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Abstract: Non-point source pollution is the main factor causing water quality deterioration.
Landscape patterns affect the transmission of non-point source pollutants. Many studies have
been carried out to analyze the correlation between landscape patterns and water quality, while most
former studies neglected the scale effect. The Jiulong River basin in southeast China was selected as
the study area. Based on a landscape cover map generated from satellite images, we determined the
riparian buffer zones with different widths, set the catchment as the complementary scale, and then
established the multiple linear regression models to explore the relationship between landscape
metrics and water quality indices at different scales. The degree of significance of the effect of various
landscape metrics on the water quality at different scales was quantitatively analyzed in this paper by
using multiple linear regression analysis. The results showed that not only the impact of landscape
metrics but also the influence of land cover type on the water quality indices would vary when the
spatial scale changed. The credible regression models established in this study can help regional
managers understand the correlation between landscape and water quality, and the regression results
can be used for land use allocation in a watershed.

Keywords: non-point source pollution; watershed; multiscale; multiple linear regression; landscape
metrics; water quality index

1. Introduction

The 2016 environment bulletin issued by China’s State Environmental Protection Administration
demonstrated that river sections with water quality grades of I–III accounted for 67.8% among
1940 national control sections, while a water quality grade of IV accounted for 32.2%; the major
pollution indices were pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), total
phosphorus (TP), ammonia nitrogen amount (NH3-N), and total nitrogen (TN). Both point source
pollution and non-point source pollution affect water quality. While point source pollution has been
fairly controlled, non-point source pollution is extensive and difficult to quantify [1]. Hence, non-point
source pollution has been the main factor of water pollution during urbanization [2]. Agricultural
development has also aggravated the extent of non-point source pollution. Based on the premise that
agricultural development will continue, examining the relationship between source-sink landscape
patterns and non-point source pollution has become a major aspect of controlling non-point source
pollution [3].

The spatial distribution of the landscape pattern in a watershed is linked with the process of
non-point source pollution. Some landscapes, such as cultivated land and residential land, contribute

Int. J. Environ. Res. Public Health 2018, 15, 1606; doi:10.3390/ijerph15081606 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-0394-7972
http://dx.doi.org/10.3390/ijerph15081606
http://www.mdpi.com/journal/ijerph
http://www.mdpi.com/1660-4601/15/8/1606?type=check_update&version=2


Int. J. Environ. Res. Public Health 2018, 15, 1606 2 of 14

to the non-point source pollutants; some landscapes can inhibit or absorb the pollutants, including
forestland and unused land [4]. Thus, changes in landscape patterns will have a significant effect on the
water quality. Landscape metrics can characterize the spatial structure of landscape patterns. In order
to examine the relationship between landscape pattern and water quality indices, the correlation
analysis method has been utilized.

Remote sensing (RS) data have become the significant data source of landscape pattern research,
as they are multitemporal, multiresolution, and synchronous observations [5]. Jha et al. provided the
perspective that the technology of land and water management developed promptly following the
development of remote sensing and geographic information system (GIS) techniques [6]. This paper
also mentioned that RS and GIS techniques would contribute greatly to the following six aspects:
the exploration and evaluation of groundwater resources, the selection of irrigation areas, the simulation
of groundwater flow and pollution based on GIS, the assessment of groundwater pollution and protection
of groundwater, the estimation of natural irrigation areas, and the analysis of hydrogeological data.

