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Abstract: We investigated if geologic factors are linked to elevated arsenic (As) concentrations above
5 µg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS
and two datasets of measured As concentrations in well water (one from public wells, the other
from private wells), we evaluated occurrences of elevated As (above 5 µg/L) based on geologic
unit. We also constructed a logistic regression model to examine statistical relationships between
elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and
Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of
elevated As in well water than other geologic units in Virginia. Model results support these patterns,
showing a higher probability for As occurrence above 5 µg/L in well water in these two units. Due to
the lack of observations (<5%) having elevated As concentrations in our data set, our model cannot
be used to predict As concentrations in other parts of the state. However, our results are useful for
identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As
concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility
of GIS, this study approach can be applied to other areas with existing datasets of As concentrations
in well water and accessible data on geology.

Keywords: groundwater management; drinking water; water quality; statistical modeling;
logistic regression

1. Introduction

Worldwide, it is estimated that at least 140 million people drink well water with unsafe
concentrations of arsenic (As) [1]. Elevated As concentrations in groundwater occur naturally in many
countries [2], with examples in China [3,4], Southeast Asia [5–7], Latin America [8,9], Africa [10,11],
the United States [12–14], and Canada [15,16]. Since As is a known toxin and carcinogen [17,18],
drinking water standards for As have been established by the World Health Organization (WHO),
the European Union (EU), and the U.S. Environmental Protection Agency (USEPA), among other
agencies. Currently, the drinking water standard for As set by the WHO, EU, and USEPA is
10 µg/L, although many studies indicate that adverse health effects may be caused by ingesting
As concentrations lower than 10 µg/L [19–21]. Such adverse health effects include heart disease [19,22],
complications during pregnancy and quality of life in exposed children [23], and diabetes [24,25].

Arsenic is a component of over 200 naturally occurring minerals including sulfides, oxides,
and silicates [26]. In addition, As can adsorb to mineral surfaces, including metal oxides and clays [27].
Release of As from these naturally occurring minerals into groundwater can result from mineral
dissolution and/or desorption of As from the mineral surface; release can occur under in situ
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conditions, but can be exacerbated by human activities such as mining. For example, oxidation
of As-bearing sulfides has also been linked with elevated As concentrations in groundwater [28–31].
Arsenic release to groundwater can also occur through desorption via changes in pH or concentrations
of competitive anions, such as phosphate [32,33], or changes in As speciation, such as reductive
desorption [26]. The mechanism that has resulted in the most widespread release of As to groundwater
is reductive dissolution of naturally occurring As-bearing iron oxides, coupled with oxidation
of organic matter [1,34–36]. Recent studies in the Coastal Plain of Maryland and New Jersey
suggest that reductive dissolution of As-bearing glauconite may also be responsible for As release to
groundwater [37–39].

In addition to naturally occurring minerals, there are many anthropogenic sources of As that
can locally impact As concentrations in groundwater, including the use of arsenical herbicides and
pesticides [40–42], animal feed additives [43–45], wood preservation [46,47], mining activities [48–50],
waste sites [13,51,52], and other sources including smelter operations, combustion of fossil-fuels, some
types of glass production, and disposal of bullets, mildew resistant paints, and lead batteries [26,53].

Because As is odorless, colorless, and tasteless, it is difficult for human senses to detect As in
water. The primary method for identifying As in well water is through sample collection and analysis.
Although public water supplies in the U.S. are regulated under the Safe Drinking Water Act, private
wells are not regulated, leaving homeowners with the responsibility for having their wells tested.
In addition, well sampling and analysis can be expensive; thus, many homeowners do not regularly
sample and test their wells, if at all [54–57]. Even when wells are found to have elevated As, it is often
difficult to determine which source/sources is/are responsible, creating a challenge for regional-scale
groundwater protection. Thus, other approaches for evaluating As risk are needed.

Statistical modeling is one approach that has been used to identify areas susceptible to As
contamination and factors that are associated with elevated As in groundwater. Logistic regression,
for example, can predict the probability of binary outcomes (e.g., As concentration > 5 µg/L (Y = 1)
vs. As concentration ≤ 5 µg/L (Y = 0) in groundwater) and can also quantify the importance of
different variables, such as geologic formation, soil series, and groundwater chemistry associated with
As concentrations. Results of previous studies have demonstrated the utility of logistic regression
methods for evaluating the relative importance of geological and environmental factors influencing
As in groundwater at regional scales and for predicting As concentrations in groundwater in regions
where no sampling data are available [6,14,58–64].

