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Abstract: Dispersion prediction plays a significant role in the management and emergency response to
hazardous gas emissions and accidental leaks. Compared with conventional atmospheric dispersion
models, machine leaning (ML) models have both high accuracy and efficiency in terms of prediction,
especially in field cases. However, selection of model type and the inputs of the ML model are still
essential problems. To address this issue, two ML models (i.e., the back propagation (BP) network and
support vector regression (SVR) with different input selections (i.e., original monitoring parameters and
integrated Gaussian parameters) are proposed in this paper. To compare the performances of presented
ML models in field cases, these models are evaluated using the Prairie Grass and Indianapolis field
data sets. The influence of the training set scale on the performances of ML models is analyzed as well.
Results demonstrate that the integrated Gaussian parameters indeed improve the prediction accuracy
in the Prairie Grass case. However, they do not make much difference in the Indianapolis case due to
their inadaptability to the complex terrain conditions. In addition, it can be summarized that the SVR
shows better generalization ability with relatively small training sets, but tends to under-fit the training
data. In contrast, the BP network has a stronger fitting ability, but sometimes suffers from an over-fitting
problem. As a result, the model and input selection presented in this paper will be of great help to
environmental and public health protection in real applications.

Keywords: hazardous gas dispersion prediction; back propagation network; support vector
regression; input selection; field case

1. Introduction

Hazardous gas emissions and leaks pose important threats to air quality and public health.
For instance, the methyl isocyanate leak accident in Bhopal (1984) caused thousands of deaths [1].
Meanwhile, the airborne contaminants released from industrial areas also have an adverse impact on
the lives of nearby residents. Consequently, gas emissions and accidental leaks have been attracting
increasing attention in recent years. Considering the aforementioned issues about hazardous gases,
predicting their atmospheric dispersion is of great value. Based on the predicted concentration
distribution, managers are able to not only evaluate the harm of hazardous gas to human health,
but also develop evacuation plans more responsibly.

The atmospheric dispersion (ADS) model is widely applied to predict the transportation and
dispersion of gas in air. There have been many effective models for predicting gas dispersion.
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Conventional ADS models can be roughly categorized in three main types: the Gaussian model [2,3],
the Lagrangian stochastic (LS) model [4,5], and the computational fluid dynamics (CFD) model [6,7].
The Gaussian model is the most widely used model in atmospheric dispersion prediction. Requiring
only a few input parameters, this model uses a simple expression with fast computing. However,
built on the ideal dispersion environment, the Gaussian model takes few terrain conditions into
consideration. Therefore, this model is not accurate enough in some complex environment conditions
(e.g., urban areas with complex topography). The LS model uses a stochastic method, and describes
the gas transport as a Markov process with a number of particles. In contrast, the CFD model is
based on sophisticated fluid dynamics equations [7]. Compared with Gaussian models, these two
models are usually more accurate but less efficient for atmospheric dispersion prediction. Their higher
computational costs limit their applications in emergency response to gas leak accidents. Therefore,
there is a need for an atmospheric dispersion model with both high accuracy and acceptable efficiency.

To address this problem, many researchers have introduced machine learning (ML) models
into atmospheric dispersion prediction, such as the artificial neural network (ANN) [8–12] and
support vector regression (SVR) [13–16]. ML models usually have an excellent capacity for predicting
the complex relationship between the input and output [17,18]. Trained by some pre-determined
dispersion scenarios, these models tend to obtain relatively high prediction accuracy for these scenarios.
Moreover, the computation of trained ANN or SVR prediction models is relatively fast. Among various
types of ANN, the back propagation (BP) network is most widely used to predict atmospheric
dispersion. Compared with other ANNs like the radial basis function (RBF) network, the BP network
has fewer hyperparameters to determine [19]. Therefore, the BP network is relatively easy to build
and train. Boznar et al. [8] developed a neural network-based method to predict the SO2 pollution
around a thermal power plant in Slovenia, and acquired promising results. Pelliccioni [9] developed
an integrated model for air pollution dispersion prediction. This model filtered the concentration
produced by the Gaussian dispersion model with a neural network, and consequently improved the
prediction accuracy of the virtual height dispersion model (VHDM) and the skewed puff model (SPM).
As for the SVR, it is derived from the support vector machine (SVM) [13] and inherits the beneficial
properties of the SVM, such as good performance for small-scale data. Yeganeh et al. [14] used the
combination of SVR as a predictor and partial least squares (PLS) as a data selection tool to predict
daily CO concentrations. The results demonstrated that the hybrid PLS-SVR model is quicker and
more accurate than the SVR model.

However, most of ML models in the aforementioned research are directly constructed on the inputs
of some original monitoring parameters. With these inputs, the ML models usually yield acceptable
prediction results. However, this selection of input parameters possibly increases the difficulty in
model training and consequently reduces the prediction accuracy, because the relationship between
the original monitoring parameters and the output (concentration) is usually quite complex. Therefore,
although these ML models were tested successfully in the research mentioned above, they can be
further improved by the more effective input selection. In addition, existing research usually focuses
on one particular ML model, instead of comparing different ML models in gas dispersion prediction
and giving some guidance on model selection. In fact, different ML models vary greatly in terms of
performance, for example in fitting and generalization ability. Moreover, trained by pre-determined
scenarios and tested by particular cases, the performances of the ML model heavily depend on the
training set and test set. Therefore, the influence of the sizes of training set and test set on the prediction
performance should be analyzed. This analysis also helps to further reveal the difference of ML models
on the fitting and generalization abilities.