Many studies have been carried out on examining the relationship between landscape patterns
and water quality metrics. Varanka et al. studied the impact of geomorphological factors on river
water quality (at the catchment scale, as well as water quality indices including TP, TN, pH, and water
color; geomorphological factors covered variables regarding topography, bedrock, and surface ground
material; and the Spearman’s rank correlation test was applied to study the correlations among
variables [7]. Ou et al. analyzed the correlation between landscape pattern and non-point source
pollution and studied the tendency for spatiotemporal change in landscape metrics to reflect the
response of natural land cover on agricultural development [8]. The results of the landscape metrics
reflected that the influence of agricultural development on the regional ecosystem changed at different
time. Li et al. studied the relationship between landscape characteristics and water quality and
analyzed the effect of various landscapes on water quality by using the Pearson’s correlation coefficient
method, and the relationship between landscape features and water quality in each season was
analyzed using the stepwise multiple regression model [9]. The results showed that the composition
and spatial structure of the landscape greatly affected water quality. Huang took the relationship
between land use distribution and water quality into account and found that most water quality
indices were negatively correlated with the proportion of urban area and was positively correlated
with the forest area [10]. Shen et al. analyzed the quantified relationship between landscape indices
and water quality at the landscape scale. The results showed that the effect of the landscape pattern
on water quality could be characterized by the patch density of a water body, the largest patch
index of a forest, and the proportion of land usage classes [11]. Li et al. evaluated the impact of
urbanization development on water quality and studied the relationship between landscape patterns
and water quality indices [12]. Clear differences existed in the results due to landscape diversity and
differences in the transmission process of non-point source pollutants. Gonzales-Inca studied the
linkages between 21 years of water quality data from 16 agricultural watersheds and landscape metrics
by using a generalized linear model and multivariate redundancy analysis [13]. The landscape indices
were derived at three functional scales: watershed-wide, saturation-excess zone and riparian zone.
In addition, the author mentioned that the vegetation index was the significant indicator of nitrate
content in autumn. Oliverira et al. analyzed the linkage between landscape pattern and five selected
water quality indices using different zones of analysis: riparian buffers and exclusive contribution
areas. It is worth noting that a Land Cover Pollution Index (LCPI) was proposed in the study to
replace the single land use types and study the relationship between landscape pattern and water
quality [14]. The results demonstrated that LCPI could explain the linkage between landscape pattern
and water quality more effectively than the individual land use category, and the phenomenon was
more distinguishable at the riparian buffer scale. Xiao et al. proposed a novel method to quantify the
impact of human activities in rural areas on soil resources and evaluated the relationship between
five landscape metrics and three human activity indicators [15]. The results of the analysis indicated
the higher degree of landscape fragmentation during the study years. Su quantified the agricultural
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landscape pattern changes in response to urbanization at the ecoregional scale by integrating RS, GIS,
landscape metrics analysis, and spatial regression [16]. The results showed that the urbanization
process could be characterized by four indices: gross domestic product (GDP), total population,
non-agricultural population proportion (NAPP), and the expansion intensity index (EII). In addition,
EII was the most effective urbanization indicator explaining agricultural landscape pattern changes
at the ecoregional scale. Shi researched the changes in water quality indices under different land use
types by applying redundancy analysis [17]. The results reflected a more distinguishing impact of
landscape patterns on water quality and a stronger contribution of land use patterns on the water
quality at the riparian scale than at the catchment scale. Lv et al. characterized the landscape patterns
by using proportions of land use and five land scape metrics and analyzed the correlation between
landscape characteristics and water quality parameters at different buffer zones, ranging from 200
to 1500 m. The results indicated that the relationship between landscape pattern and water quality
was scale-dependent [18]. Xiao et al. found that both scales and seasonality play important role when
analyzing the relationships between landscape characteristics of different land use types [19]. However,
the metrics describing landscape composition and pattern included the percentage of farmland (%FA),
orchard (%OR), forest (%FO), built-ups (%BU), and water (%WA), and the four spatial scales were
100 m site buffers, 500 m site buffers, 1000 m site buffers, and 2000 m site buffers [19].

