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Abstract: Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult
to identify and apportion the sources of multiple element pollutants over large areas because of the
considerable spatial complexity and variability in the distribution of trace elements in soil. In this
study, we collected total of 2051 topsoil (0–20 cm) samples, and analyzed the general pollution
status of soils from the Yangtze River Delta, Southeast China. We applied principal component
analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and
quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd),
mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated
that the trace elements in soil in the study area were mainly from natural, multi-pollutant and
industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the
two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent
material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion
from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs,
and Hg was mainly from industrial wastes and pollutants.

Keywords: trace elements; source identification and apportionment; principal component analysis
(PCA); finite mixture distribution model (FMDM); Yangtze River Delta

1. Introduction

Trace elements pollution has attracted a lot of attention around the world [1–5]. There is much
concern about trace elements-contaminated soils because of their high toxicity and resistance to
degradation [6]. Trace elements pose high risks to health and ecosystem function when introduced to
the human body and ecosystems via food chains, respectively [7–9]. The sources of soil trace elements
are generally natural or anthropogenic [10,11]. Formerly, trace elements were mainly introduced to soils
through weathering of parent materials but with rapid increases in urban, industrial, and agricultural
activities, such as electronic plating, fossil fuel combustion, and agricultural chemical fertilizer abuse,
in recent years, the high trace element concentrations in soil now mainly reflect human activities [3,12].
The geographical distribution of trace elements in soil is complex [7]. In order to repair polluted
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soils and prevent further soil pollution, we need to qualitatively and quantitatively identify and
apportion the sources of trace elements. This information can help decision-makers understand how
trace elements vary spatially and why their concentrations fluctuate erratically which is a necessary
prerequisite to mitigating and preventing soil pollution [13].

Identifying and apportioning the sources of soil trace elements dates back to the 1970s [14].
Various methods, including chemical mass balance (CMB) [15], molecular markers (MM) [16],
isotope tracing (IT) [17], UNMIX models [18], factor analysis (FA) [19], positive definite matrix factor
analysis (PMF) [20], and multiple linear regression (APCS-MLR) [21], are currently used to identify
the sources of trace elements in soil. Applications of such models are generally limited by their
rigorous demands for preliminary information and numerous datasets comprising high resolution
data, for example, about the number of pollution sources, properties of soils from the source areas,
and the comparative stability of source transport processes [22,23].

Principle component analysis (PCA) is a widely-used multi-statistical analysis method whose
purpose is to switch multidimensional data into a couple of relevant variables that simultaneously
maintain the information involved in the original variables and diminish the dimensions of the
data [24–26]. While finite mixture distribution model (FMDM) is a mathematical approach for statistical
modeling of massive random data sets [27]. It can be applied to identify whether the trace elements
from soil samples originate from a natural background or anthropogenic background, without knowing
the general contaminated condition of the full areal extent of the study area [28,29]. But, to date,
few studies have used and compared different models to identify the sources of trace elements. To fill
this gap, in our study, we compared the abilities of PCA and FMDM to identify and apportion the
sources of trace elements in soils in the Yangtze River Delta. The main objectives of this study were
to (1) describe and estimate the concentrations and distribution of trace elements in soil and assess
the pollution status of the Yangtze River Delta; (2) apply PCA and FMDM to determine the sources
of seven trace elements over a large area; and (3) to confirm and apportion the main sources of trace
elements in soil.

2. Materials and Methods

2.1. Study Area and Sampling

The study area is a crucial port in the Yangtze River Delta, China (Figure 1). The area is dominated
by plains and low hills. It has an average elevation of about 4.2 m and the elevation generally decreases
from the southwest to the northeast. A total of 2051 topsoil (0–20 cm) samples were collected from the
study area, which was first divided into strata according to land use type, and systematic grid sampling
was applied. At some of the grid nodes, grid sampling was augmented by sampling nearby areas
(Figure 1). We collected a soil sample at an intersection point and combined it with five subsamples
collected from five locations within 5 m. The coordinates of the sampling locations were recorded with
a differential global positioning system.