Although national surveys of As concentrations in groundwater supplies have been conducted
in the U.S., e.g., [13], fewer than 10% of counties in mid-Atlantic states have been included in these
surveys [63]. Evaluation of As in groundwater in Virginia, in particular, has never before been
conducted, likely because Virginia has not been identified as an As “hot spot.” However, a recent
study [65] identified elevated As within sedimentary aquifers of the Mesozoic Basins of the eastern
U.S. and in metamorphosed clastic sedimentary units of the Piedmont and Blue Ridge aquifers, both of
which are present in Virginia. There are 2900 wells in Virginia used for public water supply [66].
In addition, approximately 1.6 million Virginia residents use private wells [66]; with a current
(March 2018) population of 8.5 million, an estimated 20% of the population uses private well water.
Thus, delineating regions with groundwater susceptible to elevated As is a public health concern.
The objectives of this study are to evaluate the presence of As in well water in Virginia, to examine the
spatial distribution of As concentrations in well water, and to develop a logistic regression model to
evaluate if elevated As occurrences are associated with specific geologic units.

2. Materials and Methods

2.1. Arsenic Concentrations in Well Water

For this study, we used state-wide datasets from the Virginia Department of Health (VDH) and
the Virginia Household Water Quality Program (VAHWQP; www.wellwater.bse.vt.edu), a Virginia
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Cooperative Extension program based at Virginia Tech. We also searched for groundwater quality
data from the Virginia Department of Environmental Quality (VADEQ) and the U.S. Geological Survey
(USGS), but datasets available from these agencies contained few samples that were analyzed for As or
had other issues such as not retaining reporting limits. Chapman et al. [65] present data on 94 samples
in Virginia and had low reporting limits (1 µg/L), but the data represent filtered samples. The datasets
we used from VDH and VAHWQP include data for unfiltered samples (see more details below).

Datasets were first checked for duplicate samples. If more than one sample was collected at an
individual location, the maximum As concentration for each location was retained and the remainder
of the samples were discarded, a method that has been used in similar studies [14,62,67,68] to allow
for preservation of as many “events” (i.e., As concentration > 5 µg/L) and minimize small-sample bias
in the model results. Summary information about the datasets is included in Table 1.

Table 1. Summary of datasets used for this study. VDH = Virginia Department of Health; VAHWQP =
Virginia Household Water Quality Program.

Dataset Variable VDH Dataset VAHWQP Dataset

Number of samples in dataset 10,261 6739
Number of duplicates removed 9043 2325

Final number of samples 1218 4414
Arsenic Reporting Limit (RL) 5 µg/L 1 µg/L

Sample collection dates 1973–2013 2008–2015
Filtration None None

Number of samples below RL 1157 4144
Number of samples above RL 61 270

The VDH dataset contains As concentrations from unfiltered samples collected from public
water supply wells in Virginia from 1973 to 2013. The original dataset did not include latitude and
longitude for the well locations but did include a general location description for each well, which was
used to assign spatial location using Google Earth satellite imagery. If locations could not be not
clearly identified, the data were discarded. Samples were collected at the wellhead prior to treatment.
As a general guideline, wells were pumped for ~15 min prior to sampling. Reporting limits for As
measurements were included in the dataset, but the analytical method used to measure As was not.
Thirteen samples had a reporting limit exceeding 5 µg/L (As ranging from 6 to 50 µg/L) and were
removed from the dataset.

