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Abstract: Public health risks from urban floods are a global concern. A typhoon is a devastating
natural hazard that is often accompanied by heavy rainfall and high storm surges and causes serious
floods in coastal cities. Affected by the same meteorological systems, typhoons, rainfall, and storm
surges are three variables with significant correlations. In the study, the joint risk of rainfall and
storm surges during typhoons was investigated based on principal component analysis, copula-based
probability analysis, urban flood inundation model, and flood risk model methods. First, a typhoon
was characterized by principal component analysis, integrating the maximum sustained wind (MSW),
center pressure, and distance between the typhoon center and the study area. Following this,
the Gumbel copula was selected as the best-fit copula function for the joint probability distribution of
typhoons, rainfall, and storm surges. Finally, the impact of typhoons on the joint risk of rainfall and
storm surges was investigated. The results indicate the following: (1) Typhoons can be well quantified
by the principal component analysis method. (2) Ignoring the dependence between these flood drivers
can inappropriately underestimate the flood risk in coastal regions. (3) The co-occurrence probability
of rainfall and storm surges increases by at least 200% during typhoons. Therefore, coastal urban
flood management should pay more attention to the joint impact of rainfall and storm surges on flood
risk when a typhoon has occurred. (4) The expected annual damage is 0.82 million dollars when
there is no typhoon, and it rises to 3.27 million dollars when typhoons have occurred. This indicates
that typhoons greatly increase the flood risk in coastal zones. The obtained results may provide a
scientific basis for urban flood risk assessment and management in the study area.
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1. Introduction

Typhoons are considered extremely devastating natural hazards worldwide, which have caused
enormous property and human losses and severely impacted public health [1]. Under the influence
of global warming and the rise in sea level [2], the frequency and intensity of natural disasters such
as typhoons, rainstorms, and storm surges have increased. Furthermore, there has been an increase
in the damage caused by these disasters. Affected by the same meteorological systems, typhoons,
rainfall, and storm surges are three correlated variables. Based on previous reports [3–6], although
the correlation between rainfall and storm surges is often weak, it has a significant impact on coastal
urban flood management. Strong typhoons often bring on heavy rainfall and high surges. Floods
can easily occur in coastal cities when typhoons occur as they often bring heavy rainfall and storm
surges. For example, Typhoon Rammasun, with a maximum wind speed of 60 m/s, attacked Haikou
in Hainan Province, China, from 17 July to 19 July 2014, resulting in heavy daily rainfall (509.2 mm)
and high storm surges (3.83 m) on 18 July. The return period of both rainfall and storm surges is
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more than 100 years. This resulted in severe waterlog disasters in Haikou due to the joint impact
of heavy rainfall and high tide blocking, which caused the deaths of eight people and losses worth
nearly 1.4 billion dollars. Consequently, it is necessary to investigate the dependence and encountering
probability of typhoons, rainfall, and storm surges.

At present, the dependence between bivariate variables of typhoons, rainfall, and storm surges
has been analyzed. Zheng [3,4] employed a bivariate logistic threshold–excess model to quantify
the dependence between extreme rainfall and storm surges. Lian [5] and Xu [7] investigated the
joint probability of rainfall and storm surges using copula-based models in Fuzhou City, China.
Hurk [8] used an ensemble of regional climate model simulations to demonstrate that the combined
occurrence of heavy precipitation and storm surges is physically related in the Netherlands. Wu [9]
and Dong [10] analyzed the joint return probability of typhoon wind speed and rainfall intensity
in the typhoon-affected sea area. Konrad [11] found that roughly a third or more of the small and
medium precipitation events in the southeastern and northeastern regions of the Eastern United States
were connected to tropical cyclones. Matyas [12] investigated relationships between typhoon rainfall
distribution, typhoon size, and the environment surrounding a typhoon and found that the radius of
the outermost closed isobar (ROCI) can be a useful delineation of regions that receive typhoon rainfall.
Zhu [13] estimated typhoon rainfall risk by Emanuel’s synthetic approach in Texas, and Lonfat [14]
showed how rainfall rates decrease away from the typhoon center by using the Tropical Rainfall
Measuring Mission (TRMM) microwave imager. Wang [15] selected an optimal copula function to
develop a joint probability distribution function of storm surges and typhoon wind speeds. If only
the joint characteristics of univariate or bivariate functions are analyzed, the factual flood mechanism
in coastal zones cannot be explored. However, until now, there has been a lack of knowledge about
multivariate joint probability distribution of typhoons, rainfall, and storm surges. The joint probability
distribution can reveal the occurrence probability of multiple variables. Therefore, it is meaningful
to investigate the trivariate joint probability distribution of typhoons, rainfall, and storm surges for
flood management in coastal zones. The copula is an efficient tool to obtain a suitable multivariable
distribution due to flexible selection of the marginal distribution. Recently, copula functions are
increasingly being used in multivariate hydrologic event analysis. For instance, they have been
used for flood frequency analysis [16–20], rainfall frequency analysis [21–25], and drought frequency
analysis [26–30]. Such studies demonstrate that copulas are robust tools for the probabilistic analysis of
hydrological data [27]. Therefore, copula functions are used to establish the trivariate joint probability
distribution of typhoons, rainfall, and storm surges.