We air-dried the soil samples in the lab in ambient air for several days, then passed them through
a 2-mm nylon sieve and save for further analysis of soil properties [30]. Soil pH was measured by
the Glass Electrode method with a soil/solution of 1:2.5 (m/v); The total concentration of Cr, As, Cu,
Cu, Zn, and Ni of soil samples were all digested with the acid HCl-HNO3-HClO4 and total Cd was
acid-digested with HF-HNO3-HClO4; As for total Hg, it was digested by a double channel Atomic
Fluorescence Spectrometer with the digestion of HNO3-HCl bathing in the hot water. We use reagent
blanks and standard reference in the whole analysis procedure for quality assurance and quality
control, and the recovery ranges of the trace elements were from 90 to 110% [31].
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Figure 1. Maps showing the location of the study area (a) and the distribution of sampling points (b). 

2.2. Auxiliary Variables Data 

The study area is known for its industrial prosperity, and its total industrial output value 
accounted for 45% of its whole economic output value in 2016. We obtained information of 48,206 
industrial enterprises in the study area from Baidu Map POI (Point of Interest) data that listed all the 
industrial enterprises in 2016. We removed data for irrelevant non-industrial enterprises, and then 
classified the industrial enterprises into four categories: textiles, metal products, chemical products, 
and other industries. We obtained information about the soil parent material in the study area from 
a 1:20,000 soil map of Zhejiang Province (1990) [32] and the soil types from a 1:50,000 Map of Chinese 
Soil (1990) published by the National Soil Survey of China, respectively. 

2.3. Single Pollution Index (SPI) 

We used the single pollution index (SPI) to assess the pollution degree of trace elements contents 
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2.2. Auxiliary Variables Data

The study area is known for its industrial prosperity, and its total industrial output value
accounted for 45% of its whole economic output value in 2016. We obtained information of 48,206
industrial enterprises in the study area from Baidu Map POI (Point of Interest) data that listed all the
industrial enterprises in 2016. We removed data for irrelevant non-industrial enterprises, and then
classified the industrial enterprises into four categories: textiles, metal products, chemical products,
and other industries. We obtained information about the soil parent material in the study area from a
1:20,000 soil map of Zhejiang Province (1990) [32] and the soil types from a 1:50,000 Map of Chinese
Soil (1990) published by the National Soil Survey of China, respectively.

2.3. Single Pollution Index (SPI)

We used the single pollution index (SPI) to assess the pollution degree of trace elements contents
in soil. The SPI is calculated as follows:

Pi =
Ci
Si

(1)

where Pi is the SPI of trace element i in soil, Ci is the test value of trace element i, and Si is the
regulation value in China [33]. When Pi is less than or equal to 1, the content of the soil trace element i
is within a safe range, while when Pi is within the range of 1 to 2, the content of the soil trace element i
slightly exceeds the standard value; when Pi is within the range of 2 to 3, soils could be moderately
contaminated by trace element i; and when Pi is greater than 3, soils could be severely contaminated
by trace element i.

2.4. Ordinary Kriging (OK)

We used the widely-used ordinary kriging (OK) model to show the spatial variations of each soil
trace element across the study area. The equation for this model is as follows [34,35]:

Z∗(x0) =
n

∑
i=1

ϕiZ(xi) (2)

where Z*(x0) is the linear prediction value while Z(xi) is the observed value. n and i denote the
quantities of observed and predicted samples, respectively, and ϕi is the optimal weight value that
results in an unbiased prediction with the minimum variance.
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2.5. Principle Component Analysis (PCA)

We distinguished different groups of trace elements with PCA. This tool uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables. We then used non-transformed data to calculate the correlation
matrix, performed an orthogonal rotation based on the Kaiser Standard, and extracted factors with
eigenvalues greater than 1 after a maximum of 25 iterations [36].

2.6. Finite Mixture Distribution Model (FMDM)

For a random variable x, if a mixture distribution consists of m components and the distribution
of the ith individual component is determined by a specific probability density function (pdf) fi(x),
then the general pdf f (x) for the mixture distribution can be expressed as [27,37]:

f (x) =
m

∑
i=1

πi fi(x) = π1 f1(x) + . . . + πm fm(x) (3)

m

∑
i=1

πi = 1(0 ≤ πi ≤ 1) (4)

where πi denotes the mixed weights of every sub-distribution.
Many natural processes follow a normal distribution or a log-normal distribution. Here, we used

a log-normal distribution as the pdf to describe the trace element content of soils from different
sources [38], as follows:

fi(x µm, σm) =
1√

2πσmx
e
− (lnx−µm)2

2σm2 , x > 0 (5)

where µm and σm represent the mean and standard deviation of every sub-distribution, which can
be obtained using an expectation maximization algorithm [39]. We then used the Chi-square
goodness-of-fit test to test the null hypothesis H0 to confirm that the assumed model was consistent
with the observed distribution. The cut-off value between the ith and (i + 1) components can be
calculated after the above parameters have been determined, as follows:

