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Abstract: Groundwater susceptibility to non-point source contamination is typically quantified by
stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term
process that may last for decades and exhibit strong temporal variations. This study proposes a
three-dimensional (3-d), transient index map built upon physical models to characterize the complete
temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time
probability density (BTTPD) approach is extended to assess the 3-d deep groundwater susceptibility
to non-point source contamination within a sequence stratigraphic framework observed in the
Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions
underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient
measure of aquifer susceptibility. The resultant 3-d imaging of susceptibility using the simulated
BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility.
The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing
rapid downward solute movement and displaying relatively narrow and young age distributions.
In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits “protect”
deep aquifers by slowing downward solute movement and displaying a relatively broad and old age
distribution. Further comparison of the simulated susceptibility index maps to known contaminant
distributions shows that these maps are generally consistent with the high concentration and quick
evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since
the 1970s’. This application demonstrates that the BTTPDs can be used as quantitative and transient
measures of deep aquifer susceptibility to non-point source contamination.

Keywords: groundwater susceptibility; non-point source; backward travel time probability density

1. Introduction

The ultimate goal in most groundwater protection studies is to ascertain groundwater
vulnerability, which refers to the likelihood that an aquifer will become contaminated as a function
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of the contaminant type, source type and distribution, and the system hydrogeology [1,2]. Current
index-based popular approaches to assessing the vulnerability of regional-scale aquifers to non-point
source contamination rely predominantly on the near surface hydrogeologic information, climate
change, land use data, the vadose-zone properties and processes, recharge rates, and/or depth
to groundwater [3–6]. Three groups of methods have been developed to incorporate the above
information in the vulnerability map of aquifers, which are the subjective rating method, the statistical
method, and the process-based method; see the reviews by the National Research Council (NRC) [1],
Gogu et al. [7], and Katyal et al. [8]. Here we briefly review and evaluate these three methods in the
following three paragraphs.

First, the subjective rating (or index) method assigns a numerical score or rating to each
(subjective) attribute affecting groundwater vulnerability, without the computational burden of
statistically analyzing or numerical modeling of contaminant transport dynamics [8]. This approach
has been widely used to map aquifer vulnerability indices, likely due to its relative simplicity and
attractive visualization. The most popular and probably the first rating method is the DRASTIC
index method developed by Environmental Protection Agency (EPA) [9] and applied and modified
by many researchers such as [10–18], where “DRASTIC” denotes seven parameters with usually
subjective weights to derive the single vulnerability index: Depth to water table, Recharge, Aquifer,
Soil, Topography, Impact of the vadose zone, and hydraulic Conductivity. The DRASTIC index
motivated many other indicators to map aquifer vulnerability in the last three decades. For example,
the SINTACS index modified the DRASTIC index by adding options for the weight rating of each
parameter embedded in DRASTIC [19]. The aquifer vulnerability index (AVI) focused on the thickness
and hydraulic conductivity of the overlying sedimentary unit. The GALDIT index was originally
developed to assess the vulnerability of coastal aquifers [20]. The vulnerability comprehensive
assessment index (DI) considered also lithology of vadose zone and the land use pattern [21]. The COP
index was built upon flow Concentration, Overlying layers, and Precipitation [22,23]. The subjective
rating method is flexible since the basic index, overlay indices, or hybrid ones can all be applied to
map aquifer vulnerability. Review and comparison of the above rating/index methods can be found
in Abdullah et al. [23] and Luoma et al. [24].

Second, the statistical method uses descriptive statistics or complex regression to analyze
contaminant concentrations and spatial distribution, or link observed contamination and
environmental factors [25,26]. For example, a logistic regression model was applied by Teso et al. [27]
to assess aquifer vulnerability given soil texture data. A Fuzzy rule-based method was developed
by Dixon et al. [28] to calculate aquifer vulnerability indices with minimum input of field data.
A Bayesian-based methodology was proposed by Worrall and Kolpin [29] and Arthur et al. [30]
to assess groundwater vulnerability from single observations of multiple contaminants. Simple
statistical methods were also applied to optimize the subjective rating method mentioned above [31,32].
The statistical method sometimes can be very useful since it reduces the data requirements of the other
methods (i.e., the index method mentioned above, and the process-based method discussed below);
see the review in Pavlis et al. [33].

Third, the process-based method simulates the process of groundwater flow and contaminant
transport at the study site, and hence the advantage of this method is the detailed information
on the spatiotemporal dynamics of contaminant migration and comprehensive information of
groundwater vulnerability. Examples of the process-based method can be found in the recent review
of Katyal et al. [8].