Expected annual damage (EAD) is used as a flood risk model based on the probability function and
flood damage function [31]. Flood damage can be calculated by unit flood damage and the urban flood
inundation model [32]. The Personal Computer Storm Water Management Model (PCSWMM) [33–36]
is one urban flood inundation model that combines Geographic Information System (GIS) and the
US Environmental Protection Agency (EPA) SWMM 5 [37] and can provide a complete package for
one-dimensional (1D) and two-dimensional (2D) analysis of rainfall runoff processes for storm-water
modeling in urban and rural areas. It has been applied in many areas [33–36].

In this study, the joint risk of rainfall and storm surges during typhoons is investigated by
integrating principal component analysis, copula function, urban flood inundation model, and flood
risk model methods. The main objectives of this study are to find a good statistical description of
multivariate joint probability distribution of typhoon–rainfall–storm surge and then to evaluate the
impact of typhoons on the joint risk of rainfall and storm surges. This study would provide a theoretical
basis for flood risk management in coastal zones and a reference for the investigation of urban floods
caused by multiple hazard factors. The remainder of the paper is organized as follows. The study area
and data are described in the next section. Section 3 describes methods used in this study. In Section 4,
the construction of the trivariate joint probability distribution of typhoons, rainfall, and storm surges
with copula functions is presented. Meanwhile, the copula-based probability of rainfall and storm
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surges under typhoons and the impact of typhoons on flood risk caused by rainfall and storm surges
are discussed. Finally, conclusions are given in Section 5.

2. Study Area and Data

Haidian Island is located in the northern part of Haikou in Hainan Province, China, and is adjacent
to the Qiongzhou strait (Figure 1). Because of the special location and low elevation of the Haidian
Island, it is vulnerable to the joint impact of heavy rainfall and high storm surges. Furthermore,
Haidian Island is one of the areas most seriously and frequently affected by typhoons in China. A total
of 255 typhoons affected Haidian Island during 1951–2011, with an average of 4.2 typhoons per year.
Heavy rainfall and high storm surges caused by typhoons have often resulted in severe flood damage
to the island.
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Figure 1. Location of the study area.

In this study, daily rainfall data and daily maximum storm surge data during 1974–2012 were
collected from the Haikou hydrological station, which are provided by the Haikou Municipal Water
Authority. The continuity of the data was checked. The typhoon data are available from the best-track
dataset by the Shanghai Typhoon Institute of China Meteorological Administration (CMA). The dataset
contains information on each typhoon track every 6 h, including the time, location (latitude and
longitude), maximum sustained wind (MSW), and minimum pressure near the typhoon center.
The CMA typhoon best-track dataset is included in the International Best Track Archive for Climate
Stewardship (IBTrACS) project [38], which is an official World Meteorological Organization (WMO)
global archiving and distribution resource for typhoon best-track data [39].

When the distance between the typhoon center and the study area is less than 500 km [40,41],
the typhoon is considered to have potential impact on the study area. There were 128 typhoon events
affecting Haidian Island from 1974 to 2012, and the tracks of those typhoon events are presented in
Figure 2. As shown in the figure, most of the typhoons that affect Hainan Island originate in the South
China Sea and approach the island from east to west. The data of each typhoon point include MSW,
center pressure, and distance between the typhoon center and the study area. They were selected by
the following steps. First, we selected the affected daily rainfall and storm surges by typhoons through
the manual identification method. For example, on 1 September, daily rainfall and storm surges
were affected by typhoons. Then, we determined the corresponding typhoon points (usually more
than one) on 1 September and calculated the distance between typhoon points and Haikou. Finally,
the typhoon point with the smallest distance was selected as the basic typhoon data on 1 September,
since rainfall and storm surges are mainly affected by the typhoon position. As shown in Figure 3,
typhoon points 3–5 affected Haikou on 1 September, and typhoon point 4 had the smallest distance.
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3. Methods

The overall framework of the study is shown in Figure 4. First, to quantify typhoons, principal
component analysis was used to characterize typhoons by integrating MSW, center pressure, and
distance between the typhoon center and the study area. Then, a multivariate joint probability
distribution of typhoons, rainfall, and storm surges was constructed by trivariate copula functions.
Third, the impact of typhoons on flood risk caused by rainfall and storm surges was evaluated based
on an urban flood inundation model and a flood risk model. Finally, the joint risk of rainfall and
storm surges during typhoons was estimated from two aspects: (1) the impact of typhoons on joint
probability of rainfall and storm surges, and (2) the impact of typhoons on flood risk caused by rainfall
and storm surges.
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3.1. Principal Component Analysis

The existing literature has focused on the dependence between typhoons, rainfall, and storm
surges used to characterize typhoons by MSW [9–11]. However, typhoons have many indices, such
as MSW, center pressure, distance between typhoon points and the study area, SiR34 (the radius,
in km, of 34 kt, i.e., tropical cyclone (TC) size), and so on. MSW cannot fully reflect the impact of
typhoons on rainfall and storm surges. In this work, to analyze the multivariate joint probability
distribution of typhoons, rainfall, and storm surges, typhoons were quantified by a synthetic parameter
integrating MSW, center pressure, and distance between the typhoon center and the study area, since
these variables all have significant dependence with rainfall and storm surges (Table 1). As shown
in Table 1, since SiR34 has a lower correlation with rainfall and storm surges, it was not adopted
in the base parameter set to perform the principal component analysis. Therefore, in this study,
principal component analysis was used to characterize typhoons by integrating MSW, center pressure,
and distance between the typhoon center and the study area.

Table 1. Pearson’s correlation coefficient between typhoon parameters and rainfall and storm surges.