The VAHWQP dataset contains concentrations of As (and other water quality parameters) in water
samples collected from wells, springs, and cisterns by homeowners. VAHWQP conducts county-based
drinking water clinics across Virginia. Samples were not filtered prior to analysis. Arsenic was analyzed
in samples collected from 2008 to 2015. The reporting limit for As samples in this dataset is 1 µg/L.
Two samples were collected at each location: a first draw sample and a flushed sample. The first
draw sample was collected after stagnation in the plumbing (typically overnight). The flushed sample
was collected after water was flushed through pipes for at least 5 min. Data from flushed samples
were used in this study, as they likely represent a more accurate depiction of groundwater chemistry
with less influence from household plumbing. Homeowner-submitted samples were analyzed and
results returned confidentially. In addition to collecting the water sample, homeowners completed a
survey that documents the water source (e.g., well, spring, or cistern). We removed samples that were
collected from springs and cisterns and only kept samples collected from wells. Homeowners were also
asked other questions, including perceived condition of the water (e.g., color, odor, taste), information
on water treatment systems, and proximity to perceived potential sources of contamination. We did
not remove any samples based on homeowner-supplied information on water treatment, as we were
not able to check this information for accuracy.
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2.2. GIS Data

Location of each sample in the datasets was mapped spatially in ArcGIS version 10.2.2 in separate
project files [69]. Geologic unit layers were added to each project file to represent environmental
attributes. The geologic unit layer (Figure S1) was obtained from the USGS website (https://mrdata.
usgs.gov/geology/state/state.php?state=VA) as a shapefile. The shapefile includes bedrock geologic
unit name, spatial locations, and a short description. These geologic units (160) were classified first
by age, then stratigraphy. Stratigraphic units are only used where they illustrate a special geologic
feature and where the age of the units is uncertain. In general, most of the geologic systems that form
outcrops can be separated into several comprehensive time-stratigraphic units. In the eastern U.S.,
hybrid nomenclature is used to describe units that form outcrop bands too narrow to be separated,
or that the two units form a homogeneous body of rocks.

Other spatial data, including land use, lithology, physiographic province, and soils, were also
mapped in GIS and were included in our early modeling efforts but were not used in the final
modeling. Initially, we were particularly interested in land use because some human activities,
including abandoned mines, landfills, toxic waste sites, golf courses, and historical fruit orchards,
may be sources of As. However, upon closer examination of the land use data (see [70] for more
information), we recognized that the land use categories do not include the specific land uses that
would be relevant for As and thus, we changed our focus to evaluating geologic sources.

2.3. Model Creation and Variable Selection

The logistic regression model was built to measure the probability that As concentrations exceed
a given threshold:

P(Y = 1|X1, . . . , Xk) =
eβ0+β1X1+β2X2+...+βkXk

1 + eβ0+β1X1+β2X2+...+βkXk
(1)

where P(Y = 1|X1, . . . , Xk) = is the probability that Y = 1 occurred; when Y = 1, a sample has an As
concentration greater than the threshold; when Y = 0, a sample has an As concentration less than or
equal to the threshold. X1, X2, . . . , Xk are the regressors (discussed below), and β1, β2, . . . , βk are the
coefficients. The data were analyzed using the statistical software R [71]. We utilized Least Absolute
Shrinkage and Selection Operator (LASSO) logistic regression [72] to conduct variable selection and
ridge logistic regression [73] to fit the data to obtain robust inference. Both LASSO and ridge logistic
regressions are penalized logistic regressions. Compared with regular logistic regressions, penalized
logistic regressions include extra regularization terms in the loss function. The loss function is then
minimized to get the estimation of the regression coefficients. The regularization term for LASSO is the
sum of absolute values of the regression coefficients (L1 penalty), and the regularization term for ridge
is the sum of squared values of the regression coefficients (L2 penalty). LASSO can push the estimated
regression coefficients to zero, thus it can be used to conduct variable selection, while ridge can stabilize
the variance of the estimated regression coefficients in the presence of multicollinearity. Bootstrap
analysis was conducted in the variable selection step (LASSO logistic regression). If a candidate
variable (geologic unit) was selected (i.e., non-zero) more than 80% of times among 1000 bootstrap
samples, this variable was considered as “significant” and was included in the model-fitting step.
We calculated the means and 95% confidence intervals of the coefficients of these significant variables
based on 1000 bootstrap samples. In the model-fitting step (i.e., ridge logistic regression), significant
regressors were identified using a p-value less than 0.01.

Regressors considered during model selection included the 160 geologic units found in Virginia.
These regressors are categorical, which means they have a fixed number of possible values that do not
indicate rank or order. These categorical variables were then coded as binary variables or “indicator
variables” for each level, following the strategy used by Ayotte et al. [60].