As a specific process-based method, the backward travel time probability density (BTTPD)
approach was proposed by Fogg et al. [34] to address aquifer susceptibility, and the approach can
readily be extended to include the entire vadose zone as well. The method was also used to illustrate
the influence of regional- and local-scale subsurface heterogeneity on susceptibility [34]. The BTTPD
probabilistically describes the time required for the water and any dissolved contaminants (especially
non-point source contaminants) to travel to the sampling location from all possible upgradient source
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positions (such as the water table in this study); see also [35–39], and it has been applied successfully to
determining the release history of contaminants, i.e., [35,40–43]. Therefore, the BTTPD can be regarded
as representing a complete age distribution within a single water sample [44–46]. It is also noteworthy
that there are intermediate methods between the index and process-based methods, such as the
deterministic approach combined with multiple regression analysis proposed by Aschonitis et al. [47]
to evaluate the vulnerability of agricultural land to water and nitrogen losses.

Although tremendous efforts have been made to assess groundwater vulnerability, there are
two historical challenges. The first challenge is that efforts are needed to assess deep aquifer
vulnerability for the following two reasons. First, the indices produced by the rating and statistical
methods may only reflect potential of contaminant loading to the water table and do not represent
vulnerability of deeper aquifers, especially in highly heterogeneous settings [34]. The working
assumption has typically been that the water table represents the top of a “groundwater reservoir,”
and that once a contaminant reaches that top surface, the damage is done. In reality, however,
most major aquifer systems are thick, aquifer-aquitard complexes within which the travel time from
water table to well intakes can easily exceed those within the vadose zone by a factor of 10 to 100.
Hence the vulnerability becomes more a function of processes below the water table than above it.
Second, the deep aquifer vulnerability issue leads to other important questions related to long-term
sustainability of groundwater quality and assimilative capacity of aquifer systems. Clearly, methods
that are capable of assessing vulnerability of the entire subsurface are needed.

The second challenge is that previous studies usually quantified the groundwater vulnerability
as a static value, while groundwater quality evolution is a long-term process. A transient index may
describe better and provide more information about the vulnerability of real-world aquifers.

To address the above two challenges, this study selects the process-based BTTPD approach in
assessing deep aquifer vulnerability. In the following sections, we will first extend Fogg et al.’s [34]
BTTPD approach (see also LaBolle et al. [48,49]) to build the transient vulnerability index for
three-dimensional (3-d), deep aquifers. To check the feasibility of the transient, 3-d index map, we will
apply it to assess the vulnerability of Kings River fluvial fan (KRFF) aquifer, located southeast of
Fresno, California, USA (Figure 1).
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Figure 1. The study area location of KRFF, Fresno, California.

2. Methodology Development

Different from previous vulnerability assessment studies, here we address the less restrictive
susceptibility, which refers to vulnerability to contamination but only as a function of the physical
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hydrogeology (i.e., independent of land-use and contaminant characteristics) [50]. Thus, conservative
contaminants are considered in this study. The method proposed below, however, can be extended to
include the effect of chemical and source characteristics on contaminant transport and thus to assess
aquifer vulnerability, by adjusting the initial/boundary conditions in flow/transport models and/or
adding reactive terms in transport dynamics. Clearly, susceptibility analysis, or the intrinsic capability
for contaminants to intrude on an aquifer system, is a prerequisite for reliable vulnerability analysis.

Fogg et al. [34] applied the BTTPD approach to assessing the susceptibility of deep aquifers in the
Salinas Valley, using the efficient Lagrangian schemes developed by LaBolle et al. [48,49]. Here we
introduce their approach and the research background of BTTPD briefly, and then we explain the
extensions we made in this study.

The BTTPD obeys the Chapman-Kolmogorov backward differential equation [51], which has the
same form as the backward advection-dispersion equation (ADE):

− ∂

∂s
[Θ P(X, t|Y, s)] =

←
V∑

i

∂P(X, t|Y, s)
∂Yi

+ ∑
i

∂

∂Yi

[
Θ Dij

∂P(X, t|Y, s)
∂Yj

]
, (1)

where P(X, t|Y, s) is the probability that a particle observed at location X at time t originates from

location Y at time s (s is a time before t), Θ is the effective porosity,
←
V is the reversed Darcy velocity,

and D is the local hydrodynamic dispersion tensor. Note that here the dispersion tensor has the
same value but different meanings in the backward and forward ADEs. In the forward-in-time
ADE, D accounts for the uncertainty in concentration caused by molecular diffusion and differential
advections; whereas in the backward-in-time ADE, D accounts for the uncertainty in the initial location
and travel time of the particle as it moves backward [52]. The above equation is the adjoint of
the forward ADE [36,37,41]. After calculating the velocity vectors for the aquifers, the probability
P(X, t|Y, s) , or the BTTPD, can be simulated by the backward-in-time random walk particle tracking
solutions of the adjoint of the forward ADE [34,38,43], where additional modifications are needed to
account for the discrepancy between the forward ADE and its adjoint. For example, the source term in
the forward model (where contaminants enter the system) becomes a sink term in the backward model,
and the recharge boundary for contaminants (located at the water table) in the forward ADE becomes an
absorbing boundary in the backward model [37]. After the BTTPD is solved, the cumulative BTTPD of
groundwater younger than a target time can be used as a quantitative measure of aquifer susceptibility.