Typhoon Parameters Rainfall Storm Surges

MSW 0.454 * 0.376 *
Center pressure −0.448 * −0.304 *

Distance between typhoon center and study area −0.574 * −0.354 *
SiR34 0.189 0.153

* Correlation is significant at 1% significance level; MSV: maximum sustained wind; SiR34: the radius, in km,
of 34 kt, i.e., tropical cyclone (TC) size.
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Principal component analysis is one of the most widely applied tools for simplifying a dataset by
reducing multidimensional datasets to a smaller number of dimensions than the original representation
without changing the characteristics of the original data [42]. For an n-dimensional observation sample
matrix S with p eigenvalues, the principal component can be calculated with the following steps:

Step 1. Establish observation sample matrix S:

S =


s11 s12 · · · s1p
s21 s22 · · · s2p

...
sn1 sn2 · · · snp

 (1)

Step 2. Convert sample matrix S to normalized matrix Y:
1. Normalized matrix for positive indices:

yij =
sij −min(sij)

max(sij)−min(sij)
(2)

2. Normalized matrix for negative indices:

yij =
max(sij)− sij

max(sij)−min(sij)
(3)

Step 3. Calculate the correlation coefficient matrix of the normalized matrix:

R =


r11 r12 · · · r1p
r21 r22 · · · r2p

...
rp1 rp2 · · · rpp

 (4)

Step 4. Calculate eigenvalues λ of correlation coefficient matrix R:

|R− λI| = 0 (5)

where I is the p by p identity matrix, |·| is the determinant operator, and λ represents the p eigenvalues
ranked in decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Step 5. Choose principal components U1, U2, · · · , Um.

When the variance cumulative contribution rate of m principal components
m
∑

i=1
λi/

p
∑

i=1
λi is close

to 1 (generally greater than 85%), the factor variables U1, U2, · · · , Um are known as the first, second, ...,
mth principal components of the original variables, respectively, which are expressed as:

Uj = bT
j y (6)

where y is the normalized matrix mentioned in Equations (2) and (3), and bj is the eigenvector of
eigenvalue λj. It can be calculated by the following formula.

Rb = λjb (7)

Step 6. Characterize samples by integrating principal components:
The sample values can be integrated by the following formulas [43–45].

F =
m

∑
j=1

ωjUj (8)
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ωj =
λj

m
∑

i=1
λi

j = 1, 2, . . . , m (9)

where ωj is the weighting coefficient of principal component Uj, and λj is the variance contribution
rate of principal component Uj.

3.2. Copula Function

F1, F2, · · · , Fn are marginal distributions of X1, X2, · · · , Xn, respectively. According to Sklar’s
theorem [46], if F1, F2, · · · , Fn are continuous, there exists an n-copula C as follows:

F(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn)) (10)

In this study, two elliptical copulas (Gaussian copula and Student’s t copula) and three
Archimedean copulas (Gumbel copula, Clayton copula, and Frank copula) were employed to build joint
distributions of typhoon–rainfall, typhoon–storm surge, and rainfall–storm surge. Trivariate Gaussian
copula, Gumbel copula, and Student’s t copula were employed to construct the joint distribution of
typhoons, rainfall, and storm surges. The above copula functions are presented in Appendix A.

The joint probability, co-occurrence probability, and conditional probability of typhoons, rainfall,
and storm surges can be calculated by copulas. For T representing the typhoon, H representing rainfall,
and Z representing the storm surge, the joint probability of at least one variable (typhoon T, rainfall H,
or storm surge Z) exceeding its extreme values is denoted as P ∪ (t, h, z). The expression of P ∪ (t, h, z)
is as follows [47,48]:

P ∪ (t, h, z) = P((T > t) ∪ (H > h) ∪ (Z > z)) = 1− F(t, h, z) (11)

The co-occurrence probability of T, H, and Z all exceeding certain extremes is denoted as P ∩
(t, h, z). The expression of P ∩ (t, h, z) is as follows [47,48]:

P ∩ (t, h, z) = P((T > t) ∩ (H > h) ∩ (Z > z))
= 1− FT(t)− FH(h)− FZ(z) + F(t, h) + F(t, z) + F(h, z)− F(t, h, z)

(12)

The conditional probability that H and Z exceed a certain extreme when T has exceeded the
extreme is denoted as P(H > h, Z > z|T > t) . The expression of P(H > h, Z > z|T > t) is as follows:

P(h, z|t) = P(H > h, Z > z|T > t)
= 1−FT(t)−FH(h)−FZ(z)+F(t,h)+F(t,z)+F(h,z)−F(t,h,z)

1−FT(t)
(13)

3.3. Expected Annual Damage Evaluation

In this study, flood risk is defined as the product of probability and damages [49]. The expected
annual damage (EAD) is then found to express the flood risk, which can be calculated by integrating
the flood damage function with the probability function. An approximation for calculating EAD is
described in [31]:

EAD =
i=m

∑
i=1

Di × ∆Pi (14)

Di =
DPi−1 + DPi

2
(15)

where DP is the damage caused by a flood of exceedance probability P, m is the number of probability
increments, and Di is the average flood damage (mean of Dpi and Dpi−1) during probability increment
∆Pi for the ith interval. Flood damages are calculated by unit flood damage and maximum inundation
depth. The inundation depth is calculated by PCSWMM, which is introduced in Appendix B.
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4. Results and Discussion

4.1. Quantification of Typhoons

In order to establish the multivariate joint probability of typhoons, rainfall, and storm surges,
typhoons should be quantified first. To quantify typhoons, characterization by principal component
analysis was performed, integrating MSW, center pressure, and distance between the typhoon center
and the study area. The results reveal that, on the basis of eigenvector loadings, the first principal
component (PC1) with an eigenvalue of 0.093 is able to explain 59.1% of the total variation, whereas
the second principal component (PC2) with an eigenvalue of 0.062 explains 39.3% of the variation,
and both PC1 and PC2 explain 98.4% of the total variation (Table 2). Therefore, the first two principal
components are sufficient to replace the original data information.