The final model was constructed using the combined VDH and VAHWQP datasets. In the
combined dataset, 98.3% of the 5632 observations used in the model were ≤5 µg/L (threshold for
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model). Other studies that have one dataset separate the data into two sections (e.g., 85% of data and
15% of data) in order to train and validate the model, respectively (see [60] for an example). However,
due to the low number of samples above the reporting limit (5.9%) and above the threshold (1.7%) in
our dataset, using a combined dataset allowed for a more powerful model.

We used 5 µg/L as the threshold to construct our binary response variable because the reporting
limits for the datasets were 1 µg/L (VAHWQP) and 5 µg/L (VDH); thus, using a threshold of 5 µg/L
allowed us to use concentrations from both datasets. Using a threshold that was higher than the
reporting limit (e.g., 10 µg/L, which is the USEPA’s drinking water standard) was tested during model
development, but this introduced higher uncertainty, as we had few samples with As concentrations
above 10 µg/L.

We evaluated model performance using several methods. False positive rates and false negative
rates were computed upon completion of the regression model. Fitted probabilities of elevated As
occurrences from the model were obtained, and the probabilities greater than 0.5 were determined to
be As concentrations above the threshold (5 µg/L), that is Y = 1, and probabilities less than 0.5 were
determined to be As concentrations less than the threshold (5 µg/L), that is Y = 0. True positives, true
negatives, false positives, and false negatives were then counted and model performance measures
(e.g., false positive rate, false negative rate, sensitivity, and specificity) were computed. We also used
the Hosmer-Lemeshow goodness-of-fit test, the mean squared error (MSE), and Pearson residuals to
compare the observed to fitted values for the model.

3. Results

3.1. Spatial Distribution of As in Well Water in Virginia

Overall, As concentrations are low in well water in Virginia. The spatial distribution of As
concentrations in the VDH and VAHWQP datasets is shown in Figure 1 and the concentration
distribution is shown in Table 2. The minimum As concentration is <1 µg/L; the maximum As
concentration is 176 µg/L. The majority of samples (95% in the VDH dataset; 99% in the VAHWQP
dataset) contained As concentrations ≤5 µg/L. Only a small percentage of samples (2.7% in VDH;
0.52% in VAHWQP) had concentrations between 5 and 10 µg/L; similar percentages (2.3% in VDH;
0.23% in VAHWQP) of samples had As concentrations > 10 µg/L.

Table 2. Concentration ranges for each dataset and their respective percentages.

Concentration Range (µg/L) VDH Dataset VAHWQP Dataset

≤5.00 95% 99.25%
5.01–10.00 2.7% 0.52%

>10.00 2.3% 0.23%

The distribution of As concentrations in well water in different geologic units is shown in Table 3.
To help evaluate connections between the spatial distribution of As in well water with geologic units,
we calculated the percent of samples that exceeded 5 µg/L As (the threshold) for each geologic unit.
Units with exceedances above 15% include Tr (Triassic sedimentary rocks) and Tri (Triassic-Jurassic
intrusives), and S (Silurian shales and limestones). Units with exceedances between 10% and
15% include lK (lower Cretaceous metamorphic rocks), Pzmi (Paleozoic mafic intrusives, and Tm
(Tertiary gravels and sands). Units with exceedances between 5% and 10% include Pzg2 (middle
Paleozoic granitic and metamorphic rocks), D (Devonian shales and sandstones), DS (Devonian and
Silurian shales and limestones), Tx (Paleocene sands and gravels), Qp (Pleistocene sands and gravels),
Z (sedimentary and metamorphic rocks), Mm4 (granitic gneiss), and Ce (Cambrian metamorphic and
volcanic rocks).
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Figure 1. Distribution of arsenic (As) concentrations in well water in Virginia based on the Virginia
Department of Health (VDH) and Virginia Household Water Quality Program (VAHWQP) datasets.
Outline of the U.S. showing Virginia in the inset map.

Table 3. Distribution of As concentrations from VDH and VAHWQP datasets for geologic units
in Virginia.

