundance of questing I. ricinus nymphs (considered the most relevant epidemiological
developmental stage) and their questing activity pattern are dependent on habitat structure, microclimatic
conditions, and the availability of tick-feeding hosts [14,15]. The prediction of spatial and temporal
distribution of I. ricinus based on ecological and climatic factors has progressed from studies capturing
the short term phenology of the ticks based on ground climate data with simple models [16] to
more complex ones based on remote sensing data using correlative [16,17] or modified matrix [18]
approaches. Remote sensing (RS) imagery has also proven to be very useful in predicting changes in
habitat and climatic conditions at different temporal and spatial scales, and it has been widely used to
map the distribution of several disease vectors [19], including I. ricinus [20–22].

Here, we attempt to assess the spatio-temporal variability of B. burgdorferi s.l., A. phagocytophilum
and spotted fever group (SFG) Rickettsia spp. infection in questing I. ricinus nymphs. Specifically,
we tested the associations between the abundance of host-seeking I. ricinus nymphs and the density
of infected nymphs (DIN) with a combination of RS parameters such as Land Surface Temperature
(LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI),
and climatic data obtained from interpolations of meteorological station data, such as accumulated
precipitation. To fit our models, we used multi-year field data on the abundance of questing I. ricinus
and prevalence of infection with TBPs from five EU countries. Our aim was to provide a first insight
on the variables affecting TBDs infection hazard on a wide geographical scale in sites with different
land use.

2. Materials and Methods

2.1. Questing Tick Data

Questing ticks were collected monthly during their peak activity in spring (April, May, June) from
2011 to 2013 from 19 sampling sites distributed across Italy, Germany, Slovakia, Czech Republic and
Hungary within the framework of the EU FP7 project EDENext (Figure 1).

Figure 1. Map of the 19 ticks sampling sites in Italy, Germany, Czech Republic, Slovakia and Hungary
(see Table 1).

In each country, urban, agricultural and natural sites were sampled (Table 1), defined according
to CORINE land cover classification layers with a spatial resolution of 100 m [23].

Specifically, urban sites belonged to category 1.4.1 i.e., green urban areas (these are areas with
vegetation within an urban context, ornamental and recreational character and public accessibility),
agricultural sites belonged to category 2.3.1 i.e., pastures (here are included areas with permanent
grassland), natural sites belonged to category 3.1.3 i.e., mixed forests (in these forests, shrub and bush
understorey is present and neither conifer or deciduous species predominate).
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Table 1. Description of study sites (see also Figure 1). Elevations were taken from Global Multi-Resolution
Terrain Elevation Data 2010 (mn30_grd layer [24]).

Country Site Number Sampling Site Land Use Category Altitude
(m a.s.l.) Latitude Longitude

Italy 1 Lamar Natural 784 46.128726 11.058944
Italy 2 Cavedine Agricultural 717 45.985402 10.963142
Italy 3 Pietramurata Natural 468 46.013258 10.927981
Italy 4 Trento Urban 285 46.035187 11.139236

Germany 5 Tussenhausen Natural 640 48.118279 10.589147
Germany 6 Kerschlach Agricultural 724 47.917142 11.212342
Germany 7 Englischer Garten Urban 514 48.150481 11.590053
Germany 8 Berg Starnberg Urban 659 48.110117 10.575944
Germany 9 Nymphenburger Schlosspark Urban 522 48.160814 11.492586
Germany 10 Dörnbergpark Regensburg Urban 345 49.015478 12.085803

Czech Republic 11 Pohansko Natural 162 48.727133 16.902319
Czech Republic 12 Valtice Urban 215 48.734911 16.753142
Czech Republic 13 Suchov Agricultural 426 48.897442 17.581928

Slovakia 14 Bratislava Urban 184 48.166667 17.066667
Slovakia 15 Fúgel’ka Natural 386 48.366667 17.300000
Slovakia 16 Rozhanovce Agricultural 280 48.750000 21.366667
Hungary 17 Pilisszentkereszt Natural 468 47.700833 18.884722
Hungary 18 Csabrendek Agricultural 159 47.053889 17.323333
Hungary 19 Budapest Urban 105 47.550278 19.052778

Questing ticks were sampled using the standard dragging method. A 1 m2 white blanket attached
to a rod was pulled over the vegetation along three established transects of 100 m2 (i.e., 0.01 ha)
per sampling site, covering an area of 300 m2. The blanket was checked for the presence of ticks on
both sides every 5 m. Ticks collected were put in vials, separately per transect, and brought to the
laboratory for identification and analyses. Although the dragging method preferentially captures
I. ricinus nymphs, underestimating the true tick abundance in the area and introducing a bias with
regard to instar composition (Mejlon et al., 1997), the goal in this study was to estimate temporal and
spatial variation of questing nymph abundance, so larval and adult stages were not included in the
analyses. All captured ticks were identified to species and life stage using a stereo-microscope and
reference keys [25–28]. Nymphs were individually placed in vials with 70% ethanol and stored at
−20 ◦C until DNA extraction.