From the score coefficient matrix in Table 3, the score coefficients of MSW, center pressure,
and distance in PC1 are 0.745, 0.589, and 0.312, respectively. MSW and center pressure have
higher score coefficients than distance, indicating that PC1 is the comprehensive reaction of MSW
and center pressure. The second PC, negatively loaded with MSW (−0.247) and center pressure
(−0.19), is positively loaded with the distance between the typhoon center and the study area (0.95).
The proportion of distance is the highest in PC2, which indicates that PC2 is a description of distance.
Therefore, PC1 and PC2 can fully reflect MSW, center pressure, and the distance, indicating that the
principal component analysis results are reasonable. Furthermore, the principal components can be
described as follows.

U1 = 0.74534 S1 + 0.589417 S2 + 0.311539 S3 (16)

U2 = −0.24722 S1 − 0.18963 S2 + 0.950223 S3 (17)

where S1 is MSW, S2 is center pressure, and S3 denotes the distance between the typhoon center and
the study area.

From Equations (8) and (9), typhoon T can be quantified by the following equation [43–45]:

F = 0.6 U1 + 0.4 U2 (18)

Table 2. Index eigenvalue and contribution rate.

Principal Component Eigenvalue Contribution Rate (%) Cumulative Contribution Rate (%)

U1 0.092988 59.10052 59.10052
U2 0.06183 39.29707 98.39759
U3 0.002521 1.60241 100

Table 3. Matrix of component score coefficients.

Variable U1 U2 U2

S1 0.74534 −0.24722 −0.61915
S2 0.589417 −0.18963 0.785257
S3 0.311539 0.950223 −0.00437

4.2. Multivariate Joint Probability Distribution of Typhoons, Rainfall, and Storm Surges

4.2.1. Correlation among Typhoons, Rainfall, and Storm Surges

The quantitative correlation among variables was analyzed using Pearson’s correlation coefficient
r and two nonparametric dependence measures, Kendall’s τ and Spearman’s ρ. Table 4 presents
corresponding correlation measures between typhoons, rainfall, and storm surges. The correlation
between variables was found to be statistically significant at 1% significance level, as checked by
a standard two-tailed t-test. The correlation is largest between typhoons and rainfall (Spearman’s
ρ = 0.368 at 1% significance level), while it is the smallest between rainfall and storm surges (Kendall’s
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τ = 0.142 at 1% significance level). The reason may be that rainfall and storm surges are affected
by various weather systems, and typhoon is only one factor. Additionally, the angle of approach
of a typhoon may also cause the low correlation between rainfall and storm surges (e.g., being on
the left side of the typhoon can reduce the storm surge, while it produces maximum rainfall on the
left side). Even though the correlation between variables is low, it can have significant implications
for flood risk estimates, and there are still many studies about their joint probability analysis [3–8].
Furthermore, to analyze the correlation between extreme events, upper-tail correlation coefficient λu

was also evaluated, and the introduction of λu is described in the literature in detail [50]. As shown in
Table 4, upper-tail correlation coefficients are higher than Pearson’s correlation coefficients, Kendall’s τ,
and Spearman’s ρ among typhoons, rainfall, and storm surges, indicating that the correlation among
extreme events is stronger.

Table 4. Correlation among typhoons, rainfall, and storm surges.

Dependence Measure Typhoon–Rainfall Typhoon–Storm Surge Rainfall–Storm Surge

Pearson’s r 0.339 0.202 0.262
Kendall’s τ 0.249 0.102 0.142

Spearman’s ρ 0.368 0.151 0.209
Upper-tail correlation coefficient λu 0.416 0.218 0.300

Correlation is significant at 1% significance level.

4.2.2. Trivariate Joint Probability Distribution of Typhoon–Rainfall–Storm Surge

The nonparametric kernel density estimation [51,52] was used to establish the marginal
distribution of typhoons, rainfall, and storm surges. As shown in Table 5, all of the computed
values of the Kolmogorov–Smirnov (K–S) statistic D are lower than the critical values (D0.01 = 0.067).
Furthermore, a comparison of kernel density estimations and empirical distributions of typhoons,
rainfall, and storm surges are presented in Figures 5–7, indicating that the kernel density estimation
can properly estimate the distribution functions of typhoons, rainfall, and storm surges. As for
bivariate joint distributions, typhoon–rainfall, typhoon–storm surge, and rainfall–storm surge are all
best fitted by the Gumbel copula due to minimal Akaike information criterion (AIC) statistics being
found for these bivariate distributions (Table 6). Table 7 shows the results of goodness of fit of the
trivariate distribution of typhoon–rainfall–storm surge. It can be seen that typhoon–rainfall–storm surge
is best fitted by the Gumbel copula, as it has the lowest AIC statistics and passes the K–S test. Figure 8
illustrates the probability–probability (P–P) plot of the joint distribution of typhoon–rainfall–storm
surge. The coefficient of determination between empirical distribution and copula distribution is above
0.99, which indicates that the selected copula distribution is reasonable, and the selected parameters
are adoptable. The trivariate joint probability distribution of typhoons, rainfall, and storm surges is
expressed in Figure 9. With an increase in typhoons, rainfall, and storm surges, their joint probability
distribution increases.