Three logic extensions of Fogg et al.’s [34] approach are made in this study. First, we produce
3-d continuous imaging of aquifer susceptibility instead of Fogg et al.’s [34] discrete susceptibility
indexes for separate aquifers located at sparse observation wells. A continuous, 3-d susceptibility
image can provide whole-system mapping of aquifer susceptibility. It may also help us to distinguish
the responses of different subsurface materials, including aquifers and aquitards, to contaminations.
Aquitard susceptibility is considered in this study since aquitard materials can form significant
sources/sinks of contaminants found in aquifers. Second, the susceptibility of a single aquifer system
is treated as a time-dependent transient variable, not the static index calculated by Fogg et al. [34].
A transient susceptibility index can indicate likelihood of aquifer contamination within any time
frame. Third, we apply the resultant 3-d susceptibility maps to evaluate the influence of subsurface
heterogeneity on aquifer susceptibility. This evaluation has not been done by Fogg et al. [34] due to the
limited number of aquifers selected for their susceptibility assessment. The subsurface heterogeneity
is well known to control the transport of conservative tracers, and thus it plays an important role in
generating the physical-process based BTTPDs. Since one of the ultimate purposes of susceptibility
assessment is to protect water resources, we need not only to assess aquifer susceptibility, but also to
know how the aquifers are contaminated. The three extensions are also the three steps in our approach.

The particle-tracking algorithm used by Fogg et al. [34] needed to be modified to accommodate
the above extensions. First, we need to track tremendous (e.g., millions) of particles released from a
large number (e.g., thousands) of nodes during one simulation. Preliminary numerical experiments
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indicated that at least 10,000 particles should be released at each node in the particle-tracking algorithm
to get a reliable, relatively smooth and complete age distribution or BTTPD for the node (see also
Weissmann et al. [38]). Usually one needs to run one simulation for each node, and it will take weeks
to get a 3-d susceptibility map for a million-node model in a PC. We circumvent this problem by
distinguishing particles based on their releasing locations during one simulation of particle tracking.
In other words, particles with labels are simultaneously released from each node and are then back
tracked to obtain the BTTPDs (for all nodes) during one simulation. Second, if the node is close to
the model boundaries, many particles can exit the model through the lateral or bottom boundaries.
The groundwater age refers to the elapsed time since the water enters into the groundwater system
through the water table. Therefore, the age is unknown for particles exiting boundaries other than the
top boundary (i.e., the water table) in backward particle tracking experiments. In this study, we adjust
the ages for these particles based on the depths at which they exit the model as was also proposed by
Weissmann et al. [38]. Note that this produces some uncertainty concerning age distributions near the
lateral boundaries, and thus the lateral boundary cell ages are less reliable than the internal cell ages.

The backward-in-time method is much more computationally efficient than forward methods,
i.e., see [38]. The solutes are simulated to transport backward in time to capture the release history.
The calculated age of a particle therefore represents a previous loading-time at the water table.
For instance, if the simulation shows a particle in the well is 20 yrs old, this indicates the particle
originated from the water table 20 yrs ago and that the capture well will likely be susceptible to
contamination 20 yrs after the contaminant migrates downward from the water table. The solutes are
also simulated to transport backward in space to estimate their origins.

In addition, because each particle takes on a different path due to the 3-d advective flow field and
dispersion, each particle history produces a different travel time, therefore generating full distributions
of groundwater age within the modeled groundwater “sample”. As will be shown later in this
paper, such estimates of complete age distributions are useful and necessary not only for estimating
susceptibility, but also for analyzing long-term evolution of groundwater quality as well as the transient
susceptibility. The entire age distribution within single water sample generated by the particle tracking
method distinguishes this study from other age simulation methods, such as Goode [53], where only
the mean ages were calculated. The transient susceptibility proposed here also distinguishes this
study from the traditional susceptibility/vulnerability assessment methods reviewed in Section 1,
where usually only a static index of susceptibility was used.

3. Application to Kings River Fluvial Fan Aquifer

3.1. Stratigraphic Sequence and Multi-Scale Heterogeneity in KRFF

We applied the above method to a 190 km2 area of the Kings River fluvial fan aquifer (Figure 1).
It was selected because the subsurface distribution of geological heterogeneity has already been
characterized by Weissmann and Fogg [54] and Weissmann et al. [38,55,56]. The Kings River deposited
a large fluvial fan where the river exits the Sierra Nevada into the San Joaquin Valley. Core descriptions
show that the aquifer consists of a highly heterogeneous mix of textural and depositional facies,
including gravel, sand, muddy sand, mud and paleosol [54,56].