In this paper, two machine learning models (i.e., the BP network and SVR model) are respectively
involved and applied in the hazardous gas dispersion prediction. To improve the prediction
performance of the ML models with original input parameters, the Gaussian integrated parameters are
formed and used as the inputs. To comprehensively compare the performances of proposed models
with different input selections, they are firstly tested and evaluated on two field data sets (Project
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Prairie Grass [20] and Indianapolis [21,22]) with different terrain conditions. Next, by varying the sizes
of the training set and test set, these ML models are further evaluated and compared. Based on the
results, the fitting and generalization abilities of these two ML models are discussed, which is followed
by some guidance for model selection.

The rest of this paper is organized as follows. Section 2 describes the two field data sets
and structures of the BP network and SVR model for prediction, as well as the input selection.
The performances of these ML prediction models are tested on two field cases in Section 3.
The discussion is given in Section 4, followed by the conclusions in Section 5.

2. Materials and Methods

2.1. Brief Desciption of the Field Data Sets

2.1.1. Project Prairie Grass Data Set

The Prairie Grass data set is a well-known field experimental data set referring to a typical
hazardous gas emission case with flat terrain and low stack emission. This tracer experiment was
carried out in an open country in O’Neil, NE (USA, 42.493◦ N and 98.572◦ W) from July to August, 1956.
The sulfur dioxide (SO2) tracer was released from a continuous point source at the height of 0.46 m
without buoyancy. Concentration data were collected by five semi-circular arcs (50, 100, 200, 400, 800 m
downwind of the release) of receptors. All receptors over the 180-degree arcs had the same height of
1.5 m. They were centered on the emission source. The receptor spacing was two degrees on the inner
four arcs, and one degree on the outer arc of 800 m. As for the meteorological data, the horizontal
mean wind direction and wind speed were collected at two locations (i.e., (a) 25 m west of the release
source, and (b) 450 downwind of the source and 30 m west of the centerline of the receptor array) for
two periods (i.e., 10 min and 20 min). Other meteorological data (e.g., air temperature) were observed
by the meteorological tower and rawinsonde. There are 68 releases containing tracer data (6888 valid
samples used in this paper) and meteorological data in the data set.

2.1.2. Indianapolis Data Set

The Indianapolis tracer experiment was conducted in a typical urban area of Indianapolis, Indiana,
USA, from 16 September to 11 October 1985. In this experiment, the source was an 83.8 m stack
(with diameter 4.72 m) at the Perry K power plant in Indianapolis, which released the SF6 tracer.
The geographic coordinates of this stack were UTM-N (Universal Transverse Mercator) 4401.59 km
(39.8◦ E latitude) and UTM-E 571.40 km (86.2◦ E longitude). In contrast to the Prairie Grass field
experiment, the Indianapolis experiment was carried out under complex terrain conditions. There were
many buildings within one or two kilometers of the source stack. These buildings can influence the
tracer dispersion in air significantly, which is a challenge to the accurate concentration prediction.
As for the experimental data, more than 100 h of tracer concentration data in 17 days were used
here, as well as the meteorological data covering all atmospheric stability classes and most common
wind direction and speed ranges. The tracer concentrations were measured by a network including
about 160 ground-level sensors on several semi-circular arcs, at distances ranging from 0.25 to 12.0 km
from the source stack. Therefore, the range of the monitoring distance was about 12 km. The unit
of the tracer data is ppt (volume fraction: one billionth). Data were taken in subsets of 8 or 9 h each
day. In total there are 17 such subsets used in our work, representing the data of different days and
containing tracer data (23,900 valid samples used in our work) and meteorological data.

2.2. Back Propagation Network

The artificial neural network (ANN) is a most widely applied ML model in dispersion prediction.
Because of its excellent fitting ability, the ANN is able to approximate complex nonlinear function.
As for the computational efficiency, a trained ANN can compute the predictions rapidly. In this
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paper, the back propagation (BP) fitting network is built to predict the concentration of interest points.
This type of network has been quite popular in the research of dispersion prediction [8,9]. The structure
of the fitting BP network is shown in Figure 1. To achieve higher prediction accuracy, two hidden
layers are applied here. The inputs of the network are usually parameters associated with atmospheric
dispersion. These parameters usually include the meteorological parameters, the parameters related
to the points of interest, and the source terms. The details of input selection will be discussed in
Section 2.4. These inputs should be selected carefully for better performance. The selection of input
will be discussed in Section 2.4. As for the activation units, the activation functions of all hidden layers
are “tansig” for better convergence speed and solution accuracy [23]. The “tansig” is a kind of sigmoid
function with the expression: f (x) = 2

1+e−2x − 1. In contrast, the activation function of the output layer
(only one neuron) is “purelin” to output the continuous value of concentration. Further, the neuron
numbers of two hidden layers, which are critical parameters for the network, should be adjusted
according to the performance of the BP network. With appropriate neuron numbers of hidden layers,
the BP network can perform well on both accuracy and the convergence speed. In our work, the BP
network is trained by the MATLAB neural network toolbox. The detailed process of the model training
and the optimization of the neuron numbers will be introduced in the Section 3.1.
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2.3. Support VectorRegression

Support vector regression (SVR) is an extension of the support vector machine (SVM) developed
by Vapnik [13] to solve the regression problem. The idea of SVR is based on the linear regression
function in a high-dimensional feature space, where the input data is mapped via a kernel function.
In addition, instead of minimizing the training error, the SVR attempts to minimize the generalization
error bound to achieve better generalization. Given a set of training points {(x1, z1), . . . , (xl , zl)}where
xi ∈ Rn is an input and zi ∈ R1 is a target output, the standard form of SVR can be expressed as:

min
ω,b,ξ,ξ∗

1
2 ωTω + C

l
∑

i=1
ξi + C

l
∑

i=1
ξ∗

i

s.t. ωTφ(xi) + b− zi ≤ ε + ξi,
zi −ωTφ(xi)− b ≤ ε + ξ∗

i
,

ξi, ξ∗
i
≥ 0, i = 1, . . . , l,

(1)

where C is the regularization parameter and ε is the error tolerance. ξ and ξ∗ are the lower and upper
slack variables, respectively. The ω and b are the parameters of the linear regression model in the
high dimensional feature space. The goal of SVR is to determine the optimized ω and b, and get the
regression model. The approximate solution function is:
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y(x) =
l

∑
i=1

(−αi + α∗i )K(xi, x) + b (2)

where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel function and α is the support vector. Here, the radial basis

function (RBF), which is widely used in the SVR, is selected as the kernel function. The output of
SVR is the concentration of the interest point, and the selection of the input will be introduced in
Section 2.4. To build an optimization SVR model, the tolerance ε, regularization parameter C and the
spread parameter σ in the RBF function should be carefully selected (Section 3.1). The Library for
Support Vector Machines (LIBSVM) [24] is applied here to build the SVR model.