Table 5. Fitting results of marginal distribution functions. K–S, Kolmogorov–Smirnov.

Variate Typhoon Rainfall Storm Surge

K–S statistic D 0.017 0.066 0.011

Table 6. Fitting results of bivariate distribution functions. AIC, Akaike information criterion.

Pair
Gaussian Copula Student’s t-Copula Clayton Copula Frank Copula Gumbel Copula

KS AIC KS AIC KS AIC KS AIC KS AIC

Typhoon–rainfall 0.081 −963.566 0.084 −948.301 0.084 −542.389 0.080 −978.488 0.066 −1169.123
Typhoon–storm surge 0.049 −1047.931 0.046 −1082.368 0.066 −726.048 0.051 −1030.418 0.040 −1274.238
Rainfall–storm surge 0.086 −815.687 0.085 −837.389 0.085 −570.130 0.085 −825.573 0.064 −971.122

The values of the distributions in bold were selected.
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Table 7. Fitting results of trivariate distribution functions.

Distribution Gaussian Copula Student’s t Copula Gumbel Copula

AIC −925.276 −901.062 −957.371
K–S 0.068 0.069 0.057

The values of the distributions in bold were selected.

Int. J. Environ. Res. Public Health 2018, 15, x  10 of 21 

 

rainfall, and storm surges is expressed in Figure 9. With an increase in typhoons, rainfall, and storm 

surges, their joint probability distribution increases. 

Table 5. Fitting results of marginal distribution functions. K–S, Kolmogorov–Smirnov. 

Variate Typhoon Rainfall Storm Surge 

K–S statistic D 0.017 0.066 0.011 

Table 6. Fitting results of bivariate distribution functions. AIC, Akaike information 

criterion. 

Pair 
Gaussian Copula Student’s t-Copula Clayton Copula Frank Copula Gumbel Copula 

KS AIC KS AIC KS AIC KS AIC KS AIC 

Typhoon–rainfall 0.081 −963.566 0.084 −948.301 0.084 −542.389 0.080 −978.488 0.066 −1169.123 

Typhoon–storm surge 0.049 −1047.931 0.046 −1082.368 0.066 −726.048 0.051 −1030.418 0.040 −1274.238 

Rainfall–storm surge 0.086 −815.687 0.085 −837.389 0.085 −570.130 0.085 −825.573 0.064 −971.122 

The values of the distributions in bold were selected. 

Table 7. Fitting results of trivariate distribution functions. 

Distribution Gaussian Copula Student’s t Copula Gumbel Copula 

AIC −925.276 −901.062 −957.371 

K–S 0.068 0.069 0.057 

The values of the distributions in bold were selected. 

 

Figure 5. Cumulative probability distribution of typhoon. Figure 5. Cumulative probability distribution of typhoon.
Int. J. Environ. Res. Public Health 2018, 15, x  11 of 21 

 

 

Figure 6. Cumulative probability distribution of rainfall. 

 

Figure 7. Cumulative probability distribution of storm surge. 

 

Figure 8. P–P plot of the joint distribution of typhoons, rainfall, and storm surges. 

Figure 6. Cumulative probability distribution of rainfall.

Int. J. Environ. Res. Public Health 2018, 15, x  11 of 21 

 

 

Figure 6. Cumulative probability distribution of rainfall. 

 

Figure 7. Cumulative probability distribution of storm surge. 

 

Figure 8. P–P plot of the joint distribution of typhoons, rainfall, and storm surges. 

Figure 7. Cumulative probability distribution of storm surge.



Int. J. Environ. Res. Public Health 2018, 15, 1377 11 of 20

Int. J. Environ. Res. Public Health 2018, 15, x  11 of 21 

 

 

Figure 6. Cumulative probability distribution of rainfall. 

 

Figure 7. Cumulative probability distribution of storm surge. 

 

Figure 8. P–P plot of the joint distribution of typhoons, rainfall, and storm surges. Figure 8. P–P plot of the joint distribution of typhoons, rainfall, and storm surges.Int. J. Environ. Res. Public Health 2018, 15, x  12 of 21 

 

 

Figure 9. Some bivariate views of the trivariate probability distribution of typhoons, rainfall, and 

storm surges. Joint probability distribution of rainfall and storm surges when typhoon value is (a) 

0.2, (b) 0.5, (c) 0.8; joint probability distribution of typhoons and storm surges when rainfall is (d) 10 

mm, (e) 50 mm, (f) 150 mm; joint probability distribution of typhoons and rainfall when storm surge 

is (g) 2.0 m, (h) 2.5 m, (i) 3.0 m. 