Geologic Unit n > 10 µg/L 5 < n < 10 µg/L n < 5 µg/L Total n % n > 5 µg/L

C—Cambrian shales and limestones 0 11 569 580 2
Ce—Cambrian metamorphic/volcanic 3 15 369 387 5
Cq—lower Cambrian clastic rocks 0 0 83 83 0
Cv—Cambrian volcanic rocks 0 6 192 198 3
D—Devonian-aged shales/sandstones 1 9 115 125 8
DS—Devonian-Silurian shales and limestones 1 1 39 41 5
lK—lower Cretaceous metamorphic rocks 0 5 31 36 14
M—Mississippian dolostone and sandstone 2 0 52 54 4
Mm1—felsic paragneiss and schist 0 9 303 312 3
Mm4—granite gneiss 1 7 157 165 5
O—Ordovician shales and dolostones 0 7 504 511 1
Oe—Ordovician metamorphic rocks 0 0 30 30 0
PP1—Atokan and Morrowan Series 0 0 18 18 0
Pzg1—lower Paleozoic granitic/metamorphic 0 5 118 123 4
Pzg2—middle Paleozoic granitic/metamorphic 1 4 48 53 9
Pzmi—Paleozoic mafic intrusives 0 3 27 30 10
Qp—Pleistocene sands 5 15 321 341 6
S—Silurian shales and limestones 3 9 57 69 17
Te—Eocene sands and gravels 0 2 48 50 4
Tm—Tertiary gravels and sands 3 78 746 827 10
Tr—Triassic sedimentary rocks 7 24 180 211 15
Tri—Triassic-Jurassic intrusives 4 10 46 60 23
Tx—Paleocene sands and gravels 0 3 37 40 8
Um—ultramafic rocks 0 0 6 6 0
Ya—Anorthosite 0 0 3 3 0
Ygn—Proterozoic volcanic/metamorphic rocks 0 12 572 584 2
Ym—Paragneiss and schist 0 0 6 6 0
Z—sedimentary and metamorphic rocks 2 22 441 465 5
Zg—granitic and metamorphic rocks 0 0 10 10 0
Zv—volcanic rocks 2 6 206 214 4
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We also examined the number of samples that exceed 5 µg/L As for different physiographic
regions of Virginia (Table 4). Overall, the highest percent exceedance for As in well water is within the
Appalachian Plateau, but this province is undersampled (n = 14). The Coastal Plain and the Piedmont
each have 2–2.5% of samples exceeding the threshold. The Blue Ridge and Valley and Ridge provinces
have the lowest percent of exceedances (0.3% and 1.0%, respectively).

Table 4. Total number of samples, number of samples that exceed 5 µg/L As, and percent of samples
that exceed 5 µg/L from the combined dataset, separated by physiographic province in Virginia.

Physiographic Province n n >5 µg/L % n > 5 µg/L

Coastal Plain 1162 29 2.5
Piedmont 2211 47 2.1

Blue Ridge 749 2 0.3
Valley and Ridge 1496 15 1.0

Appalachian Plateau 14 1 7.1

Total 5632 94 1.7

3.2. Logistic Regression Modeling Results

Results of the variable selection using LASSO logistic regression and the VAHWQP dataset are
shown in Table 5. The significant geologic units were identified with an absolute value of coefficient
greater than 0. Although p-values cannot be computed using the current LASSO logistic regression
function in R, we used the bootstrap analysis to calculate confidence intervals for the coefficients.

Table 5. Results of variable selection.