2.4. Selection of the Input Parameters

The monitoring data in the Prairie Grass and Indianapolis field experiments are used to build
the BP network and SVR model for prediction. For example, some common original monitoring
parameters of Prairie Grass data set are displayed in the Table 1. Selecting all the parameters as the
inputs of ML models is impractical, because some of these parameters do not contribute greatly to
the gas concentration. Using these redundant parameters barely improves the accuracy of prediction,
and increases the difficulty of training. Therefore, only Dx, Dy, Q, V, Dir, STA, T, Hs are selected
here. These parameters are the main factors affecting gas dispersion and are easy to obtain from the
data set. In addition, these selected parameters are the inputs of many typical atmospheric dispersion
models, like the Gaussian model. The target height Z is not included because it is fixed in the data set.
These parameters are also available in Indianapolis data set. Therefore, the aforementioned parameters
are used as inputs in the two field cases.

Table 1. Common original monitoring parameters in the Prairie Grass data set.

Parameters Symbol Unit

Downwind distance Dx m
Crosswind distance Dy m

Source strength Q g·s−1

Wind speed V m·s−1

Wind direction Dir deg
Atmospheric stability class STA /

Air temperature T ◦C
Source height Hs m
Target height Z m
Mixing height Zm m
Cloud height Zc m

Standard deviation of wind direction σd deg
Relative humidity RH %

Based on these original input parameters, a ML prediction model can be constructed. It should be
noted that there are four different observations of wind direction and wind speed observed (i.e., by two
stations for the 10-min and 20-min periods) in the Prairie Grass case, as mentioned in Section 2.1.
These wind field parameters are all used to build the ML model, and to generate four values of
downwind distance Dx and crosswind distance Dy. Therefore, the input vector of the ML model has
20 elements. With regard to the Indianapolis data set, there are also four observations of wind speed
and direction available. Therefore, the ML models constructed on the original monitoring parameters
of the Indianapolis field data set also have 20 input parameters.

However, it may be still difficult to train the ML model with these original parameters because the
features of the atmospheric dispersion should be extracted from these original parameters before the
training process. Therefore, the integrated Gaussian parameters are considered. The Gaussian model
is the most widely used atmospheric dispersion model and the results are trustworthy for near-field
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dispersion cases. The integrated Gaussian parameters, which are from the Gaussian plume model,
are expressed as: 

Gy = exp(− D2
y

2σ2
y
)

Gz = exp[− (z+Hs)
2

2σ2
z

] + exp[− (z−Hs)
2

2σ2
z

]
(3)

where Gy and Gz represent the Gaussian parameters in the crosswind and vertical directions,
respectively. Dy is the crosswind distance. z and Hs describe the heights of the interest point and
emission source, respectively. σy and σz are the standard deviations that determine the Gaussian
distributions in the crosswind and vertical directions. The two standard deviations can be calculated by:{

σy = a · Db
x

σz = c · Dd
x

(4)

where Dx is the downwind distance. a, b, c and d are dispersion coefficients derived from the
atmospheric stability class STA [25] according to Vogt’s scheme [26]. To generate the input vector,
the integrated Gaussian parameters are firstly derived from the original parameters, and then combined
with Q, V, Dir, T, and STA. The wind speed V and wind direction Dir both have four observed values.
Consequently, four different Gy and Gz are generated accordingly. Therefore, the input vector also
includes 20 elements.

3. Application: Prairie Grass and Indianapolis Field Case Study

In this section, the proposed BP network and SVR models for prediction with different types of
input selections are all tested on the Prairie Grass and Indianapolis data sets, shown as follows:

• BP network with original input parameters;
• BP network with integrated Gaussian input parameters;
• SVR with original input parameters;
• SVR with integrated Gaussian input parameters.

The characteristics of BP network and SVR as well as the influence of different input parameters
can be analyzed by evaluating their prediction performances. In addition, the fitting and generalization
abilities of the two ML models are further discussed by evaluating their prediction performances on
the varying-sized training set and test set.

3.1. Configurations and Results of the Machine Learning Models

According to the structures introduced in Section 2, the ML models are constructed on the two field
data sets, respectively. Firstly, the tracer data and original monitoring parameters are extracted from
the data set. Then, the 68 releases in the Prairie Grass data set are randomly divided into 60 releases
for training and validation (6239 samples in total) and 8 releases (649 samples) for testing. As for the
Indianapolis case, the tracer and meteorological data from 20 September to 11 October (15 days) were
used for training and validation (21,276 samples in total) while the data from 17 and 19 September
were used for testing (2624 samples). The statistical indicators of the input parameters used in the two
field cases are shown in Appendix A.

3.1.1. BP Network with Original Monitoring Input Parameters

The selected original monitoring parameters Dx, Dy, Q, V, Dir, STA, T, and Hs are firstly
normalized to (0, 1) and then used to form the input vector. Afterwards, the training process of the
BP network is conducted by the MATLAB neural network toolbox. The training algorithm is that of
Levenberg–Marquardt, for which the maximum number of epochs is 400 (if early stopping is not triggered).
If accuracy on validation set showed no improvement after more than six epochs or the mean squared
error (MSE) on the training set is lower than the “goal” we set, the early stopping will be triggered.