4.2.3. Joint Probability of Typhoon–Rainfall–Storm Surge Analysis 

The joint probability and co-occurrence probability of typhoons, rainfall, and storm surges are 

calculated from Equations (11) and (12). From Table 8, we can conclude the following: (1) With a 

decrease in the return period (RP), the joint probability of typhoons, rainfall, and storm surges 

increases. (2) The trivariate joint probability is always greater than the co-occurrence probability in 

all conditions. Hence, the simultaneous occurrence of typhoons, rainfall, and storm surges all 

exceeding certain threshold values is less frequent. However, one variable (typhoon, rainfall, or 

storm surge) more frequently exceeds its threshold value. (3) The joint probability P  is nearly two 

times the univariate occurrence probability of typhoons, rainfall, and storm surges, and flooding 

would easily occur when either of them exceeds the threshold. However, the flood design standard 

in China is only determined by univariate analysis (i.e., rainfall frequency analysis), which would 

highly underestimate the flood risk in coastal regions. 

Table 8 also shows a comparison of flood risk with and without considering the dependence 

between typhoons, rainfall, and storm surges. From Table 8, we can conclude that  ( , , )P t h z  is 

much higher than ( , , )P t h z   in different return periods. Here,  ( , , )P t h z  denotes the 

co-occurrence probability that typhoon T, rainfall H, and storm surge Z all exceed a certain 

magnitude. ( , , )P t h z   denotes  ( ) ( ) ( )P T t H h Z z     without considering the 

dependence between these flood drivers. This indicates that ignoring the dependence between 



Figure 9. Some bivariate views of the trivariate probability distribution of typhoons, rainfall, and
storm surges. Joint probability distribution of rainfall and storm surges when typhoon value is (a) 0.2,
(b) 0.5, (c) 0.8; joint probability distribution of typhoons and storm surges when rainfall is (d) 10 mm,
(e) 50 mm, (f) 150 mm; joint probability distribution of typhoons and rainfall when storm surge is
(g) 2.0 m, (h) 2.5 m, (i) 3.0 m.
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4.2.3. Joint Probability of Typhoon–Rainfall–Storm Surge Analysis

The joint probability and co-occurrence probability of typhoons, rainfall, and storm surges are
calculated from Equations (11) and (12). From Table 8, we can conclude the following: (1) With a
decrease in the return period (RP), the joint probability of typhoons, rainfall, and storm surges increases.
(2) The trivariate joint probability is always greater than the co-occurrence probability in all conditions.
Hence, the simultaneous occurrence of typhoons, rainfall, and storm surges all exceeding certain
threshold values is less frequent. However, one variable (typhoon, rainfall, or storm surge) more
frequently exceeds its threshold value. (3) The joint probability P∪ is nearly two times the univariate
occurrence probability of typhoons, rainfall, and storm surges, and flooding would easily occur when
either of them exceeds the threshold. However, the flood design standard in China is only determined
by univariate analysis (i.e., rainfall frequency analysis), which would highly underestimate the flood
risk in coastal regions.

Table 8. Joint probability (P∪) and co-occurrence probability (P∩) of typhoons, rainfall, and storm surges.

Return Period (Years) 5 10 20 50 100

P ∪ (t, h, z) 0.430 0.233 0.121 0.050 0.025
P ∩ (t, h, z) 0.053 0.024 0.011 0.004 0.002
P∗ ∩ (t, h, z) 0.008 0.001 1.25 × 10−4 8 × 10−6 1 × 10−6

P∪ (t, h, z) denotes P((T > t) ∪ (H > h) ∪ (Z > z)), P∩ (t, h, z) denotes P((T > t) ∩ (H > h) ∩ (Z > z)), and P∗ ∩
(t, h, z) denotes P((T > t) ∩ (H > h) ∩ (Z > z)) without considering the dependence between these flood drivers.

Table 8 also shows a comparison of flood risk with and without considering the dependence
between typhoons, rainfall, and storm surges. From Table 8, we can conclude that P ∩ (t, h, z) is
much higher than P∗ ∩ (t, h, z) in different return periods. Here, P ∩ (t, h, z) denotes the co-occurrence
probability that typhoon T, rainfall H, and storm surge Z all exceed a certain magnitude. P∗ ∩ (t, h, z)
denotes P((T > t) ∩ (H > h) ∩ (Z > z)) without considering the dependence between these flood
drivers. This indicates that ignoring the dependence between these flood drivers may inappropriately
characterize the flood risk in coastal regions and can lead to underestimating it. These findings are in
agreement with the results found by Salvadori et al. [53].

4.3. Joint Risk of Rainfall and Storm Surges during Typhoons on Haidian Island

4.3.1. Impact of Typhoons on Joint Probability of Rainfall and Storm Surges

Figure 10 and Table 9 show the co-occurrence probability of rainfall and storm surges under
different typhoon RP conditions. The co-occurrence probability of rainfall and storm surges
increases by at least 200% when a typhoon occurs (see Table 9). Furthermore, with an increase
in typhoon RP, the conditional probability of rainfall and storm surges increases rapidly. For example,
the co-occurrence probability of a 50-year RP rainfall and 50-year RP storm surge is only 0.004 when
there is no typhoon, and it increases to 0.036 under 5-year RP typhoon conditions. When a 50-year
RP typhoon occurs, it increases to 0.225. Furthermore, the probabilities P(H > h) and P(Z > z)
significantly increase when a typhoon has occurred (see Table 9). Therefore, the coastal urban flood
management strategy should pay more attention to the joint impact of rainfall and storm surges on
flood risk when a typhoon has occurred.

Table 9. Probabilities P(H > h|T > t) , P(Z > z|T > t) , P(H > h, Z > z), and P(H > h, Z > z|T > t) .