Geologic Unit Coefficient (Mean) 95% Confidence
Interval, Lower Bound

95% Confidence
Interval, Upper Bound

C—Cambrian shales and limestones −0.779 −2.220 −0.027
Ce—Cambrian metamorphic and volcanic rocks 0.817 0.050 1.714
Cq—lower Cambrian clastic rocks −0.668 −1.693 −0.100
D—Devonian shales/sandstones 1.060 −0.659 2.317
DS—Devonian and Silurian shales and limestones 0.777 −1.106 2.578
lK—lower Cretaceous metamorphic rocks 0.854 −0.998 2.668
M—Mississippian dolostone and sandstone 0.485 −1.174 2.280
O—Ordovician shales and dolostones −1.633 −2.664 −0.905
Pzg2—middle Paleozoic granitic/metamorphic rocks 0.420 −1.266 2.275
Pzmi—Paleozoic mafic intrusives 1.065 −0.989 2.750
Qp—Pleistocene sands 1.151 0.240 2.130
S—Silurian shales and limestones 1.490 −0.510 2.841
Te—Eocene sands and gravels −0.527 −1.529 −0.039
Tm—Tertiary gravels and sands 0.891 0.137 1.822
Tr—Triassic sedimentary rocks 2.054 1.155 3.018
Tri—Triassic-Jurassic intrusives 2.745 1.368 3.875
Tx—Paleocene sands and gravels 0.781 −1.065 2.625
Ygn—Proterozoic volcanic and metamorphic rocks −1.694 −2.669 −0.971

Results of the final model are summarized in Table 6. In the final model, two geologic units
were identified as having a higher probability of elevated well water As occurrences: Triassic-aged
sedimentary rocks (Tr) and Triassic-Jurassic aged intrusives (Tri).

Table 6. Results of the logistic regression model using both datasets (λ = 0.002, using cross validation).
Positive coefficients reflect increased probability of As occurrence.

Geologic Unit Coefficient (β) Exp (β) Standard Error T-Statistic p-Value

Tri—Triassic-Jurassic
intrusives 2.5621 12.963 0.4602 5.567 0.0000

Tr—Triassic sedimentary rocks 1.8032 6.069 0.275 5.507 0.0000
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Figure 2 shows the spatial extent of the two geologic units (Triassic-aged sedimentary rocks—Tr
and Triassic-Jurassic intrusives—Tri) that have a higher probability of observing elevated As in well
water overlaid on the As concentrations data.
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The equation for the ridge logistic regression model (tuning parameter λ = 0.002) with significant
(p < 0.01) regressors is:

Logit (y) = −4.3559 + 2.2621x1 + 1.8032x2 (2)

where Logit = P(y=1)
1−P(y=1) ; x1 is geologic unit Tri and x2 is geologic unit Tr.

Results from the evaluation of model fit analysis (Table 7) show that although the model had
high accuracy (98%), due to the fact that “negative observations” (As concentrations below the
threshold of 5 µg/L) dominate the dataset (98.4% of data are below the threshold), the model cannot
correctly predict “positive observations” (i.e., true positives equal 0). The p-value associated with the
Hosmer-Lemeshow goodness-of-fit test (2.2 × 10−16) suggests the overall model fit was poor, likely a
result of the low number of samples above the 5 µg/L threshold. However, the mean squared error of
the final model was 0.0556 (closer to zero is better) and the Pearson residuals are generally between
−2 and 0. Despite the inability of the model to accurately predict elevated As concentrations in well
water in areas where data do not exist, the model is still useful for evaluating the geologic sources of
As in well water, which was the primary goal of this study.

Table 7. Classification functions for model. TP = True Positive; P = Positive Instances; TN = True
Negative; N = Negative Instances; FP = False Positive and; FN = False Negative. NA= not applicable
(TP and FP are = 0).

Classification Function Formula Value

True Positive Rate (Sensitivity) TP/P 0%
True Negative Rate (Specificity) TN/N 100%

Positive Predictive Value (Precision) TP/(TP + FP) NA
Negative Predictive Value TN/(TN + FN) 94.99%

False Positive Rate FP/N 0%
False Negative Rate FN/(TP + FN) 100%

Accuracy (TP + TN)/(TP + FN + FP + TN) 97.87%
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4. Discussion

4.1. Significant Geologic Units

Triassic-Aged Sedimentary Rocks and Triassic-Jurassic Intrusives

In the Triassic sedimentary rocks (Tr) and the Triassic-Jurassic intrusives (Tri), between 15% and
23% of samples exceed As concentrations of 5 µg/L, respectively (Table 3). These high percentages of
exceedances support results of the logistic regression model, which show that presence of Triassic-aged
sedimentary rocks (Tr) has a 6.0-fold (where 6.069 is eβ; Table 6) greater chance of having elevated
As concentrations (>5 µg/L) than when the unit is not present. Similarly, the presence of the
Triassic-Jurassic intrusives (Tri) has a 13-fold (where 12.963 is eβ; Table 6) greater chance of having
elevated As concentrations than when this unit is not present.