Int. J. Environ. Res. Public Health 2018, 15, 1450 7 of 19

To obtain an optimized BP network, the neuron numbers of first and second hidden layers
(n1 and n2) are selected by the cross-validation method [27]. This method is widely used to select the
hyper parameters of ML models. According to this method, the training and validation set is randomly
divided into five subsets with same size. For each subset, we use it as the validation set and other four
subsets as the training set. Therefore, we can get five prediction results on different validation sets.
The mean value of the mean squared error (MSE) of these five results is calculated to optimize the n1

and n2 [28]. When constructed on the Prairie Grass data set, the BP network with original monitoring
parameters obtains the best MSE with n1 = 38 and n2 = 4. With regard to the Indianapolis data set,
the best parameter combination is n1 = 48 and n2 = 6.

When tested on the Prairie Grass test set, the prediction results of the optimized BP network are as
shown in Figure 2. The R2 and the NMSE are applied to evaluate the model performance [29]. They are
0.6183 and 0.4539 respectively, indicating an acceptable accuracy (R2 is higher than 0.6 and the NMSE
is less than 0.5). The relatively high accuracy can also be reflected by the fact that the most predicted
concentrations are close to the experimental concentration in this figure. However, there are still
some negative concentrations occurring in the prediction, whose values are far from the experimental
concentrations. Therefore, the BP network with original parameters should be further improved.Int. J. Environ. Res. Public Health 2018, 15, x 8 of 20 
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Prairie Grass case. NMSE: normalized mean squared error.

Figure 3 shows the prediction results on a part (only data from 11:00 a.m. to 2:00 p.m., 17 September)
of the Indianapolis test set. In this figure, some relatively high concentrations (higher than 200 ppt)
are underestimated by the BP network. The R2 and NMSE values of the results on the shown part of
the test set are 0.5411 and 0.9542, respectively. For the whole test set, the two indicators are 0.5195 and
0.7070, respectively. Obviously, the prediction results are less satisfactory than those in the Prairie Grass
case. The less satisfactory performance reflects that the BP network with original parameters is less
feasible to predict the tracer dispersion in the Indianapolis case.

3.1.2. BP Network with Integrated Gaussian Input Parameters

To build the BP network with integrated Gaussian parameters, the integrated Gaussian parameters
are firstly generated from the original monitoring parameters, and then normalized to form the
input vector. The optimized combinations of n1 and n2 are (58, 8) and (38, 10) for the two field
cases, respectively. The details of the training process are the same as the BP network with original
parameters, which has been introduced in Section 3.1.1.
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Figure 3. The prediction results of BP network with original monitoring parameters on the test data
from 11:00 a.m. to 2:00 p.m. on 17 September (a part of the test set) in the Indianapolis case.

Figures 4 and 5 show the prediction results of the optimized BP networks on the test set in the
two field cases. In Figure 4, with the higher R2 (0.6687) and lower NMSE (0.3529), the BP network with
Gaussian parameters yields more accurate predictions than that with original parameters. In addition,
the fewer negative concentrations in Figure 4 also indicate the better performance after utilizing the
integrated Gaussian parameters. In Figure 5, the R2 and NMSE values (the performance indicators) of
the whole test set are 0.5373 and 0.6570, respectively, only showing a limited improvement as compared
to the R2 (0.5195) and NMSE (0.7070) of the BP network in Section 3.1.1.

The improvement brought about by the Gaussian parameters on the Prairie Grass data set implies
that the Gaussian parameters decrease the difficulty of model training. This is because the Gaussian
dispersion model is relatively accurate under the flat terrain condition, like the open country of the
Prairie Grass field experiment. However, with regard to the reproduction the Indianapolis test set,
no significant improvement occurred with Gaussian parameters applied. This difference illustrates
that the Gaussian dispersion model is less feasible in the environment of the Indianapolis experiment.
The complex topography of the Indianapolis case should be responsible for this difference, which will
be analyzed in the Section 3.2.
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3.1.3. SVR with Original Monitoring Input Parameters

To build the optimized SVR model, the regression parameter C and spread constant σ are selected
by the cross-validation method as well. The SVR model has the smallest MSE when C = 25 and
σ = 2−4 in the Prairie Grass case, and C = 23 and σ = 2−2 in the Indianapolis case, respectively.
The construction of the SVR model is conducted by the LIBSVM. The error tolerance ε is set to 0.1.

Based on the optimized SVR model, the prediction results on the Prairie Grass test set can be
obtained as shown in Figure 6. This figure shows that the SVR with original monitoring parameters gets
less satisfactory predictions than the BP network with the same inputs (Section 3.1.1). More specifically,
the SVR model tends to underestimate the concentration, especially when the experimental data is
high. Another problem is that the SVR model also produces some negative concentrations. Therefore,
with the relatively low R2 (0.4587) and large NMSE (1.0624), this SVR model needs improvement. As for
the predictions on Indianapolis test set, they are also terrible (R2 = 0.3901, NMSE = 2.7659), as shown
in Figure 7. The performances of the SVR model with original monitoring inputs in the two field cases
are both far from satisfactory, and poorer than the BP network with the same inputs. This comparison
indicates that the SVR model is not as excellent as the BP network in terms of fitting ability.
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3.1.4. SVR with Integrated Gaussian Parameters

To improve the SVR with original monitoring parameters, the SVR model with integrated
Gaussian parameters is built. The optimized regression parameter C and spread constant σ are
determined at (24, 2−6) and (22, 2−1.5) for the two field cases, respectively. Other configurations of the
training process are the same as the SVR with original parameters (Section 3.1.3).