RP (years) Typhoon T Rainfall H (mm) Storm Surge Z (m) P(H|T) P(Z|T) P(H,Z) P(H,Z|T)

5 0.65 46 2.67 0.434 0.334 0.069 0.266
10 0.74 80 2.82 0.375 0.258 0.027 0.239
20 0.81 125.6 2.95 0.345 0.221 0.012 0.229
50 0.9 210.7 3.1 0.328 0.198 0.004 0.225
100 0.96 294.2 3.21 0.322 0.191 0.002 0.223
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Figure 10. Co-occurrence probability of rainfall and storm surges under different return period (RP)
typhoon conditions (from top to bottom: 50-year RP typhoon, 20-year RP typhoon, 10-year RP typhoon,
5-year RP typhoon, no typhoon).

4.3.2. Impact of Typhoons on Flood Risk Caused by Rainfall and Storm Surges

The impact of typhoons on flood risk caused by rainfall and storm surges was estimated based
on an urban flood inundation model and an expected annual damage model. In this study, expected
annual damage (EAD) was then found to express the flood risk, which can be calculated by integrating
the flood damage function with the probability function. Flood extent and depth are the most important
indicators of flood damage, often denoted as depth-damage curves [54]. However, a credible regional
depth-damage curve is difficult to obtain due to the complexity of urban contexts [55]. Therefore,
we used unit flood damage and inundation depth for cost estimation [32]. The unit flood damage
on Haidian Island is from Lian et al. [32], which was selected as the average economic loss in unit
inundation depth of the four rainfall events, RE-1 (12 October 2008), RE-2 (5 August 2009), RE-3
(28 September 2009), and RE-4 (12 October 2009). The inundation depth and economic loss in the four
rainfall events are shown in Table 10.

Table 10. Inundation depth and economic loss for different rainfall events [32].

Year Rainfall Events Inundation Depth (m) Economic Loss (Million Dollars)

2008 RE-1 1.5 51.72

2009
RE-2 0.5 9.01
RE-3 0.7 6.06
RE-4 0.5 4.74

Inundation depth was calculated by PCSWMM. The calculation steps of inundation depth are
introduced in detail in Appendix B. The maximum inundation depths in different RPs of rainfall and
storm surges are presented in Figure 11. Flood damage was calculated by maximum inundation depths
and unit flood damage. Table 11 shows that flood damage increases quickly with the increase of return
period, and P(H,Z|T) is much more than P(H,Z). After calculation, EAD is 0.82 million dollars when
there is no typhoon, and it rises to 3.27 million dollars when a typhoon has occurred. This indicates
that typhoons greatly increase the flood risk in coastal zones. The main reason is the increase of the
occurrence probability of rainfall and storm surges in typhoon conditions.

Table 11. P(H,Z), P(H,Z|T), and flood damages.

Return Period (Years) 5 10 20 50 100

P(H,Z) 0.069 0.027 0.012 0.004 0.002
P(H,Z|T) 0.266 0.239 0.229 0.225 0.223

Flood damage (million dollars) 7.38 11.17 16.51 20.66 24.83
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5. Conclusions

In this study, the joint risk of rainfall and storm surges during typhoons was investigated by
integrating principal component analysis, copula-based probability analysis, urban flood inundation
model, and flood risk model methods. First, principal component analysis was used to quantify
typhoons by integrating MSW, center pressure, and distance between the typhoon center and the
study area. Following this, the Gumbel copula was found to be a robust and proper function for the
joint probability of typhoons, rainfall, and storm surges. Then, the joint probability, co-occurrence
probability, and conditional probability were indicated by the Gumbel copula. The results of joint
probability indicate that ignoring the dependence between these flood drivers may inappropriately
characterize the flood risk in coastal regions and can lead to underestimating it. For conditional
probability, the co-occurrence probability of rainfall and storm surges increases by at least 200% during
typhoons. Therefore, coastal urban flood management should pay more attention to the joint impact of
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rainfall and storm surges on flood risk when a typhoon has occurred. Furthermore, when a typhoon
has occurred, The expected annual damage (EAD) increases from 0.82 million dollars to 3.27 million
dollars. This indicates that typhoons greatly increase the flood risk in coastal cities.

These messages are useful for practical design and planning, since all flood hazards, such as
typhoons, rainfall, and storm surges, are considered. However, the study also has certain limitations.
First, since the main objective of this study is to evaluate the impact of typhoons on the joint risk of
rainfall and storm surges, the impact of typhoon size and typhoon conditions on rainfall distribution
was not taken into consideration and needs to be explored in our future work. Second, the limited
socioeconomic data in the study area restricted monetizing flood damage. Referring to Lian et al. [32],
flood damage was defined as a function of inundation depth and flood unit cost in this study. Future
research work could focus on improving the accurate quantification of flood damage. Furthermore,
the impact of the uncertainty of copulas on flood risk estimation is also an important research focus in
our future work.
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Appendix A. Introduction of Copula Functions

In this study, two elliptical copulas (Gaussian copula and Student’s t copula) and three Archimedean
copulas (Gumbel copula, Clayton copula, and Frank copula) were employed to build joint distributions
of typhoon–rainfall, typhoon–storm surge, and rainfall–storm surge. Common bivariate copula
functions are presented in Table A1.

Table A1. Common bivariate copula functions.