Both of these units are part of the Culpeper Basin within the Mesozoic rift basin complex (Figure 3),
which extends from North Carolina to Connecticut. The spatial extent of the Triassic sedimentary rocks
and the Triassic-Jurassic intrusives in the Culpeper Basin, overlaid on As concentrations in well water,
is shown in Figure 4.
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Previous studies have documented elevated As concentrations in groundwater in the Mesozoic
rift complex, associated with clastic lacustrine rocks and metamorphosed sedimentary rocks within
the Newark and Gettysburg basins (see Figure 3) [28,65,74–76]. In the Newark Basin, source rocks
for elevated As in groundwater have been identified as the Lockatong formation, a black and grey
shale deposited in a lacustrine setting and the Passaic Formation, a red mudstone/siltstone, deposited
in a playa [74,77]. Research conducted on the Newark Basin [28,74,78,79] suggests that As-bearing
pyrite in black/gray shales of the Lockatong Formation is the primary source of As. In contrast,
As mobilization from the red mudstones/siltstone (Passaic Formation) is thought to be triggered
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by desorption reactions from iron/manganese oxides and clays. Regression modeling [62] shows
that high predicted probabilities of elevated As in groundwater in Pennsylvania correspond to high
groundwater pH, supporting a pH dependent desorption mechanism.

Although previous studies have not specifically addressed As concentrations in groundwater
in the Culpeper Basin, information gathered from other basins within the rift complex can be
applied, as the Newark, Gettysburg, and Culpeper Basins are thought to have been connected during
sedimentation and, therefore, sediments within these three basins are likely very similar [80–82].
The Lockatong and Passaic formations of the Newark basin generally correlate with the Manassas
Formation and Balls Bluff Siltstone, respectively, found in the Culpeper Basin [80].

It is important to note that there are other basins in Virginia associated with the Mesozoic rift
complex (see Figure 3), including the Scottsburg, Danville, Taylorsville, Richmond, and Farmville
basins. Because our dataset did not include many wells in these other basins, we are not able to assess
if these other basins have elevated As in well water.
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4.2. Other Regions of Interest

4.2.1. Devonian shales and Sandstones

Although unit D (Devonian shales and sandstones) was not identified in the final model as
being significant, a cluster of samples with elevated As concentrations from both datasets occurs in
northwestern Virginia in Frederick County (see Figure 1). This area is underlain by the Devonian
Hampshire Formation, composed of terrestrial brown and green sandy shales with thin bedded
sandstones and red beds [83]. This unit is of interest because the Maryland Geological Survey found
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that approximately 20% of groundwater samples collected from wells in the Hampshire Formation
in Garrett County, Maryland contained As concentrations greater than 10 µg/L [84]. In comparison,
As exceedances were <8% for other geologic formations in the county. Additional sampling of wells in
this unit is recommended.

4.2.2. Coastal Plain

Our combined dataset shows elevated As concentrations in 29 wells in the Coastal Plain (Table 4).
Although variable selection identified two geologic units of the Coastal Plain (Tm, Qp) as significant
variables, the final logistic regression model did not identify either of these units to be significant
with respect to As in well water. This is likely due to the fact that the Coastal Plain is a multilayered
aquifer system, as well as other factors, such as geochemical conditions, that likely influence As release
to groundwater.

Although a previous study on groundwater quality in the Coastal Plain of Virginia did not identify
As as an element of concern [83], other studies have documented elevated As concentrations in specific
Coastal Plain aquifers of Maryland and New Jersey [37–39,85–87], prompting us to investigate further.

Since neither of our datasets included well depth or any information about the aquifer, we were
not able to explore statistical relationships between As concentrations, well depth, and aquifer type.
However, in collaboration with the VADEQ and the USGS, we found information on a well-by-well
basis on screened intervals combined with the top and bottom elevations of Coastal Plain aquifers
and confining units to identify to which aquifer each well was open. Five wells with elevated As
concentrations in the Northern Neck region of the Coastal Plain were investigated where two were
open to the Piney Point aquifer, and one each was open to the Aquia, Potomac, and Yorktown-Eastover
Aquifers. For wells in the Eastern Shore, we were unable to get specific information on well depths;
however, these wells are likely open to the Yorktown-Eastover Aquifer, as the deeper aquifers contain
saltwater and are thus nonpotable [88].