When applied on the Prairie Grass test set (Figure 8), this SVR model apparently achieves a better
performance on reproducing the test data. The two performance indicators are much better (R2 = 0.6624,
NMSE = 0.3649) compared with the SVR model with original inputs. To be more specific, predictions
in Figure 8 approximate the experimental concentration well, even if the observed concentration is
high. In addition, fewer negative concentrations appear in the Figure 8.
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With regard to the prediction results on the Indianapolis test set, shown in Figure 9, the R2

and NMSE values on the whole test set are 0.5590 and 0.8499, which are better than the indicators
(R2 = 0.3901, NMSE = 2.7659, Figure 7) of the SVR model with original monitoring inputs. However,
the reproduction performance shown in Figure 9 is still not as satisfactory as that in the Prairie Grass
case (Figure 8). Therefore, the improvement by the integrated Gaussian parameters is still limited.
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The reason of this limited improvement continues to be the Gaussian model’s inadaptability to the
terrain condition (urban area) of the Indianapolis field experiment.
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3.2. Results Analysis

The performances of proposed ML prediction models and the Gaussian plume model on test sets
of the two field cases are listed in Tables 2 and 3, respectively. In Table 2, the comparison between
the ML models with different input parameters indicates that in the Prairie Grass case, utilizing
integrated Gaussian input parameters can improve the prediction performance, especially for the SVR
model (R2 from 0.4587 to 0.6624, NMSE from 1.0624 to 0.3649). In comparison, Table 3 shows that
in the Indianapolis case, the use of integrated Gaussian parameters bring limited improvement to
the BP network (R2 from 0.5190 to 0.5373, NMSE from 0.7070 to 0.6570). As for the SVR model, the
improvement by the Gaussian parameters is more apparent (R2 from 0.3901 to 0.5590, NMSE from
2.7659 to 0.8499). However, the SVR model with Gaussian parameters still cannot yield accurate
enough predictions as compared with that in Prairie Grass experiment (R2: 0.5590 versus 0.6624,
NMSE: 0.8499 versus 0.3649).

Table 2. Prediction performances of proposed machine learning (ML) models on the Prairie Grass
test set.

Methods R2 NMSE Model Building Time (s) Prediction Time (s) Total Computing Time (s)

Gaussian plume model 0.5385 0.7661 / 1.698 × 10−3 1.698 × 10−3

BP network with original parameters 0.6183 0.4539 6.773 7.734 × 10−3 6.781
BP network with Gaussian parameters 0.6687 0.3529 4.413 8.21 × 10−3 4.421

SVR with original parameters 0.4587 1.0624 2.429 6.277 × 10−2 2.492
SVR with Gaussian parameters 0.6624 0.3649 3.967 5.009 × 10−2 4.017

Table 3. Prediction performances of proposed ML models on the Indianapolis test set.

Methods R2 NMSE Model Building Time (s) Prediction Time (s) Total Computing Time (s)

Gaussian plume model 0.1018 6.4274 / 1.219 × 10−2 1.219 × 10−2

BP network with original parameters 0.5190 0.7070 27.431 4.086 × 10−2 27.472
BP network with Gaussian parameters 0.5373 0.6570 31.705 3.940 × 10−2 31.744

SVR with original parameters 0.3901 2.7659 75.098 1.030 76.128
SVR with Gaussian parameters 0.5590 0.8499 95.532 1.372 96.904

The differences between the improvements brought by Gaussian parameters in the two field cases
is mainly resulted from the quite different terrain conditions. With almost no obstacle, the terrain of
the Prairie Grass field tracer experiment is quite flat. The almost ideal terrain condition means the
Gaussian model can describe the hazardous gas dispersion relatively well. This can be indicated by
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the acceptable performance of the Gaussian plume model in Table 2 (R2 = 0.5385, NMSE = 0.7661).
Therefore, using integrated Gaussian input parameters helps reduce the difficulty of approximating
the input–output function, and improve the prediction performance of ML models. In contrast to
the Prairie Grass case, the Indianapolis experiment was implemented on a typical urban area with
a number of large buildings. Under this sophisticated terrain condition, the Gaussian model is less
capable of modeling the atmospheric dispersion of the tracer. Therefore, the Gaussian parameters only
bring limited improvement on the performance of the ML models. In summary, whether the Gaussian
parameters can bring improvement depends on its adaptability to the field experiment.

The influence of the terrain conditions can also be reflected by the different performances of
ML models in the two field cases. In general, proposed ML models constructed on the Prairie Grass
data set (Table 2) outperform those based on the Indianapolis data set (Table 3). In the Indianapolis
experiment, a number of large buildings make the tracer concentration distribution more sophisticated
than that in the Prairie Grass experiment. Consequently, the difficulty of model training increases,
and the performances of ML models in the Indianapolis case deteriorate.

The results also show that the BP network outperforms the SVR model in the fitting ability. It is
reflected by the comparison of the BP network and SVR model with the original parameters. With the
same inputs, the BP network clearly achieves a better performance than the SVR model in the two field
cases. Therefore, this comparison illustrates that the BP network here has a stronger fitting ability to
extract the features from the original input parameters and to approximate the input–output function
well. In contrast, the poorer R2 and NMSE of the SVR model (even worse than the Gaussian plume
model in Table 2) indicate that this model encounters the possible under-fitting problem.

As for the computational efficiency, the model building times, prediction times and the total
computing times in the two field cases are also listed in the two tables. The model building time
represents the duration of the training phase. The total computing time includes the prediction time
and the model building time. It is obvious that the Gaussian plume model has the highest efficiency.
With regard to other models, their total computing time is acceptable. In addition, it can be seen from
the two tables that the greatest computational cost comes from model-building. In contrast, a trained
model has fast prediction computation. In terms of conditions, the total computing time of proposed
ML models is acceptable, and the computing of prediction is fairly fast. It should be noted that the
ML models constructed on the Indianapolis data set has longer building time than the Prairie Grass,
because the scale of this data set is larger. In summary, the proposed models can meet the efficiency
requirement of the emission management and emergency response.