Ixodes ricinus nymph counts were pooled over the sampling periods, and questing nymph density
(nymphs/hectare) for each year and site was computed. To assess the relative risk to public health,
the estimated DIN per hectare for each pathogen was calculated by multiplying the infection prevalence
for each pathogen (%) by the density of questing nymphs for each sampling site.

2.2. Molecular Analyses

Each partner laboratory screening of TBPs was performed by PCR-based methods with previously
published primers: in Italy, Borrelia spp., A. phagocytophilum and Rickettsia spp. were detected according to
Rijpkema et al. [29], Massung et al. [30], and Reye et al. [31], respectively, with minor modifications
(see [32]). In Germany and Slovakia, screening for Borrelia spp. was carried out according to
Derdáková et al. [33]. In Germany, Slovakia, Czech Republic and Hungary, detection of A. phagocytophilum
and Rickettsia spp. was carried out according to Courtney et al. [34] and Regnery et al. [35],
respectively; and described, for Germany in Overzier et al. [36,37] for Slovakia in Blaňarová et al. [38],
Svitálková et al. [39], Špitalská et al. [40] and Minichová et al. [41]; for the Czech Republic in
Venclíková et al. [42]; and for Hungary in Hornok et al. [43]. The comparability of results by each
partner laboratory was guaranteed by an inter-laboratory quality ring test of molecular PCR methods
for the detection of I. ricinus transmitted pathogens. Analyses for species/genospecies identification of
each pathogen were not carried out by all partner laboratories.
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2.3. Climatic and Environmental Data

Environmental predictors were selected based on published evidence of their importance to tick
populations [22,44–46]. For each sampling site, we obtained climatic and environmental data from
RS and interpolated climatic datasets. All environmental data were processed in GRASS GIS 7 [47],
and extracted from the spatial database at the locations corresponding to the sampling sites. Sampling
transect lengths are below the pixel size for most spatial data, so data averaging over a wider area was
not considered appropriate.

Land surface temperature (LST) data were obtained from EuroLST dataset [48]. These data were
collated from the Moderate Resolution Imaging Spectroradiometer (MODIS) products MOD11A1 and
MYD11A1. The original MODIS LST products were reconstructed (i.e., gap-filled to remove void pixels
due to clouds) and downscaled from 1000 to 250 m resolution, a higher resolution Digital Elevation
Model (DEM) [48]. For the analyses, daily reconstructed LST data were used to derive monthly and
seasonal mean temperature (3-month moving windows) for the current (t) and previous year (t − 1).
This 3-month aggregation has already proven to perform better as a predictor when compared with
shorter time windows [49]. We also obtained autumnal cooling [50] as the slope of a linear regression
between daily LST and DOY (day of year) over three months (August, September and October) [50].
Autumnal cooling is by definition only estimated for the year before each sampling period, while the
other variables are estimated both for the sampling year and the year before. Spring warming, on the
other hand, was estimated as the slope of a linear regression between daily LST and DOY (day of year)
over February, March and April of the current and previous year.

Precipitation was measured as total rainfall and number of days with rainfall per month, and in
a 3-month moving window as described above, from the gridded ECA&D dataset (European Climate
Assessment & Dataset, Version 13.1 [51]) at an approximately 25 km pixel resolution [52].

We obtained the NDVI from MOD13Q1, and the NDWI from MOD09A1. Both are MODIS
composite products (16 days and eight days, respectively) and have a spatial resolution of 500 m.
The gaps in NDVI and NDWI time series were filled and outliers removed using a harmonic analysis of
each series [53]. These variables were used as proxies for vegetation coverage (NDVI) and for available
environmental water (NDWI), which includes surface water as well as vegetation water content.
We also aggregated NDVI and NDWI data per month and seasonally (3-month moving window from
February to August) for the current year (year of sampling) and the year before samplings using the
arithmetic average. January NDVI and NDWI were not included in the analyses due to the presence of
snow cover, which can dramatically alter the reliability of satellite acquisition of these parameters [50].
Spring greening and spring wetting were estimated as the slope of a linear regression between NDVI
or NDWI, respectively, and DOY over three months (February, March and April) for the sampling and
previous year.