Five paleosol-bounded stratigraphic sequences were recognized in the study area, dividing
the aquifer into discrete zones. In this total section there exist three types of hydrogeologic facies
structures that were described by Weissmann et al. [38,56] and are of particular significance for
regional contaminant transport (Figure 2). The first structure type consists of laterally extensive,
clay-rich paleosols, formed during past interglacial periods. These paleosols are observed at each
of the three sequence boundaries (e.g., contacts between the sequences) and are the most laterally
extensive confining beds [57]. Other mud-rich facies occur as floodplain deposits, but there are less
laterally extensive than the paleosols.
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Figure 2. (a) Block diagram of sequence distributions in the study area. The SB1, SB2, and SB3 represent
the first, second, and the third layer of sequence boundary paleosol. The rectangle within the IVF
(X = 7100 m) represents the vertical slice shown in Figure 4; and the rectangle outside of the IVF
(X = 3600 m) represents the vertical slice shown in Figure 5; (b) The 3-d geological model of the
study area.

The second structure type exists between each pair of these sequence bounding paleosols and
consists of a heterogeneous mix of gravel, sand, muddy sand, and mud of open fan deposits (fluvial
sediments deposited across the fan surface during past glacial outwash periods) [56]. Channel deposits
in these open fan units radiate outward from an intersection point located northeast of our study area.
The heterogeneity in these deposits contributes to contaminant dispersion in the aquifer [38,57].

The third structure type is a coarse-grained incised-valley fill (IVF) deposit identified across the
study area [56,57]. This IVF is approximately 3 km wide and 30 m deep, and it is filled with a thick
(up to 8 m) coarse gravel (cobble) unit capped by relatively coarse-grained sand.

3.2. Modeling Subsurface Heterogeneity, Groundwater Flow, and BTTPD

Hydrofacies within each of the stratigraphic sequences were simulated using transition probability
geostatistics, as described by Weissmann and Fogg [54] and Weissmann et al. [38,55,57] (Figure 2b).
Observable geologic characteristics, including fining-upward successions, variable orientation of
bedding, and major unconformity boundaries between the different depositional units of this fluvial
fan are incorporated into the geostatistical results (Figure 2b) [54]. The cell dimensions are 200, 200,
and 0.5 m in the depositional strike, depositional dip, and vertical directions, respectively, within a
total model domain measuring 12,600, 15,000, and 100.5 m.

Definition of sequence stratigraphy is important for fluvial fan characterizations [58]. Weissmann
and Fogg [54] introduced the sequence stratigraphy including paleosols in characterization, but the
real significance of it has not been tested much. In order to assess the potential influence of paleosol
sequence boundaries on BTTPD and susceptibility, we constructed two different facies models,
with and without the paleosol boundaries (models PS and NP, respectively). We built one realization
for each model to illustrate the saturated-zone susceptibility assessment approach developed by
this study.

Using the geostatistical realizations to generate stochastic hydraulic conductivity (K) distributions,
we apply the U. S. Geological Survey software MODFLOW [59] to simulate the 3-d, steady-state
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flow field. The conductivities assigned to each hydrofacies were 1.0 × 10−2, 1.0 × 10−3, 1.0 × 10−5,
1.0 × 10−6, 1.3 × 10−7 m/s for gravel, sand, muddy sand, mud, and paleosol, respectively [38,54,57].
General head boundary conditions with a measured gradient of 0.002 were used in the modeling
to simulate inflow and outflow through the lateral and basal boundaries of the model, and the
recharge boundary condition was used for the top boundary of the model. The infiltration rate of
150 mm/yr [60] was scaled in proportion with K of overlying beds for each cell at the water table [57].
Though significant pumping occurs within the aquifer, thus making the steady state assumption
tenuous, we believe this simplified model is appropriate to illustrate the saturated-zone modeling
approach. Additionally, even using this assumption, Weissmann et al. [38] were able to reasonably
match Chlorofluorocarbon (CFC) concentrations in groundwater, indicating that the steady state
assumption may not diminish the overall value of the results. In order to produce susceptibility maps
for setting policy, however, we suggest development of models that account for transience, such as
pumping and seasonally-variable recharge rates. For the same reason, we suggest generating multiple
realizations of aquifers to account for the uncertainty of modeling results caused by the uncertainty of
subsurface heterogeneity distributions.