By analyzing the related studies, we noted that the traditional studies usually selected riparian
buffers with different widths as the study scales and evaluated the linkage between landscape patterns
and water quality by comparing the relationships established at various buffer zones. The drawback
of this method is that the riparian buffer zones with different widths cannot reflect the scale effect of a
given relationship. Dividing the buffer zones artificially destroys the original integrity of the landscape,
and it is still debatable whether the landscape region after buffer zone division can be regarded as an
independent study scale. So, the transmission of pollutants along with surface runoff in a catchment
can be regarded as an independent ecological process. Thus, a new spatial scale is needed as the
complement of riparian buffers. In this paper, the river catchment was selected as the complementary
scale, in addition to the traditional riparian buffer zones. A novel method for analyzing the correlation
between multiscale landscape patterns and water quality indices based on RS techniques was proposed
in this paper to solve the uncertainty problem of the appropriate scale when studying the linkage
between landscape patterns and water quality. Traditional landscape metrics, such as the number of
patches (NP), the patch density (PD), the largest patch index (LPI), and the landscape shape index (LSI),
were usually used in the related studies to characterize the spatial structures of landscape patches in
the study area [19]. The minimum hydrological response unit with a single land use and soil type
is the smallest study unit of the hydrological response unit landscape contrast index (HRULCI) [20].
HRULCI can reflect the different effects of various landscapes on the transmission of non-point source
pollutants. As a different index, HRULCI was computed to analyze the correlation between landscape
metrics and water quality under multiple scales in this paper.

2. Study Areas and Data Sources

Jiulong River is the second-largest river in Fujian Province, with a total length of 1285 km.
The North, South, and West Rivers are main streams in the Jiulong River basin [21]. The watershed
covers Longyan, Longhai, Zhangping, and other districts, which are bounded between 116◦47′ E to
118◦02′ E and 24◦13′ N to 25◦51′ N [4]. The length of Jiulong River is about 258 km, the drainage area is
about 14,741 m2, and the average sediment discharge is 2 million 461 thousand tons. The main streams
include the North stream, the South stream, and the West stream. Jiulong River is an important source
of drinking water and agricultural irrigation water in the study area. The health of a water body
guarantees human productivity and the development of agriculture. The watershed is in a subtropical
marine monsoon climate. The precipitation in this basin is abundant, and the amount of rainy days per
year ranges from 100 to 200. In addition to agricultural production activities, the causes of pollution in
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the basin include livestock pollution, water resource overexploitation, industrial pollution, and the
delayed sewage disposal.

Landsat OLI images of the Jiulong River basin in 2017 were selected as the data source for
landscape interpretation [22]. The digital elevation model (DEM) data with the resolution of 30 m
were acquired from ASTER GDEM which was jointly launched by The Ministry of Economy, Trade
and Industry of Japan and the United States National Aeronautics and Space Administration (NASA).
Soil type datasets were provided by the Institute of Soil Science for the Second National Land
Investigation, and the annual precipitation data were obtained from the Nation Meteorological Data
Sharing Platform. The consumption data of fertilizers were acquired from statistical yearbooks for
Fujian Province. The hydrological monitoring data came from the weekly report of water quality on
the official website of the Fujian Provincial Department of Environment Protection, and the monitoring
data were processed to obtain the annual hydrological data of different monitoring sites in the study
year. The monitoring indices of water quality include pH, DO, CODMn, TP, NH3-N, and TN. The spatial
distribution of the main monitoring sites in the Jiulong River basin is displayed in Figure 1.
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The annual water quality indicators data of major sites in 2017 basin are showed in Table 1.

Table 1. Annual water quality indicators dataset.

Monitoring Sites pH DO (mg/L) CODMn (mg/L) TP (mg/L) NH3-N (mg/L) TN (mg/L)

Honglai 7.133 8.280 2.730 0.153 0.400 11.490
Jingcheng 7.013 6.429 2.830 0.117 0.228 5.607
Dingfang 7.005 5.943 2.746 0.228 1.297 3.888

Punan 6.828 7.652 2.283 0.096 0.327 3.017
Shangyang 6.965 7.029 2.822 0.607 1.025 3.129

Yanshi 7.138 7.327 3.022 0.240 0.750 3.255
Luobin 6.992 6.706 3.490 0.136 0.331 5.324
Huaan 6.666 6.919 1.873 0.120 0.524 4.337
Xiamen 6.438 7.554 3.822 0.076 0.318 2.512
StdDev. 0.216 0.661 0.546 0.154 0.349 2.588

DO: dissolved oxygen; CODMn: chemical oxygen demand; TP: total phosphorus; TN: total nitrogen.