2.4. Statistical Analyses

We investigated the relationship between nymph density and DIN with a categorical variable
representing the land use category (agricultural, natural, urban) and several environmental and
climatic variables (i.e., LST, precipitation, NDVI and NDWI). All statistical analyses were performed
using R version 3.4.3 [54].

The code used for statistical analysis is available at [55].
Negative Binomial Generalized Linear Mixed Models (GLMM) (through the glmmTMB

package, [56]) were used to investigate the association between nymph density and land use category
accounting for environmental and climatic variables. Negative Binomial distribution was chosen to
account for overdispersion in the count data. DIN were modeled using Linear Mixed Models (LMM)
after log-transforming the DIN (through the lme4 package; [57]). In both analyses, country and year
were considered as random effects. All climatic and environmental variables were standardized
(i.e., by subtracting their mean and dividing by their standard deviation) before including them in
the models. The use of standardized variables was recommended as some explanatory variables,
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such as total precipitation, had a much larger range of variation compared to the rest of the
variables considered.

For all climatic and environmental variables, a preliminary analysis was carried out to ascertain
in which period they proved to be the best predictor of both total nymphs counted and DIN. Precisely,
for each environmental variable, univariate models with a single covariate (environmental variable) in
a specific temporal window were computed in turn. We considered fifteen different temporal windows
that were: (i) each of the six months from January to June during the year of collection (as no tick
collections were carried out after June); (ii) four wider windows obtained by aggregating a 3-month
period from January to June of the same year (i.e., January–February–March, February–March–April,
March–April–May, April–May–June); (iii) each quarter of the previous year; and (iv) the whole previous
year. Mean values were considered for each variable except for precipitation where the total over each
temporal window was computed.

For each variable (LST, precipitation, NDVI and NDWI), the temporal window producing the
lowest AIC (Akaike Information Criterion) was selected for inclusion in a subsequent full model.
Terms that were not significant for any of the temporal windows were not included in the full
model. The Variance Inflation Factor (VIF) was used to test for collinearity among all explanatory
variables in the full model, removing variables with VIF > 4 [58]. Following exclusion of collinear and
non-significant variables, we developed full models for both nymph density and DIN including the
remaining environmental and climatic variables, each measured over its optimum temporal window
as selected through preliminary analyses, along with the habitat type. Starting from the initial full
model, we carried out a model selection procedure (based on AIC) to find the best model for nymph
density and DIN for three different pathogens. Residuals of the best models (lowest AIC) were used to
check for model assumptions. For all models, we computed the variance explained (conditional R2)
following [59].

3. Results

3.1. Questing Nymph Abundance

In total, 17,832 ticks were collected of which 13,291 were nymphs. The highest value for questing
nymph density per country and per year (April–May–June period) was observed in Slovakia (average
value = 518.7 nymph/year/300 m2 (3 transects of 100 m2 per site); 95% confidence interval = 352.1–764),
while the lowest was recorded in the Czech Republic (79; 57.1–109.3) (Figure 2). The remaining
countries showed similar values (Italy: 266.4, 140–506.9; Germany: average = 278.7, 190.8–407.2;
Hungary: 222.2, 210.6–234.4). The highest value for questing nymph density per land use per year
(April–May–June period) was observed within natural sites (370.9, 256.4–536.5), compared to the urban
sites (256.3, 153.5–428) and agricultural ones (208.9, 144.2–302.6) (Figure 2). However, as shown by the
following analysis, these differences were not statistically significant.
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Figure 2. Boxplot of observed questing I. ricinus nymphs collected over the year (April–May–June
period) in different countries and habitat types; x-axis = country; y-axis = number of collected nymphs.

The results of the Negative Binomial GLMM indicate that questing nymph density was
significantly associated with environmental and climatic variables, while no differences were observed
among land use categories (Table 2). The best model explaining questing nymph density included a
positive effect of average NDVI computed in the period April–May–June (Figure 3), the same period in
which sampling was carried out, and a non-significant negative effect of the accumulated precipitation
in the last quarter of the previous year (Table 2). The model for questing nymph explained the 32% of
the variance (R2 = 0.32).

Table 2. Best model for questing nymph density (Negative Binomial Generalized Linear Mixed
Model). The columns report the estimated coefficients for explanatory variables, their standard errors,
z-values (estimate to standard error ratio) and p-value for z-statistic. Independent variables have been
standardized. NDVI = normalized difference vegetation index.