The modeled flow velocities were incorporated into the particle tracking algorithm to simulate
the groundwater BTTPD. The same transport parameters in Weissmann et al. [38] were used here,
including the longitudinal and transverse dispersivities (0.04 m) (note that the these dispersivities are
inconsequential to the numerical results because virtually all of the dispersion is modeled directly
through the inclusion of extensive heterogeneity; see also Weissmann et al. [38]), the molecular
diffusivity (6.9 × 10−10 m2/s) and the effective porosity (0.33). The single effective porosity was
used for all hydrofacies (assigned with different K), since the spatial variation of porosity is relatively
smaller than that for K, and the impact of the spatial variation of porosity on solute transport is
secondary compared with the impact of K on transport [38]. The total modeling time is 200 yrs, with an
output interval of 0.1 yr. 10,000 particles were released from the middle point of each node of the
model domain to get a reliable and relatively complete BTTPD for each node. Note that the BTTPD
of waters located at the middle point of the node is assumed to represent the age distribution at the
full node of a size 200 × 200 × 0.5 (X × Y × Z) m. This assumption is based on (1) the conclusion of
LaBolle and Fogg [61], who found that the particle tracking solutions are not sensitive to the initial
horizontal position of particles; and (2) the conclusion of Weissmann et al. [38], who found that the
simulated groundwater ages (especially the mean age) at the middle point of a 0.5 m-long well screen
can represent the ages for waters at the whole screen.

4. Results

The simulated 3-d susceptibilities are shown by the following five slices across the model domains:
three horizontal slices at 5, 20, and 40 m below and parallel to the water table, respectively; one vertical
slice parallel to the general groundwater flow direction and through (inside and below) the IVF;
and another vertical slice parallel to the general groundwater flow direction and outside the IVF
(Figure 2a). The three slices parallel to the water table are actually oblique since the water table is
not exactly horizontal, but we still call them “horizontal slices” to distinguish them from the other
two vertical slices. The 5-m horizon lies above the base of IVF, while the 20- and 40-m horizons lie
within and under the IVF, respectively. The vertical slice through the IVF is located in the middle of the
valley (Figure 2a: X = 7100 m), where the high-K IVF truncates most parts of the uppermost paleosol.
The vertical slice outside the IVF (Figure 2a: X = 3600 m) contains all of the three layers of paleosols,
with the uppermost paleosol lying close to the water table.

4.1. Susceptibility Maps with Transient Indices Derived from BTTPD

The susceptibilities along the three horizons (Figure 3) provide an overview of the spatial variation
of susceptibilities caused by the multi-scale heterogeneity. First, the simulated mean groundwater
ages and cumulative BTTPDs distribute irregularly throughout the area. The zones with young ages
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do not necessarily correspond to high-K hydrofacies since young water can also be found in some
low-K zones or aquitards. Most of the discrete regions representing old waters, however, generally
correspond to the location of aquitards. At a few small, separate high-K zones surrounded by low-K
materials we observe very old water. Second, the IVF appears to significantly influence groundwater
age and susceptibility. Inside or underlying the IVF, the system is dominated by relatively young water
along the whole valley, independent of the corresponding hydrofacies type. This is especially true for
saturated zones 20 and 40 m below the water table, where the shape of valley can be seen clearly from
the correspondent susceptibility maps. Outside of the valley, the areas with relatively young water are
not well connected horizontally, but intermingled with areas representing very old water.
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Figure 3. Sensitivity maps for saturated zone 5 m, 20 m, and 40 m below the water table. The areas
between the two dashed lines shown in each figure represent the approximated surface areas of the IVF.
The left, middle and right columns represent the results for aquifers 5, 20, and 40 m below the water
table, respectively. In (A) the hydrofacies 1, 2, 3, 4, and 5 represent gravel, sand, muddy-sand, mud and
paleosol, respectively; (B) shows the mean groundwater age, with a unit year; The cumulative BTTPD
within the target time interval [0 10] yrs (C); [10 20] yrs (D); [20 30] yrs (E); [30 40] yrs (F); [40 60]
yrs (G); and >60 yrs (H). BTTPD scale is 0 to 1, representing fraction of particles that broke through at
the water table.

The susceptibility along the two vertical slices basically shows different behaviors from each other
(Figures 4 and 5). In the vertical section through the IVF, there are no obvious, preferential paths for the
susceptibility “plume” inside or below the IVF. With the increase of backward time, the susceptibility
“plume” moves deeper fairly uniformly, and the corresponding mean age generally increases gradually
with depth (Figure 4). In the vertical section outside the IVF, however, the susceptibility “plume”
moves relatively more irregular. As some places, the paleosol positions are clearly reflected in that the
mean groundwater ages below the paleosol boundary tend to be abruptly older than those above the
boundary (Figure 5).

4.2. The Simulated BTTPD

To further explore the influence of heterogeneity on aquifer susceptibility, we compared the
complete BTTPD along two vertical columns inside of the two vertical slices (shown by the small
rectangle in Figures 4 and 5). The results are shown in Figures 6 and 7.

For the vertical column (X = 7100 m, Y = 6900 m) through the IVF, the simulated BTTPD has
three main characteristics (Figure 6A). First, the mean water age is close to the mode (which is the
BTTPD peak, representing the age with the highest probability) at shallow depths along this column
but deviates increasingly from the mode with depth (also see Figure 7A). Second, the spread of age
distribution is ≤50 yrs at most locations along the column. Third, the age distribution contains dual
peaks at depths below about 8 m. Backward transport simulations show that the particles first move
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quickly upward, with a small portion of particles exiting the water table directly. This path is the
most direct flow path to the water table and it forms the first peak of the BTTPD. With additional
time, the remaining particles continue to move further upgradient zones inside the IVF (i.e., to areas
located up-fan). They experience longer and more tortuous pathways, forming the relatively large,
second peak.