Aiming to validate the accuracy of the multiple linear regression model established to study
the relation between multiscale landscape metrics and water quality indices, the monitoring data
of Huaan Xipo and Xiamen Jiangdong in 2017 were applied as the verification data for this paper.
We proved the equation accuracy by comparing the simulated data with the actual monitoring data in
this study.

3. Methods

3.1. Division of Multiscale Riparian Buffers and Calculation of Indices

The water system results of the Jiulong River basin in 2005, 2010, 2014, and 2017 were obtained on
the basis of DEM data and the extraction results of the water. The distance from a certain landscape
to the water has a great impact on the transferring process of non-point source pollutants along with
the surface runoff with the precipitation process. Compared with the landscape that is farther away,
the intensity of the landscape near the body of water is stronger. The transmission of non-point source
pollutants in the watershed is a spatiotemporal process; thus, it is crucial to select the study scale when
analyzing the relationship between landscape patterns and water quality. According to the former
studies [23,24], we established riparian buffer zones with distances of 100 m, 500 m, 1000 m, and 2000 m.
The buffer zones established in the Yanshi River sub-watershed are showed in Figure 2. Yanshi River
is a tributary of the North River. It should be noted that the selected channel is a first-order stream.

Eight landscape metrics including the number of patches (NP), the patch density (PD), the largest
patch index (LPI), the landscape shape index (LSI), the area weighted mean shape (AWMSI), the mean
nearest neighbor distance (ENN_MN), the interspersion and juxtaposition index (IJI), and the
aggregation index (AI) were computed by the FRAGSTATS platform which is a computer software
program produced by Kevin McGarigal, SA Cushman and E Ene at the University of Massachusetts,
Amherst [25]. Hydrological Response Unit Landscape Contrast Index (HRULCI) was computed
according to the specific steps introduced in a former study [20]. Table 2 contains specific information
on the 9 metrics [17,26,27].
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Table 2. Introduction of landscape metrics.

Landscape Metrics Description

Largest Patch Index (LPI) LPI is the portion of the landscape that is occupied by the largest patch of
the landscape.

Landscape Shape Index (LSI) The sum of all patch perimeters is divided by an amount equivalent to the
perimeter of a circle with the same area as the landscape area to calculate LSI.

Mean Nearest Neighbor Distance
(ENN_MN)

ENN_MN is calculated only if at least two patches of a corresponding type
occur. ENN_MN is the averaged distance from one patch to the nearest patch
of the same landscape type. ENN_MN characterizes the landscape partially.

Interspersion and Juxtaposition
Index (IJI)

IJI is calculated from the relationship between the length of each edge type
and total edge of the landscape, divided by a term based on the number of
landscape types.

Area Weighted Mean Shape Index
(AWMSI) AWMSI is computed by weighting patches according to their size.

Number of Patches (NP) NP is the number of patches in a certain landscape type.

Patch Density (PD) PD indicates the amount of patches per unit area in the landscape.

Aggregation Index (AI) AI indicates the degree of patch clustering, ranging from 0 to 100.

Hydrological Response Unit Landscape
Contrast Index (HRULCI)

HRULCI indicates the effect of a source-sink landscape on the transmission of
non-point source pollutants from generating plots to a water body a) was
calculated in this paper.

The calculation results of the landscape metrics in the Yanshi River buffer zones in 2017 are
displayed in Table 3. NP reflects the amount of patches in the certain area, and NP increased with the
increase of the width of buffer zones. The decrease of PD indicated that the extent of fragmentation in
100 m, 500 m, 1000 m, and 2000 m also gradually decreased. LSI, indicating the overall complexity,
increased when the width rise from 100 m to 1000 m.
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Table 3. Calculation results of landscape pattern index in different buffer zones.