Explanatory Variable Estimate Std. Error z-Value Pr(>|z|)

Intercept 5.457 0.260 21.026 <0.001 ***
NDVI (Apr–May–Jun) 0.264 0.124 2.131 0.033 *

Accumulated precipitation
(Oct–Nov–Dec, previous year) −0.265 0.149 −1.779 0.075

Signif. codes: *** < 0.001; * < 0.05.
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Figure 3. Best models for questing nymph density (Negative Binomial Generalized Linear Mixed
Model); values on the x-axis represent the mean normalized difference vegetation index (NDVI) over
three months (April, May, June); values on the y-axis represent the number of collected nymphs.
The solid black line represents the fitted values (highlighting the relationship between NDVI and the
typical country-year) computed by considering the accumulated precipitation in the 4th quarter at
its mean value. Dashed lines are the 95% confidence intervals for the fitted values. Coloured lines
represent the association between the number of collected nymphs and NDVI within each country.
Points are observed values.

3.2. Infection Prevalence and DIN

The prevalence of infection with A. phagocytophilum and Rickettsia spp. was assessed for all
countries, with values 2.51% (se = 0.32%) and 7.2% (se = 0.65%), respectively. B. burgdorferi s.l. (screened
in Italy, Germany and Slovakia) was the pathogen with the highest prevalence of infection, with an
overall prevalence of 19.32% (se = 1.42%).

As described within the methods, to assess the risk to public health we carried out the statistical
analysis for the DIN, obtained by multiplying the infection prevalence for each pathogen by the density
of questing nymphs for each sampling site. LMM models indicate that DIN varied significantly among
land use categories for A. phagocytophilum and B. burgdorferi while no differences were observed in
DIN for Rickettsia spp. (Table 3, Figure 4). The model for DIN with A. phagocytophilum explained the
59% of the variance (R2 = 0.59), while R2 for models for DIN with B. burgdorferi s.l. and Rickettsia spp.
were 0.68 and 0.66 respectively.
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Table 3. Best parsimonious models for density of infected nymphs (DIN) (Linear Mixed Model) with
A. phagocytophilum, B. burgdorferi s.l. and Rickettsia spp. The columns report the estimated coefficients
for explanatory variables, their standard errors, t-values (estimate to standard error ratio) and p-value
for the t-statistic. Reference level is Agricultural for habitat type.

Model Explanatory Variable Estimate Std. Error t Value Pr(>|t|)

DIN for Borrelia

Intercept 6.245 0.148 42.216 <0.001 ***
Habitat type Natural 0.779 0.209 1.724 0.002 **
Habitat type Urban −0.215 0.245 −0.878 0.395

Accumulated Precipitation
(Jan-Feb-Mar, previous year) −0.310 0.095 −3.268 0.006 **

DIN for
Anaplasma

Intercept 2.478 0.615 4.026 0.006 **
Habitat type Natural 0.980 0.540 1.814 0.080
Habitat type Urban 1.882 0.591 3.185 0.003 **

NDVI (January) 0.740 0.261 2.831 0.008 **

DIN for
Rickettsia

Intercept 5.214 0.405 4.267 <0.001 ***
NDVI (March) 0.488 0.153 29.603 0.003 **

Signif. codes: *** <0.001; ** <0.01.

Specifically, the natural habitat had the highest DIN values for B. burgdorferi s.l., the urban habitat
type showed the highest DIN values for A. phagocytophilum, while, for Rickettsia spp., no differences
were observed among habitat types (Figure 4).

Figure 4. Best Linear Mixed Models for density of infected nymphs (DIN) for A. phagocytophilum
(left panel), B. burgdorferi s.l. (central panel), Rickettsia spp. (right panel). Filled circles represent the
fitted values, and empty circles are the observed values. Solid lines represent the 95% confidence
intervals for the fitted values.

Concerning the effect of environmental variables on DIN, a negative effect of the accumulated
precipitation during the first three months (Jan–Feb–Mar) of the previous year was observed on DIN
for B. burgdorferi s.l. (Table 3). On the other hand, the best model for A. phagocytophilum and Rickettsia
spp. included a positive effect of NDVI in the same year. Precisely, NDVI recorded in January was
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positively related to DIN for A. phagocytophilum and NDVI recorded in March was positively related to
DIN for Rickettsia spp. (Table 3).

4. Discussion

Land use change is considered among the most important drivers of TBD emergence. Therefore,
in a given area, shifting levels of anthropisation, type of socio-economical activity, and changes in
the presence of domestic and wildlife species can also provoke the conditions promoting variation
in the acarological hazard for TBPs. Predicting tick population seasonal dynamics together with
their pathogen infection rate is useful for an early pre-assessment of the acarological hazard, but the
parameters are challenging to estimate. In this study, we used environmental and climatic variables
that are known to be related to I. ricinus phenology and can be obtained on a wide geographical
scale from RS imagery and different types of land use, to explain the spatio-temporal variability in
questing I. ricinus nymphs spring density as well as their pathogen infection rates among different
European countries.