πi

∫ +∞

a0

fi(x)dx = πi+1

∫ a0

−∞
fi+1(x)dx (6)

2.7. Data Analysis

In this study, we did all the statistical analyses with Microsoft Excel 2016 (Office 2016, Redmond,
WA, USA). We used the geostatistical analyst tool in ArcGIS 10.2 (ESRI, ArcGIS10.2, Redlands, CA, USA)
for the kriging interpolation. Principal component analysis of the seven soil trace elements was carried
out with the psych package of R3.4.2 [40] and the FMDM was done in R3.4.2 using Mclust package [41].

3. Results and Discussion

3.1. Summary Statistical Analysis of Soil Trace Elements

The average concentrations of Cr, Cd, Hg, As, Cu, Zn, and Ni in the study area were 67.72, 0.197,
0.288, 6.58, 34.77, 110.67, and 29.22 mg/kg, respectively (Table 1). Apart from Cr, the average values
of the trace elements were higher than the background values; the averages of Hg, Cd, Zn, and Cu
were much higher than the background values which suggest that these trace elements may have been
affected by human activities [26].

The coefficient of variation (CV) reflects the degree of dispersion of the sample data [42]. The CV
values of the soil trace elements in the study area were ranked as follows: Hg (104.55%) > Ni (56.96%) >
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Cd (50.68%) > Cu (47.99%) > Cr (43.41%) > As (40.33%) > Zn (33.0%). The uneven distribution of Hg
reflects anthropogenic impacts, and the other trace elements also showed different degrees of variability.

Table 1. Summary statistics for trace elements in topsoil (mg/kg) [43].

Element Cr Cd Hg As Cu Zn Ni

Mean 67.72 0.197 0.288 6.58 34.77 110.67 29.22
Median 69.7 0.18 0.19 6.26 33 106 29.8

SD 29.4 0.099 0.301 2.65 16.69 36.52 16.64
CV 43.41% 50.68% 104.55% 40.33% 47.99% 33.00% 56.96%

Range 6.04–326.0 0.03–1.84 0.02–2.26 0.87–19.2 4.28–315.0 34.30–714.0 2.89–293.0
Background Value 68.7 0.157 0.11 6.23 29.2 89.9 26.3

Background Interval 43.0–94.4 0.101–0.213 0.048–0.231 3.94–8.52 9.7–48.6 51.6–128.2 20.6–32.1

SD: standard deviation; CV: coefficient of variation.

3.2. Analysis of Auxiliary Variable Data

As shown in previous studies, industrial pollution is a major source of trace element pollution
in the soil [44–46]. Trace elements in industrial waste water, waste gas, and waste residues enter the
soil via sewage irrigation, garbage dumping, and atmospheric deposition, resulting in high trace
element concentrations in the soil [46–48]. Analysis of the density of all the industrial enterprises
(Figure 2) in the study area shows that the density was highest for the metal product enterprises,
followed by chemical product enterprises, then textiles, and was lowest for other enterprises, and that
most enterprises were clustered around the urban city areas.
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As Table 2 indicates, the Cr and Ni concentrations increased as the quantity of textile enterprises
increased, reflecting the quantitative impacts of the textile industry on these two trace elements.
Similarly, chemical product enterprises influenced the concentrations of Hg, Cu, Zn, and Ni;
metal product enterprises influenced the concentrations of Cr, Hg, Cu, and Zn, and other enterprises
influenced the Ni, Hg, and Cu concentrations. In general, as the total number of all enterprises
increased, the contents of all seven trace elements increased dramatically, which shows that industrial
activities were a major contributor to trace elements in soils.

Table 2. Average trace elements from different numbers of the different enterprises (mg/kg).