Results of this analysis show that the few incidences of elevated As concentrations in well
water from our datasets are not associated with any specific aquifer but are found in both shallow
(Yorktown-Eastover) and deeper (Piney Point, Aquia, and Potomac) aquifers. Similar results were
found by [83], in which As was detected in almost every aquifer and confining unit in the Virginia
Coastal Plain, but with the exception of a few samples, concentrations were low (177 samples;
maximum 24 µg/L mean 1.8 µg/L, median 1.0 µg/L). Another study [89] involving regional
groundwater quality in the surficial aquifer (Yorktown-Eastover Aquifer in VA; Pocomoke Aquifer in
MD) of the Eastern Shore found that approximately 50% of wells sampled in the surficial aquifer had
As > 0.1 µg/L; however, with a few exceptions, concentrations were below 10 µg/L.

The reasons underlying the differences in patterns of groundwater As between the Coastal Plain
aquifers of New Jersey and Maryland with those of Virginia are currently unclear. The thickness and
spatial extent of confining units, the presence of As-bearing minerals such as glauconite, groundwater
chemistry (including pH), the presence of competing anions like phosphate, and the availability of
dissolved organic carbon that can drive reductive processes that can mobilize As from glauconite and
other Fe rich minerals likely all play a role. Due to the lack of information about well construction
and groundwater chemistry, we are not currently able to address this and recommend further work to
answer this question.

4.3. Study Limitations

In this study, we chose to combine two well water datasets, one collected from public water supply
wells by a state agency and the other from private wells by homeowners, with each having different
collection methods, time spans, and analytical methods, among other important differences, to allow
broader spatial coverage across the state. We realize the limitations of combining these data. However,
despite these differences, we observe that the spatial data patterns from the two datasets generally
support each other; in areas where the VAHWQP samples show elevated As, the VDH samples show
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similar patterns (see Figure 1). Even with the combined dataset, there are areas of Virginia that have
poor spatial distribution of samples, including counties in western, far southwestern, and southern
Virginia. Well testing in these areas with poor spatial distribution of samples is recommended.

Second, we focused specifically on geologic sources of As to groundwater. We realize that human
sources and activities may also release As to the environment; however, our land use dataset did not
include specific land uses that would be relevant to As (e.g., mining sites, landfills, historic orchards,
and specific industries where As is or was involved) to allow us to examine non-geologic sources using
the logistic regression model.

Third, our dataset does not include information on well construction (e.g., well depth, screened
interval), which limits our ability to identify exactly to what unit the well is open. This made the
evaluation of As in the Coastal Plain particularly challenging, as the Coastal Plain is underlain by a
multilayered aquifer system.

Last, an important limitation for the logistic regression model is the issue of small sample-size for
the “positive observations” (As > 5 µg/L). Although this is good news for Virginia’s well water quality,
the small number of samples exceeding the threshold of the model makes it unusable for prediction.
Future work will include developing logistic regression models for regions identified by this study as
having geologic units with higher probability of elevated As in well water. Since these smaller regions
have more “positive observations”, we should be able to avoid the problem of small-sample bias and
develop a more robust model for prediction.

5. Conclusions

Arsenic concentrations in well water in Virginia are generally low; only 1.7% of 5632 samples
examined for this study exceed As concentrations of 5 µg/L. Logistic regression modeling suggests that
these elevated As concentrations are associated with specific geologic units: Triassic-aged sedimentary
rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia. While the model
developed for this study was successful for evaluating potential geologic sources of As to well water
in Virginia, the poor model fit, which results from few samples in our dataset that exceed the threshold
value of 5 µg/L, indicates that it should not be used for prediction. However, with drinking water
quality surveys such as this one, the purpose is not necessarily to develop a predictive model, but to
identify areas where wells should be tested for As or other toxic elements of concerns. These results
can be used to help state agencies identify areas of concern for well water quality and to encourage
homeowners in these areas of concern to have their wells tested.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/787/s1,
Figure S1: Spatial extent of geologic units in Virginia based on age. Data obtained from the U.S. Geological Survey.
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