NDVI is a controversial predictor of tick abundance: some authors consider its relationship
with vegetation water content arguable [46], and do not consider NDVI a suitable predictor
of tick abundance [60]. Others confirm the correlation of NDVI with relative humidity in the
vegetation layer [61], and therefore, with I. ricinus survival rate and tick abundance and questing
behavior [15,22,36,37,62–64]. In our study, NDVI recorded in late spring of the sampling year was
a very good predictor of questing tick density, supporting the latter hypothesis.

Moreover, it has been suggested that RS of vegetation moisture (e.g., NDWI) may outperform
NDVI in modelling the incidence of Lyme borreliosis [46]. In our analyses, however, we did not find
any significant association between questing nymph density or DIN with NDWI, with the exception of
a marginally significant positive association of March NDWI with Rickettsia spp. DIN in univariate
models (results not shown). NDWI is based on canopy reflectance values, which could explain why
this parameter fails to predict conditions on the forest floor that are more closely correlated with the
occurrence of ticks [62].

NDVI was also positively correlated with DIN of A. phagocytophilum and Rickettsia spp.
when measured a few months before or partially overlapping with the tick sampling period, making
it a suitable early predictor of annual acarological hazard within a reasonable time frame for
these pathogens.

With regards to DIN, we found that the accumulated rainfall in the first trimester of the previous
year had a negative effect on the DIN of B. burgdorferi s.l., while no correlation was detected for the other
pathogens studied here. The negative effect of rainfall detected for DIN of B. burgdorferi s.l. was found
also in the nymphs abundance model. Therefore, one can speculate that the driving effect of rainfall on
DIN is probably driven by the effect of rainfall on nymph abundance. This association may be related
to the effect of rainfall on tick oviposition rates [65], number of eggs per clutch and/or hatching success
rather than on questing activity [66], since heavy rain silts up egg masses [67]. Therefore, some climatic
factors during peak months of egg deposition could be critical for subsequent distribution of ticks.
The effect of land use category on the DIN was different according to the pathogen considered. DIN of
B. burgdorferi s.l. was higher in natural habitats, probably because of the occurrence and abundance of
several competent reservoirs for these bacteria, such as rodents and wild birds. Some studies suggest
that free-living ungulates, which are not competent reservoir hosts for B. burgdorferi s.l., might act as
dilutors, i.e., they reduce the prevalence of this pathogen in ticks [68]. However, it is controversial
whether the dilution effect occurs regardless of host species ratio or only at unrealistically high densities
of deer [69]. Anyway, in order to fully understand the effect of vertebrate host species composition in
driving infection prevalence, detailed data on pathogen species/strain identification would be needed.

Regarding A. phagocytophilum, the highest DIN was detected in urban sites with a particularly high
value in Slovakia. In this site, the high roe deer density of ca. 300/1000 ha [70] is believed to support
the maintenance of high density of questing nymphs. The overall highest DIN for A. phagocytophilum



Int. J. Environ. Res. Public Health 2018, 15, 732 11 of 15

in urban areas may also be attributed to the common occurrence of hedgehogs: in a previous study,
it was observed that 76.1% of Erinaceus roumanicus were infected with this pathogen in a city park
of Budapest [71]. The role of urban parks, in particular when their size is relevant and/or their
connectivity with natural surrounding areas is possible, is to favor the interaction among vectors,
wildlife (including those with large size), domestic animals and humans. For this reason, they are
becoming emerging hotspots for vector borne pathogens transmission in Europe [72].

Due to the efficient transovarial transmission of the SFG Rickettsia spp., I. ricinus is thought to
be both their main vector and reservoir [73]. DIN with Rickettsia spp. seems to be proportional to
density of host-seeking nymphs in the studied countries, with significantly higher values in Germany
and Slovakia, while no differences were found between habitat types. The role of vertebrate hosts in
Rickettsia transmission remains to be elucidated.

5. Conclusions

In conclusion, our study provides evidence of variation of the acarological hazard for I. ricinus
transmitted pathogens in relation to habitat type and climatic condition. These latter, expressed in
NDVI, measured in late spring, could be used as a good predictor of questing nymphs density. On the
other hand, DIN shows a complex relationship with climatic and land use variables according to the
pathogens considered, demonstrating the need to perform more detailed ecological studies aimed at
assessing the effect of land use in different habitat types on TBP emergence.
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