Copulas C(u,v)

Gumbel C(u, v) = exp{−[(− ln u)θ + (− ln v)θ ]
1/θ
}

Clayton C(u, v) = (u−θ + v−θ − 1)
−1/θ

Frank C(u, v) = − 1
θ ln[1 + (e−θu−1)(e−θv−1)

e−θ−1 ]

Gaussian C(u, v) =
∫ Φ−1(u)
−∞

∫ Φ−1(v)
−∞

1
2π
√

1−ρ2
exp

(
−(r2+s2−2ρrs)

2(1−ρ2)

)
drds

Student’s t C(u, v, ρ, ν) =
∫ Tν

−1(u)
−∞

∫ Tν
−1(v)

−∞
1

2π
√

1−ρ2
exp

(
1 + r2+s2−2ρrs

ν(1−ρ)2

)− ν+2
2

drds

The trivariate Gaussian copula, Student’s t copula, and Gumbel copula were used to establish the
joint distribution of typhoons, rainfall, and storm surges. Trivariate copula functions are as follows.

1. Trivariate Gaussian copula:

C(u1, u2, u3) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

∫ Φ−1(u3)

−∞

1

(2π)
3
2 |∑|

1
2

exp(−1
2

wT
−1

∑ w)dw (A1)
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where Φ−1(·) is the quintile function of a standard univariate normal function, ∑ = 1 · · · ρ1m
· · · · · · · · ·
ρm1 · · · 1

 is the correlation coefficient matrix with ρij =

{
1; i = j

ρji; i 6= j
, −1 ≤ ρij ≤ 1, m is the

variable dimensions, and w = [w1, w2, · · · , wm]
T is the integrand variable matrix.

2. Trivariate Student’s t-copula:

C(u1, u2, u3) =
∫ Tv

−1(u1)

−∞

∫ Tv
−1(u2)

−∞

∫ Tv
−1(u3)

−∞

Γ( v+3
2 )

Γ( v
2 )

1

(πv)
3
2 |∑|

1
2
(1 +

wT ∑−1 w
v

)−(
v+3

2 )dw (A2)

where Tv
−1(·) is the quintile function of Student’s t distribution function with v degrees of freedom,

∑ =

 1 · · · ρ1m
· · · · · · · · ·
ρm1 · · · 1

 is the correlation coefficient matrix with ρij =

{
1; i = j

ρji; i 6= j
, −1 ≤ ρij ≤ 1,

m is the variable dimensions, and w = [w1, w2, · · · , wm]
T is the integrand variable matrix.

3. Trivariate Gumbel copula:

C(u1, u2, u3) = exp(−((− ln u1)
θ + (− ln u2)

θ + (− ln u3)
θ)

1/θ
) (A3)

where θ is a parameter of the copula function.
The parameters of the above distributions were estimated by the maximum likelihood method.

The Kolmogorov–Smirnov (K–S) test was used to assess goodness of fit. The best-fit copulas were
selected by the Akaike information criterion (AIC).

The Kolmogorov–Smirnov statistic D is defined as follows:

D = max
1≤k≤n

{∣∣∣∣Ck −
i
n

∣∣∣∣ , ∣∣∣∣Ck −
i− 1

n

∣∣∣∣} (A4)

where Ck is the theoretical distribution of the measured samples, i is the serial number of the measured
samples in ascending order, and n is the number of samples. When the statistic D is less than the
critical value Dα, the test is accepted.

The formula of AIC is defined as follows:

AIC = 2N ln(RMSE) + 2k (A5)

where N is the number of samples, RMSE is the root-mean-square error of samples, and k is the number
of variables. A smaller AIC value indicates a better fit.

Appendix B. Urban Flood Inundation Model on Haidian Island

PCSWMM, developed by CHI, Canada, is widely applied in the simulation of surface hydrological
processes and drainage network flows [33–36]. Unlike SWMM, which can only simulate 1D conduit
flow and river flow, PCSWMM can accurately simulate unsteady 2D surface flow above ground
through a 2D floodplain model. In this study, the urban flood inundation model on Haidian Island
was established by PCSWMM. The calculation steps of inundation depth are as follows: (1) Prepare
data. The basic data of the urban flood inundation model include digital elevation model (DEM)
data, river data (e.g., river cross-section and distance between cross-sections), drainage data (e.g.,
junction depth, conduit size, etc.), and obstruction data (i.e., building data). DEM data (Figure 1)
were accessed from the Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences (http://www.resdc.cn/Default.aspx), and the DEM resolution is 25 m. River data
and drainage data were provided by the Haikou Municipal Water Authority. The obstruction data

http://www.resdc.cn/Default.aspx
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were extracted from satellite remote sensing images through Environment for Visualizing Images
(ENVI) software. (2) Establish 1D model. The dynamic wave method was used to calculate hydraulic
simulations of drainage conduits. Based on the specific circumstances of the study area, for example,
the study area is a small catchment and there is not enough soil data; the Horton model was used to
calculate infiltration, since it is suitable for small catchments and areas where soil data are lacking.
The parameters of the PCSWMM model were calibrated by trial and error and the recommended
ranges from relevant references [37,56]. (3) Establish 2D model. The size of the 2D grid is 25 m × 25 m,
and the study area was divided into 23,578 grids. The 1D conduit model and 2D floodplain model
were integrated by the orifice connection method [57]. (4) Calibrate urban flood inundation model.
Calibration data for storm events was based on actual flood inundation data during the Rammasun
typhoon in July 2014, which was obtained through field investigation. Figure A1 shows observations
and calculation inundation depths in different points of the study area. The observation points are
indicated in Figure 1. The error values between observations and calculations are smaller than 0.1 m,
which indicates that the model is reliable.
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