Category Enterprise Quantity Sample Quantity Cr Cd Hg As Cu Zn Ni

Textile Industry

0–4 1692 65.40 * 0.197 0.256 6.58 33.80 108.30 28.59 *
4–8 144 76.94 * 0.203 0.407 6.57 39.18 124.22 31.25 *
8–20 161 78.03 * 0.193 0.385 6.39 37.97 116.75 32.21 *
>20 54 85.01 * 0.200 0.695 7.46 43.92 130.57 34.52 *

Chemical materials

0–4 1241 63.10 0.194 0.213 * 6.42 32.04 * 105.64 * 27.87 *
4–8 298 70.35 0.206 0.336 * 6.79 36.94 * 115.59 * 30.16 *
8–20 397 76.33 0.195 0.416 * 6.78 38.61 * 116.72 * 31.48 *
>20 115 81.00 0.219 0.536 * 7.12 45.39 * 131.29 * 33.48 *

Metal products industry

0–4 817 60.21 * 0.188 0.174 * 6.50 31.14 * 104.03 * 27.02 *
4–8 286 67.84 * 0.204 0.275 * 6.49 32.73 * 107.25 * 28.61 *
8–20 466 71.59 * 0.198 0.355 * 6.70 36.58 * 111.96 * 31.15 *
>20 482 76.63 * 0.208 0.426 * 6.67 40.39 * 122.69 * 31.43 *

Other

0–4 1606 65.56 * 0.195 0.251 6.52 * 33.38 108.02 * 28.77
4–8 277 73.55 * 0.208 0.379 6.63 * 39.41 118.76 * 30.11
8–20 152 78.29 * 0.204 0.502 7.09 * 40.54 122.51 * 31.83
>20 16 82.68 * 0.199 0.458 8.01 * 38.86 123.74 * 34.09

Total

0–4 562 57.53 * 0.188 * 0.146 * 6.36 * 30.37 * 102.31 * 26.30 *
4–8 259 66.47 * 0.193 * 0.230 * 6.66 * 32.59 * 107.50 * 28.20 *
8–20 446 68.04 * 0.199 * 0.283 * 6.57 * 33.33 * 107.50 * 29.92 *
>20 784 75.25 * 0.204 * 0.413 * 6.73 * 39.47 * 119.50 * 31.24 *

* indicates that the value of different trace elements increased as the number of the different industries increased,
which shows the quantitative impacts of industries on trace elements.

Rhyolitic, tuffaceous residual slope faces dominated the parent materials (Table 3 and Figure 3a)
in the study area. Lakes and marshes extended over large parts of the north-central part of the study
area, while coastal sedimentary parent materials covered large areas of the northern and southern
parts. The main soil types (Table 4 and Figure 3b) were divided into paddy, fluvo-aquic, red, coastal
saline, skeletal, yellow, and purple soils. Paddy soils and red soils dominated the study area; red soils
were distributed across the entire study area and paddy soils were mainly distributed over most of
the central and northern parts. Fluvo-aquic and coastal saline soils were mostly distributed in the
northern coastal areas, and skeletal soils were distributed in the central and southern regions.Int. J. Environ. Res. Public Health 2018, 15, x 8 of 15 
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Table 3. Average concentrations of trace elements in soils from different parent materials (mg/kg).

Soil Parental Materials Type Sample
Quantity Cr Pb Cd Hg As Cu Zn Ni

Flooding parental
material

Flood alluvial face 102 51.84 50.38 * 0.212 * 0.213 4.86 29.25 111.35 * 23.58
Plain fluvial face 23 67.73 * 35.07 0.190 0.236 6.37 42.25 * 120.90 * 29.70 *

Estuary alluvial
sediment Modern estuary face 149 61.79 34.00 0.199 0.210 6.21 31.19 90.98 28.23

Stumpy parental
material

Granite type residual
slope face 25 30.36 46.67 * 0.205 0.108 3.77 20.64 99.54 12.09

Quaternary Pleistocene
Laterite face 6 62.30 48.40 * 0.475 * 0.171 3.67 28.50 95.32 13.75

Rhyolitic, tuffaceous
residual slope face 586 59.41 43.93 * 0.185 0.194 6.64 * 31.86 109.53 26.48

Purple sandstone
residual slope face 9 46.80 31.54 0.112 0.116 4.82 25.53 88.18 17.26

Lacustrine parent
material Lagoon face 655 77.10 * 51.15 * 0.206 * 0.496 * 6.40 38.99 * 118.80 * 30.60 *

Coastal deposition
parental material

Silica sand face 168 63.44 28.64 0.196 0.136 6.27 30.73 94.28 29.20
Aleurite and silt face 293 76.58 * 35.19 0.194 0.209 7.97 * 38.04 * 114.21 * 35.12 *

Silt face 35 82.07 * 37.39 0.188 0.145 8.76 * 36.67 117.93 * 38.02 *

* indicates a significant level of different trace elements from different soil parental materials.