Different behaviors are observed for the BTTPD along the column (X = 3600 m, Y = 3300 m)
outside the IVF (Figure 6B). First, the BTTPD has a much longer late-tail at depths >4 m below the
water table. The distribution is highly positively skewed with a single peak, and the mean age is much
older than the peak age. Second, the simulated mean age is >30 yrs older than that in high-K IVF
deposits (by comparing Figure 7A,B), and an abrupt interface is found at the location of the second
deepest paleosol boundary (see the 2nd (deeper) red hydrofacies shown in Figure 7B).To further
explore the influence of paleosol sequence boundaries on aquifer susceptibility, we compared the
simulated BTTPD’s in Model PS (with paleosol units) to those in Model NP (without paleosol units).
Results (by comparison of Figure 7B,C) show that the presence of low-permeable paleosol boundary
does enhance the abrupt interface of mean ages, and it also results in a BTTPD with a much older
(15~40 yrs older) mean age and a broader spread.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  12 of 21 
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Figure 4. Sensitivity Maps for the vertical slice (X = 7100 m) inside the IVF. The dashed line represents
the water table. The thick, small rectangle represents the column used in Figures 6A and 7A. In (A) the
hydrofacies 1, 2, 3, 4, and 5 represent gravel, sand, muddy-sand, mud and paleosol, respectively;
The mean groundwater age with a unit year is shown in (B); The cumulative BTTPD within the time
interval [0 10] yrs (C); [10 20] yrs (D); [20 30) yrs (E); [30 40] yrs (F); [40 60] yrs (G); and >60 yrs (H).
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Figure 5. Sensitivity Maps for the vertical slice (X = 3600 m) outside of the IVF. Legends are the same
as Figure 4. The thick, small rectangle represents the column used in Figures 6B and 7B.
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Figure 6. Simulated BTTPD represented by a point at different depths along a column inside of
the IVF (A) and outside of the IVF (B). The column coordinate is X = 7100 m, Y = 6900 m for (A),
and X = 3600 m, Y = 3300 m for (B). In the legend, the number represents location (depth below the
water table). The dashed line represents the mean age for each BTTPD (same color).

Additional simulations were conducted to further investigate the influence of paleosol boundaries
on BTTPD. Two simulated well screens at different depths were selected, with one well above the 2nd
paleosol boundary and the other below the 2nd paleosol boundary (Figure 8). Effective thickness of
these screens is 0.5 m. The locations of particle plumes at different backward times were analyzed for
both Model PS and Model NP. When paleosol boundaries are present in the model, the particles take
longer to reach the water table and more particles will stay in deep, low-K deposits for a longer time
before exiting the model domain. This results in a BTTPD with a later arrival peak and a longer late
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tail (Figure 9). In addition, the mean age at each location along this vertical section in Model PS is
larger (by approximately 0. to 50 yrs) than the counterpart in Model NP.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  14 of 21 

 

0 40 80 120
Mean Age (yr)

50

40

30

20

10

0

D
ep

th
 (

m
)

A

Gravel
Sand
Muddy-sand
Mud
Paleosol

0 40 80 120
Mean Age (yr)

50

40

30

20

10

0

B
0 40 80 120

Mean Age (yr)

50

40

30

20

10

0

C

 
Figure 7. Simulated mean groundwater age and standard deviation along one column inside of the 
IVF (A), outside of the IVF for Model PS (B), and outside of the IVF for Model NP (C). The column 
location in (A) is the same as Figure 6A. The column location in (B,C) are the same as Figure 6B. 

 
Figure 8. Effect of paleosol boundaries on backward solute transport. Particles releases from 
hypothetical well screens located above (A–D) and below (E–H) the second paleosol layer. A, B, E and 
F are model PS (with paleosol) results. C, D, G and H are model NP (without paleosols) results. The 
small blue rectangle in (A–D), and the small blue triangle in (E–H) represent the location of the 
simulated well screen. 