3.3. The Influence of the Training Set and Test Set Scales

Tables 2 and 3 present the prediction performances of proposed models which are constructed on
particular training sets and test sets. In the Prairie Grass case, 60 releases are used for training and
8 releases are for testing, while in the Indianapolis case, 16-day data and 2-day data are applied in
the training and test, respectively. As ML models, the performances of proposed models depend on
not only the model structure and input selection, but also the training data and test data. Therefore,
to further reveal the characteristics (i.e., abilities of fitting and generalization) of proposed ML models,
they are constructed on training sets of different scales and evaluated on the remaining test data.
Here, the BP network and SVR model with integrated Gaussian parameters are considered. In the
Prairie Grass case, the training set size varies from 5 to 67 releases. Therefore, the test set size changes
from 63 releases to only one release. In the Indianapolis case, the training set size varies from one day
to 16 days, with the test set size changing from 16 days to one day accordingly. For each configuration
of training set and test set, the model performances on the two field cases are evaluated. Tables A3
and A4 in Appendix A display the 32 and 16 different configurations of training set and test set in the
two field cases, respectively. Other configurations of the ML models are the same as those optimized
models introduced in Section 3.1.
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The prediction results of BP network and SVR models trained by variable-sized training sets are
obtained. Figures 10 and 11 show the values of R2 and NMSE in the two field cases. It can be seen
from the Figure 10 that with the training set scale increasing, the performances of BP network and SVR
model both improve (indicated by the rising R2 and falling NMSE). These two models both perform
well with relatively large training set sizes, especially when the training set has more than 60 releases.
Similar trends of R2 and NMSE can be found in the Figure 11. The trends of R2 and NMSE indicate that
the size of training set has a significant impact on the performance of the ML model here. With more
training data, the ML model tends to cover more gas dispersion scenarios, and consequently obtain
more accurate reproduction results on the test data.Int. J. Environ. Res. Public Health 2018, 15, x 14 of 20 
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In terms of the comparison between the BP network and SVR model, in Figure 10 the differences
between their performances mainly appear when the training set size is relatively small (less than
35 releases). Under this condition, the SVR model apparently achieves higher R2 and lower NMSE
than BP network. In contrast, the performance of the BP network is unsatisfactory, especially when
the training set size is smaller than 23 releases (most values of R2 are lower than 0.4, and NMSE
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are larger than 1.0). Similarly, in Figure 11 the SVR model with Gaussian parameters shows a better
performance on R2 and NMSE than the BP network when the training set size is smaller than 10 days.
This comparison indicates that the performance of SVR model with Gaussian parameters is less
dependent on the training data scale, which implies a better ability of generalization. The better
generalization results from the optimization goal of the SVR model. Instead of minimizing the training
error, the SVR attempts to minimize the generalization error bound (the loss function parameter ε) so as
to achieve a generalized performance [30]. Therefore, the SVR model yields more accurate predictions
on the test set under the condition of small-sized training sets. As for the BP network, the unsatisfactory
results under the small-scale training sets reflect the possible over-fitting problem. When over-fitting
the training data, the BP network tends to reproduce the training set “too accurately”, which means the
model is only valid on the training set. Therefore, when applied in the test data (which is usually quite
different from the training data), the BP network sometimes obtains unsatisfactory results, especially
when the training set scale is limited. Therefore, considering all the experiment results, the SVR
has a better ability for generalization, but tends to encounter the under-fitting problem when the
input–output relationship is quite complex. In contrast, the BP network has an excellent fitting ability,
but it is likely to over-fit the training data, and achieve unsatisfactory generalization especially when
the scale of training set is relatively small. These characteristics are valuable for the prediction model
selection in field cases.

4. Discussion

The results analysis shows that the Gaussian parameters method is case-sensitive, and whether
the Gaussian parameters can bring improvement depends on its adaptability to the field experiment.
Therefore, specifying the application condition or the application case of the Gaussian parameters
method is useful to the user of our ML prediction models. The performance of the Gaussian parameters
method depends on the adaptability of the Gaussian plume model to the field case. An ideal
environment for the Gaussian plume model should meet some conditions. Firstly, the terrain should be
open and flat, and the surface property should be uniform. Then, the Gaussian plume model is accurate
in the near-field case where the dispersion range is usually less than 10 km. Moreover, the Gaussian
plume model does not take the chemical reaction of the dispersion material into consideration. Finally,
the Gaussian plume model requires the wind field to be stable and uniform, because this model uses
the mean value of the wind field to calculate concentration. When a field case satisfies these conditions
well, the Gaussian plume model and the ML model with Gaussian parameters tend to have high
accuracy accordingly.

The ML model provides an effective method to predict the hazardous gas dispersion in a particular
field case. Compared with the deterministic atmospheric dispersion model (e.g., the Gaussian model),
the ML model can adjust itself according to the training data, and tend to produce more reliable
predictions. Therefore, the ML model is suitable for the hazardous gas dispersion prediction in the
field case, especially for complex field experiments (e.g., the urban area). However, this characteristic
is also the limit of the ML model. That is the ML prediction model is valid only in the situations where
it is developed. The ability to export the results of a particular situation to others is dependent on the
similarity of the these situations. For example, the ML model developed from the Prairie Grass data
set is clearly not feasible on the Indianapolis data set, because the two field tracer experiments were
conducted in quite different terrain conditions. Therefore, a new ML model for the Indianapolis case
should be built.