Table 4. Average concentrations of trace elements in the different soil types (mg/kg).

Soil Types Sample Quantity Cr Cd Hg As Cu Zn Ni

Coastal saline soil 118 70.40 * 0.168 0.100 8.71 * 36.39 * 104.53 34.39 *
Fluvo-aquic soil 370 67.07 0.195 0.155 6.83 * 32.98 97.36 31.20 *

Skeletal soil 155 60.31 0.186 0.458 * 5.74 34.22 109.54 24.08
Red soil 278 54.68 0.201 * 0.254 5.39 31.72 107.54 22.92

Yellow soil 8 57.71 0.188 0.206 5.17 17.18 90.86 16.07
Paddy soil 1099 72.08 * 0.203 * 0.341 * 6.72 * 36.32 * 117.30 * 30.42 *
Purple soil 5 61.26 0.121 0.117 6.09 27.44 87.14 22.53

Other 18 68.72 * 0.159 0.212 6.18 28.13 92.38 30.18 *

* indicates a significant level of different trace elements in different soil types.

3.3. Assessment of Trace Element Pollution

The SPI values showed that, apart from Hg, the soils were only slightly polluted by trace elements.
The soils from more than 90% of the sampling points had Pi values less than or equal to 1 (Table 5),
which indicates that the other 6 trace elements did not pose much risk to the environment or ecology.
There are obvious signs of Hg contamination in the study area and, with 18.97%, 6.05%, and 5.70%
of the soils lightly, moderately, and severely polluted, respectively, around 30% of the soils from the
study area were adversely impacted by Hg.

Table 5. Values of the SPI for different trace elements.

Element
Pi ≤ 1 1 < Pi ≤ 2 2 < Pi ≤ 3 Pi > 3

Sample
Number Proportion Sample

Number Proportion Sample
Number Proportion Sample

Number Proportion

Cr 2036 99.27% 14 0.68% 1 0.05% 0 0%
Cd 1917 93.47% 124 6.05% 7 0.34% 3 0.15%
Hg 1421 69.28% 389 18.97% 124 6.05% 117 5.70%
As 2051 100% 0 0% 0 0% 0 0%
Cu 1975 96.29% 73 3.56% 2 0.10% 1 0.05%
Zn 2023 98.63% 25 1.22% 2 0.10% 1 0.05%
Ni 1897 92.49% 137 6.68% 7 0.34% 10 0.49%
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3.4. Spatial Distribution of Soil Trace Elements

The general spatial distribution of trace elements in soils in the study area is presented in
Figure 4. Cr, As, and Ni concentrations were highest in the central urban areas and the coastal
areas (Figure 4a,d,g). It is revealed by Table 3 that the main sources of Cr, As, and Ni were aleurite and
silt face (with silt face as the dominant source in the coastal areas), and the fact that the concentrations
of these trace elements were highest in the urban centers indicates that they were closely related
to anthropogenic activities. As shown in Figure 4b,f, areas with high Cd and Zn concentrations
were relatively scattered and were mainly concentrated in the northern and central urban areas.
The chemical industries probably influenced the Cd and Zn concentrations (Table 2). Concentrations
of Hg and Cu were highest in the central parts of the urban areas (Figure 4c,f), and close to the metal
and textile industries (Table 2).
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3.5. Source Identification Based on PCA

The Cattell’s scree plot (Figure 5) shows that the seven trace elements fell into three main
components, while the PCA (Table 6) results show that the cumulative contribution rate of the three
main components was up to 70.0%. The first principal component (PC1) contained three trace elements,
Cr, As, and Ni; the second principal component (PC2) contained Cd, Cu, and Zn, and the third
component (PC3) represented Hg. PC1, PC2, and PC3 accounted for 30%, 25%, and 15%, respectively.