3000 7000 11000

(A) Model PS, Time=10  yrs

20

40

60

80

100

Z
 (

m
)

3000 7000 11000

(B) Model PS, Time=60  yrs

20

40

60

80

100

3000 7000 11000

(C) Model NP, Time=10 yrs

20

40

60

80

100

Z
 (

m
)

3000 7000 11000

(D) Model NP, Time=60 yrs

20

40

60

80

100

3000 7000 11000

(E) Model PS, Time=5 yrs

20

40

60

80

100

Z
 (

m
)

3000 7000 11000

(F) Model PS, Time=30 yrs

20

40

60

80

100

3000 7000 11000
Y (m)

(G) Model NP, Time=5 yrs

20

40

60

80

100

Z
 (

m
)

3000 7000 11000
Y (m)

(H) Model NP, Time=30 yrs

20

40

60

80

100

Figure 7. Simulated mean groundwater age and standard deviation along one column inside of the
IVF (A); outside of the IVF for Model PS (B); and outside of the IVF for Model NP (C). The column
location in (A) is the same as Figure 6A. The column location in (B,C) are the same as Figure 6B.
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Figure 8. Effect of paleosol boundaries on backward solute transport. Particles releases from
hypothetical well screens located above (A–D) and below (E–H) the second paleosol layer. A, B,
E and F are model PS (with paleosol) results. C, D, G and H are model NP (without paleosols) results.
The small blue rectangle in (A–D), and the small blue triangle in (E–H) represent the location of the
simulated well screen.
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Figure 9. Simulated BTTPD for 2 wells located at different locations in Model PS (the original model
with paleosol) and Model NP (the model without paleosol). (A) Represents the BTTPD for the well
shown by the small rectangle in Figure 8A–D, where the well is above the second paleosol layer;
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below the second paleosol layer.

5. Discussion

5.1. Influence of the Local-Scale Heterogeneity on Aquifer Susceptibility

The local-scale heterogeneity affects the aquifer susceptibility by forming complex 3-d
heterogeneity structures. The complex relationship between susceptibility and local-scale heterogeneity
in the advection-dominated KRFF aquifer system is indicated by the irregular distributions of
susceptibilities shown in Figure 3.

Although the influence of local heterogeneity on solute transport has been well-known for
decades [62–64], the conclusion drawn here is important for aquifer susceptibility assessment- without
considering the 3-d heterogeneity structure and the transport process of solutes, we cannot reliably
relate the aquifer susceptibility to the local hydraulic conductivity and/or the aquifer depth directly.
Therefore, caution is needed when using the permeability and depth as the direct indexes of aquifer
susceptibility (e.g., less susceptibility for a lower permeable and/or deeper aquifer), which is different
from the classical index (i.e., non-physical-process based) method [1].

5.2. Influence of the Incised-Valley Fill on Aquifer Susceptibility

The regional-scale IVF significantly increases the susceptibility of aquifers by enhancing rapid
downward solute movement. This is because of the ~80% of sandy-materials deposited in this valley.
These high permeable materials incise through the uppermost paleosol layer, and pull in higher
recharge than other areas in the model domain [38,65]. Therefore, relatively young groundwater with
a narrow spread of age distributions can be found inside and below the IVF.

For areas inside and below the IVF, the mean groundwater age may somewhat reflect the aquifer
susceptibility, because the mean is fairly close to the mode and also the age distributions are relatively
narrow. In addition, the relatively uniform susceptibility within/below the IVF at a same depth is
caused by relatively homogeneity of the incised valley fill deposits and lack of extensive aquitard
units within it. For aquifers inside and below the IVF, groundwater age usually increases with depth
gradually. Hence, the regional-scale IVF has a dominant effect on aquifer susceptibility, overwhelming
the influence of local-scale heterogeneity discussed above.

The measured concentration of pesticides is used here to test the susceptibility maps,
and speculate on the historic role of the IVF on contaminant transport in KRFF aquifer system.
1,2-dibromo-3-chloropropane (DBCP) was a widely used nematicide during the 1950s through the
1970s, with the most frequent use between 1960 and 1979 [60]. DBCP is a persistent pesticide, and it
is relatively mobile in soils with high groundwater recharge rates. After leaching to groundwater,
the dissolved DBCP moves with water, causing a large area of contamination (i.e., 18,000 km2 of
DBCP contaminated groundwater in the California Central Valley in 1986 [66]). It was suspended in
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1977 and banned in 1979 in California. Since the 1970s (about 15~20 yrs after the first application),
the contaminant has been detected in more than 2500 drinking-water wells in California, resulting in a
serious nonpoint-source pesticide contamination problem. Considering a non-point source of DBCP
contamination, one would expect the most rapid transport to occur in the incised valley fill part of the
system. Although historical DBCP concentration data are not adequate to track the DBCP migration
through time [66,67], much of the contamination might indeed have intruded deep into the system via
the incised valley and migrated laterally toward pumping centers located outside the incised valley.
Figure 10 shows available DBCP concentration values for 1970–1978 (Figure 10A, about 20~30 yrs after
the first DBCP application), 1984–1986, and 1989–1992. Interestingly, the 1984–1986 and 1989–1992
maps show a preponderance of higher DBCP concentrations in a fairly linear pattern that roughly
parallels and lies north-northwest, down hydraulic gradient due to pumping in Fresno, of the incised
valley. This is consistent with a scenario in which the DBCP traveled down the incised valley relatively
quickly but then was pulled from the valley by pumping for the city of Fresno to the north.
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Figure 10. The measured concentration of DBCP during 1970~1978 (A); 1984~1986 (B); and 1989~1992
(C). The rectangle in the middle represents the surface area of the model, and the two short dashed
lines give the approximated surface areas of IVF.