The results of the two field cases reflect the differences between BP network and SVR model on
the abilities of fitting and generalization. The SVR model has a better ability of generalization but
tends to under-fit the training data sometimes. In contrast, the BP network shows a better fitting ability
but encounters the over-fitting problem more easily. Therefore, how to overcome the drawbacks of
the two models is valuable for improving the model performance. The hybrid model combining the
advantages of both models may be a feasible alternative. Further, the characteristics of the two ML
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models provide some guidance for the model selection in the hazardous gas dispersion prediction.
When the scale of observed data is limited or the input–output relationship is not so complex, the SVR
is a better choice due to its good generalization. If the observation size is large enough to cover most
scenarios, or the function to be fitted is quite complex, the BP network is better because of its excellent
fitting ability.

Moreover, there are still several measures to further improve the performances of proposed
ML models, especially in the Indianapolis case. First, more observed data is likely to contribute to
the model accuracy. Although the Indianapolis data set has more than 20,000 samples of the tracer,
more than three quarters of these samples are zero measurements, which are almost meaningless.
Therefore, more valid observations are necessary. In addition, some more sophisticated parameters can
be considered in the model construction. For example, the LS or CFD model may be able to accurately
describe the tracer dispersion in air in the Indianapolis case. Therefore, the LS-related or CFD-related
parameters may possibly help to improve model accuracy.

In Section 3.2 (Results Analysis), we attribute the different model performances in the two field
cases to the different topography. In fact, besides the terrain condition, there are still other factors that
influence the atmospheric dispersion potentially. These factors include the tracer type (SO2 and SF6),
the measurement distance and time, etc. For example, SO2 and SF6 have different chemical properties
in air. Therefore, their lifetimes in the atmospheric dispersion may be different, causing the difference
in the concentration observations. In addition, the measurement distance in the Prairie Grass case
is closer to the source. This may lead to the more satisfactory performance of the ML models with
Gaussian parameters, because the Gaussian model is more accurate in the near field case. Therefore,
in the future work, we will analyze the impact of other factors on the atmospheric dispersion, and give
a more clear explanation of the model performances in the two field cases.

5. Conclusions

This paper compares two machine learning models (i.e., the BP network and SVR) for hazardous
gas dispersion prediction in field cases. These ML models are built firstly by original input parameters.
Then, in order to enhance the prediction accuracy, the integrated Gaussian parameters are formed by
the original monitoring parameters, and used as the inputs of the ML models. The two ML models
with different inputs are tested and compared using two typical field data sets. Further, the influence
of the training set scale is analyzed as well.

Results illustrate that the performances of proposed ML models in the Prairie Grass data set
are more satisfactory than those of the Indianapolis case generally, because the Indianapolis field
experiment involves complex terrain conditions. As for the input selection, the use of the integrated
Gaussian parameters indeed improves prediction accuracy. However, the extent of the improvement
relies on the adaptability of the Gaussian model to the field experiment. In terms of the comparison
of the two ML models, the BP network usually has a stronger fitting ability, while the SVR model
achieves a better generalization. This comparison can help researchers and managers to select models
for hazardous gas dispersion prediction.

In conclusion, the proposed ML models provide an effective way of predicting hazardous gas
dispersion in field cases. With relatively high prediction accuracy, these ML models will provide strong
support for the management and emergency response to hazardous gas emissions and accidental leaks.
However, under complex terrain conditions (like the Indianapolis case) the prediction accuracy of the
proposed ML models still needs improvement. Future work will focus on the further improvement of
the ML models, especially in some complex field cases. For example, the LS or CFD-related parameters
can be used to enhance the prediction accuracy of the ML models. In addition, besides the terrain
condition, other factors such as the tracer type, and the measurement distance and time will be
considered to explain the atmospheric dispersion in the two field cases more clearly.
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Appendix A

Tables A1 and A2 show the statistical indicators of the input parameters before normalization in
the two field cases.

Table A1. The statistical indicators of the inputs in the Prairie Grass case.

Input Parameter Symbol Maximum Minimum Mean Standard Deviation

Downwind distance 1 (m) Dx1 800 −470.228 283.629 284.360
Downwind distance 2 (m) Dx2 800 −545.599 279.037 283.309
Downwind distance 3 (m) Dx3 800 −363.192 285.652 283.113
Downwind distance 4 (m) Dx4 800 −575.472 278.641 284.305
Crosswind distance 1 (m) Dy1 800 0 61.923 101.207
Crosswind distance 2 (m) Dy2 800 0 72.617 109.474
Crosswind distance 3 (m) Dy3 800 0 62.555 99.218
Crosswind distance 4 (m) Dy4 800 0 70.914 109.015

Source strength (g·s−1) Q 104.1 38.5 77.983 25.591
Wind speed 1 (m·s−1) V1 9 1.25 4.909 2.069
Wind speed 2 (m·s−1) V2 9.26 1.65 4.987 2.079
Wind speed 3 (m·s−1) V3 8.52 1.37 4.862 2.003
Wind speed 4 (m·s−1) V4 9.36 1.65 4.945 2.065
Wind direction 1 (deg) Dir1 245 128 186.473 26.363
Wind direction 2 (deg) Dir2 237 105 191.518 25.259
Wind direction 3 (deg) Dir3 244 128 185.580 25.411
Wind direction 4 (deg) Dir4 243 109 191.800 26.241
Air temperature (◦C) T 35.58 15.347 26.0411 5.753

Gaussian parameter (y) 1 Gy1 5.233 × 1011 0 2.521 × 1010 6.206 × 1010

Gaussian parameter (y) 2 Gy2 5.233 × 1011 0 2.361 × 1010 6.182 × 1010

Gaussian parameter (y) 3 Gy3 5.233 × 1011 0 2.500 × 1010 5.825 × 1010

Gaussian parameter (y) 4 Gy4 5.233 × 1011 0 2.375 × 1010 5.952 × 1010

Gaussian parameter (z) 1 Gz1 8.093 × 1011 0 1.736 × 1011 1.493 × 1011

Gaussian parameter (z) 1 Gz2 8.102 × 1011 0 1.751 × 1011 1.482 × 1011

Gaussian parameter (z) 1 Gz3 8.102 × 1011 0 1.617 × 1011 1.391 × 1011

Gaussian parameter (z) 1 Gz4 8.102 × 1011 0 1.679 × 1011 1.444 × 1011

Table A2. The statistical indicators of the inputs in the Indianapolis case.