The contribution of PC1 was up to 30% (Table 6), and had factor loadings of 0.88, 0.73, and 0.87
for Cr, As, and Ni, respectively. This suggests Cr, As, and Ni had the same pollution source. The
OK spatial interpolation map (Figure 6a) shows that PC1 gradually decreased from the coast to the
inland area, where the high-value areas were mainly confined to the city centers, the northeast, and
the southern coastal areas. This trend greatly matches previous spatial distribution analysis, so these
trace elements were mainly from natural sources.
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The contribution of PC2 was 25% (Table 6); Cd, Cu, and Zn had factor loadings of 0.81, 0.72,
and 0.82, respectively, which suggest a common pollution source. Alternatively, because Zn and
Cu contributed as much as 0.45 and 0.28 to the first principal component, Zn and Cu may have
shared the sources for PC1. The areas with high values for PC2 (Figure 6b) were scattered across
the study area, with clusters in the northwestern, southern, and central urban parts of the study
area. This suggests that PC2 represented mixed pollutant sources, such as traffic exhaust gases,
domestic garbage, and agricultural inputs.
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The contribution rate from PC3 was 15%, and the factor loading of Hg was 0.67. The OK
interpolation map of PC3 (Figure 6c) shows that the areas with high values were mainly distributed in
the central parts of the urban areas, which perfectly matches the spatial distribution map. This shows
that industrial pollution was the main source of Hg.

3.6. Source Identification Based on FMDM

In general, the FMDM results showed that Cr, As, Hg, and Ni conformed to the log-normal
mixture distribution; Cd, Cu, and Zn conformed to the log-normal distribution, and the seven trace
elements passed the significance level test (p > 0.05).

Cd, Cu, and Zn fitted the single log-normal distribution model as shown in Figure 7b,e,f.
The FMDM was not able to clearly identify whether these trace elements had natural or anthropogenic
sources, because their sources did not significantly differ throughout the entire study area; the modelled
average concentrations were higher than the soil background values, which suggests unnatural sources.
So, these three trace elements may have derived in parts from human activities that generate multiple
pollutants, including urban development, population increases, domestic garbage, traffic pollution,
and agricultural inputs.
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The concentrations of Cr, As, and Ni were all consistent with the double log-normal distribution
model (Figure 7a,d,g), and should fall within the natural and anthropogenic distributions in theory.
As shown in Table 7, the means of Cr, As, and Ni from the natural distribution were lower than the
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soil background values (Table 7). The means of the anthropogenic distributions exceeded the soil
background values, but were still within the ranges of the background values (Table 1); the FMDM
therefore identified two sub-distributions as a low-value natural distribution and a high-value natural
and anthropogenic mixed distribution. This suggests that Cr, As, and Ni may have been influenced by
anthropogenic activities, but their impacts were not much more than the impacts from a high-value
natural background. In such cases, the effects of these trace elements from anthropogenic sources
would not be apparent.

Table 7. FMDM parameters and thresholds.

Elements Class Proportion% Mean
(mg/kg)

STD
(mg/kg) Freedom χ2 p Cutoff Value

(mg/kg)
Background

Values

Cr 2
35.79% 49.51 1231.02

52 51.47 0.15 52.49 68.764.21% 77.54 226.39

Cd 1 100% 0.18 0.006 45 48.06 0.35 - 0.157

Hg 3
45.35% 0.09 0.001

20 16.27 0.7
0.156

0.1141.21% 0.30 0.002 0.566
13.44% 0.91 0.12

As 2
7.28% 2.74 0.75

41 51.81 0.12 2.85 6.2392.72% 6.85 6.05

Cu 1 100% 34.65 206.12 55 59.05 0.33 - 29.2

Zn 1 100% 127.80 3857.11 68 53.54 0.09 - 89.9

Ni 2
38.51% 21.8 290.52

30 28.76 0.53 22.77 26.361.49% 31.29 39.94

STD: standard deviations of log-normal distribution; χ2: Chi-square goodness-of-fit statistics. p means that the
estimated model is consistent with the observed distribution; when p 0.05, H0 is rejected.

The Hg concentrations fit the triple log-normal distribution mode, as shown in Table 7 and
Figure 7c. A natural distribution and two anthropogenically-influenced distributions were identified.
The modelled mean of natural distribution was below the soil background value, and the modelled
means of both anthropogenically-influenced distributions significantly exceeded the soil background
value and its maximum range (Table 1), showing that anthropogenic industrial activities were a major
influence on the content of Hg in soils in the study area.

4. Conclusions

Source identification and apportionment of soil trace elements have always been important
prerequisites for treating trace element-contaminated soils and preventing further contamination.
In this study, we quantitatively identified the sources of seven trace elements in the Yangtze River
Delta using PCA and FMDM. Our results showed that Cr, As, and Ni in soil were mainly from natural
sources through weathering of parent materials; Cd, Cu, and Zn were mainly from multiple mixed
pollution sources, such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was
mainly from industrial waste and discharge. Our study can efficiently provide valuable information
for policy makers and administrators on trace elements contamination.
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