5.3. Influence of the Sequence Boundary Paleosol on Aquifer Susceptibility

The regional-scale boundary paleosols within the open-fan deposits affect the BTTPD in two ways:
(1) the relatively low permeability of paleosols retards the vertical transport of particles; and (2) the
paleosols change the age distribution at a well by bringing more particles from deep zones, where the
water age is generally old. This indicates that the overall sequence stratigraphic framework including
paleosols decreases the deep aquifer susceptibility to contamination by altering pathways and delaying
the vertical transport of contaminants. Therefore, the sequence boundary paleosols have the almost
opposite effect on aquifer susceptibility as the IVF does.

The BTTPDs for aquifers affected by the boundary paleosols contain heavier late-time tails
than those affected by the IVF, and thus we cannot apply the BTTPD the same way as discussed
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in the previous section. Especially, for the open fan deposits bounded by paleosols, the mean
groundwater-age-based susceptibility estimate will be misleading because the mean groundwater age
is significantly influenced by the long late-time tail, missing the peak and the main part of a broad
age distribution.

5.4. Variations of Susceptibility Assessment between Different Realizations

One could argue that the simulated BTTPDs discussed above based on the single stochastic
realization rather than on multiple realizations may not represent the full range of outcomes for
transport and susceptibility in this complex aquifer system. Different aquifer realizations may have
different distribution properties for both high- and low-permeable materials, resulting in different
early-time tail, peak, and late-time tail in BTTPDs. Therefore, the details of BTTPD discussed above,
such as the number of peaks and the actual spread length, may vary apparently between multiple
aquifer realizations.

However, as indicated by the numerical experiments explored by Weissmann et al. [38], the general
behavior of BTTPD will not change significantly among different realizations, if the multiple
realizations are built using the same stationary Markov chain model. In KRFF aquifers, the observed
high-permeability nature of the IVF will remain in multiple aquifer realizations. Since it increases the
aquifer susceptibility more so than any other hydrogeologic feature in the model, the general influence
of the IVF on aquifer susceptibility will not change appreciably between different aquifer realizations.
Similarly, the laterally continuous and low-permeability nature of the sequence paleosols will also
affect the aquifer susceptibility similarly in different aquifer realizations. Another reason the other
realizations may not produce very different results is that they all have similar connectivity, which
is dominantly determined by the volume fractions. Therefore, although the simulated BTTPDs for
local aquifers based on a single realization cannot be used for the purpose of setting policy due to
the uncertainty of local-scale heterogeneity, the general influence of regional-scale heterogeneity on
aquifer susceptibility may be captured by a single realization, if the Markov chain model captures the
main properties of hydrofacies, and if the regional-scale heterogeneity has much less uncertainty (as it
should be) than the local-scale heterogeneity. This hypothesis needs to be verified in the future by
building multiple aquifer realizations.

6. Conclusions

Groundwater vulnerability was usually evaluated by a static index without information on
long-term water quality evolution and deep-aquifer response to non-point source contamination.
To address this historical issue, this study develops three-dimensional transient maps built upon
reliable physical models (with critical geology and hydrogeology information), by extending the
backward travel time probability density approach proposed by Fogg et al. [34] and LaBolle
et al. [48,49,68], to characterize the complete temporal evolution of deep aquifer susceptibility.
For illustration purposes, this approach is applied to assess groundwater susceptibility to non-point
source contamination within a sequence stratigraphic framework observed in the Kings River fluvial
fan aquifer, California. Three major conclusions are obtained in this study.

First, the BTTPD can be used to derive transient, multi-dimensional indexes of aquifer
susceptibility to non-point source contamination, which provides much more useful information
than the classical, static index. The BTTPD can, if interpreted appropriately, provide the complete
information to decipher the long-term evolution of groundwater quality affected by multi-scale
groundwater circulation driven by aquifer/aquitard heterogeneity. Particularly, the cumulative
BTTPDs with target time intervals can determine likelihood that an aquifer will be contaminated as a
function of space and time.

Second, the regional-scale incised-valley fill deposits increase the susceptibility of aquifers by
enhancing rapid downward solute movement and displaying relatively narrow and young age
distributions, due to the coarse-grained nature of the IVF and the incision of the uppermost paleosol
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layer. The historical record of non-point source pollutants (i.e., pesticides) also implied the relatively
more rapid downward movement of pollutants, although the data is not adequate to show the detailed
evolution of pesticides across the large area of the study site.

Third, the sequence boundary paleosols postpone the contamination of aquifers at all depths by
retarding the vertical movement of contaminants and changing the proportions of particle plumes.
Therefore, the existence of paleosol boundary decreases the susceptibility of saturated zones to recent
contaminants with the price of an increased and a longer-term susceptibility to old contamination.
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