Input Parameter Symbol Maximum Minimum Mean Standard Deviation

Downwind distance 1 (m) Dx1 1.268 × 104 −1.105 × 104 1.517 × 103 2.705 × 103

Downwind distance 2 (m) Dx2 1.266 × 104 −1.200 × 104 1.211 × 103 2.876 × 103

Downwind distance 3 (m) Dx3 1.265 × 104 −1.210 × 104 1.364 × 103 2.804 × 103

Downwind distance 4 (m) Dx4 1.270 × 104 −1.255 × 104 1.400 × 103 2.756 × 103

Crosswind distance 1 (m) Dy1 1.273 × 104 0.075 2.166 × 103 2.303 × 103

Crosswind distance 2 (m) Dy2 1.267 × 104 0.069 2.145 × 103 2.296 × 103

Crosswind distance 3 (m) Dy3 1.271 × 104 0.172 2.150 × 103 2.295 × 103

Crosswind distance 4 (m) Dy4 1.272 × 104 0.106 2.173 × 103 2.309 × 103

Source strength (g·s−1) Q 4.670 4.600 4.656 0.011
Wind speed 1 (m·s−1) V1 11.150 0.640 4.932 2.106
Wind speed 2 (m·s−1) V2 5.910 0.520 2.741 1.110
Wind speed 3 (m·s−1) V3 7.130 0.270 2.637 1.619
Wind speed 4 (m·s−1) V4 5.800 0.400 2.401 1.225
Wind direction 1 (deg) Dir1 319 5 189.837 61.896
Wind direction 2 (deg) Dir2 336 13 188.355 66.071
Wind direction 3 (deg) Dir3 354 4 190.091 61.599
Wind direction 4 (deg) Dir4 327 22 186.145 63.399
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Table A2. Cont.

Input Parameter Symbol Maximum Minimum Mean Standard Deviation

Gaussian parameter (y) 1 Gy1 1.369 × 1011 0 4.450 × 108 2.888 × 109

Gaussian parameter (y) 2 Gy2 1.051 × 1011 0 4.226 × 108 2.633 × 109

Gaussian parameter (y) 3 Gy3 1.369 × 1011 0 4.618 × 108 2.982 × 109

Gaussian parameter (y) 4 Gy4 1.369 × 1011 0 4.685 × 108 3.150 × 109

Gaussian parameter (z) 1 Gz1 1.448 × 1011 0 6.463 × 109 5.319 × 109

Gaussian parameter (z) 1 Gz2 1.448 × 1011 0 5.982 × 109 5.382 × 109

Gaussian parameter (z) 1 Gz3 1.448 × 1011 0 6.217 × 109 5.350 × 109

Gaussian parameter (z) 1 Gz4 1.448 × 1011 0 6.259 × 109 5.350 × 109

The Tables A3 and A4 describe the details of 32 and 16 different configurations of the training set
and test set in the two field cases.

Table A3. The configurations of the training sets and test sets in the Prairie Grass case.

Configuration ID Training Set
Size (Release)

Percentage of
the Training Set

Test Set Size
(Release)

Percentage of
Test Set

1 5 8.43% 62 91.57%
2 7 12.21% 60 87.79%
3 9 16.46% 59 83.54%
4 11 20.12% 57 79.88%
5 13 23.08% 55 76.92%
6 15 27.26% 53 72.74%
7 17 30.44% 51 69.56%
8 19 33.26% 49 66.74%
9 21 36.09% 47 63.91%
10 23 38.24% 45 61.76%
11 25 42.62% 43 57.38%
12 27 46.89% 41 53.11%
13 29 47.97% 39 52.03%
14 31 51.90% 37 48.10%
15 33 54.52% 35 45.48%
16 35 56.91% 33 43.09%
17 37 59.10% 31 40.90%
18 39 61.16% 29 38.84%
19 41 63.36% 27 36.64%
20 43 67.23% 25 32.77%
21 45 71.30% 23 28.70%
22 47 74.88% 21 25.12%
23 49 78.72% 19 21.28%
24 51 82.90% 17 17.10%
25 53 83.58% 15 16.42%
26 55 85.54% 13 14.46%
27 57 88.33% 11 11.67%
28 59 89.62% 9 10.38%
29 61 92.87% 7 7.13%
30 63 95.69% 5 4.31%
31 65 96.54% 3 3.46%
32 67 98.91% 1 1.09%
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Table A4. The configurations of the training sets and test sets in the Indianapolis case.

Configuration ID Training Set
Size (Day)

Percentage of
the Training Set Test Set Size (Day) Percentage

of Test Set

1 1 5.95% 16 94.05%
2 2 12.15% 15 87.85%
3 3 18.74% 14 81.26%
4 4 24.45% 13 75.55%
5 5 30.41% 12 69.59%
6 6 36.87% 11 63.13%
7 7 41.97% 10 58.03%
8 8 47.76% 9 52.24%
9 9 54.10% 8 45.90%
10 10 60.21% 7 39.79%
11 11 65.92% 6 34.08%
12 12 71.86% 5 28.14%
13 13 77.46% 4 22.54%
14 14 83.46% 3 16.54%
15 15 89.02% 2 10.98%
16 16 94.58% 1 5.42%
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