Buffer Zone/m NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

100 503 50.111 13.852 23.599 3.864 86.429 42.285 67.751 0.997
500 1262 30.235 20.137 24.703 5.057 89.030 53.493 80.521 0.940
1000 2334 28.936 23.196 29.508 6.457 89.865 58.707 82.257 0.892
2000 5007 31.457 18.133 40.872 7.554 88.146 63.518 81.720 0.873

NP: Number of Patches; PD: Patch Density; LPI: Largest Patch Index; LSI: Landscape Shape Index; AWMSI: Area
Weighted Mean Shape Index; ENN_MN: Mean Nearest Neighbor Distance; IJI: Interspersion and Juxtaposition
Index; AI: Aggregation Index; HRULCI: Hydrological Response Unit Landscape Contrast Index.

3.2. Landscape Metrics Calculation at the Catchment Scale

The transmission of pollutants along with surface runoff in a catchment can be regarded as an
independent ecological process. The river catchment was selected as the complementary scale in
addition to the traditional riparian buffer zones. The division results of the catchment in the Yanshi
River sub-watershed are showed in Figure 2.

The calculation results of the landscape metrics in the Huaan Xipo catchment area in 2005, 2010,
and 2014 are displayed in Table 4.

Table 4. Calculation results of landscape pattern index in catchment area.

Year NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

2005 164,581 25.412 26.505 275.122 76.690 111.667 48.750 80.988 0.562
2010 17,115 2.623 31.433 81.770 22.736 291.034 66.903 94.220 0.653
2014 43,550 6.560 76.846 88.888 52.207 179.142 71.836 93.621 0.520

3.3. Analysis of the Relation between Spatiotemporal Landscape Metrics and Water Quality Indices

In this paper, all the water quality monitoring data were collected from the national water quality
monitoring station in China, and the sampling frequency was once a week. Analysis of the linear
or non-linear relationship between landscape metrics and water quality indices were performed in
existing studies. The conclusions obtained from such studies are not comprehensive because the
specific ecological process has not been taken into account and the scale effect has been neglected.
Combined with non-point source pollution and the transmission of pollutants, the relationship between
landscape metrics and water quality was studied by using multiple linear regression analysis at
multiple scales [28]. The steps of the multiple linear regression model include the determination
of the explanatory variables and explained variables, the determination of the regression model,
the establishment of the regression equation, the verification of the equation, and the generation of a
prediction using a regression equation.

4. Results and Discussion

We established the multiple linear regression equation between the landscape metrics and water
quality indices at the scale of buffer zone and catchment with the support of SPSS.

4.1. Linear Analysis of pH and Landscape Metrics

The linear regression models simulated by regression analysis are shown in Table 5. The influences
of landscape metrics on pH are different at various buffer zones and catchments. According to
the criterion that two variables have a linear correlation only when significance is less than 0.05,
the relationship between pH and landscape metrics calculated in this paper was non-linear. Meanwhile,
it is notable that the significance (Sig) of the established models varied with the change in the spatial
scales. The value of Sig improved promptly when the buffer width increased from 100 m to 500 m,



Int. J. Environ. Res. Public Health 2018, 15, 1606 8 of 14

and Sig remained stable after this great increase. Hence, it is inferred that the landscape metrics at a
smaller scale have greater explanatory capacity for water quality indices in this paper.

Table 5. The linear model general situation of pH.

pH Model R R2 Standard Estimation Error Sig

pH-100 0.934 a 0.872 0.109 0.271
pH-500 0.823 a 0.677 0.172 0.702

pH-1000 0.818 a 0.670 0.174 0.716
pH-2000 0.827 a 0.685 0.170 0.690

pH-catchment 0.863 a 0.744 0.153 0.576
a: predictive variables.

According to the further analysis of the significance of pH and different landscape metrics at the
100 m buffer zones (Table 6), NP and LSI have great impact on pH, indicating that the fragmentation
degree and overall shape complexity of landscapes are of significance for pH.

Table 6. The model significance table of pH.

Landscape Metrics NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

Significance 0.048 0.219 0.109 0.05 0.246 0.479 0.888 0.273 0.668

4.2. Linear Analysis of DO and Landscape Metrics

On the basis of the Sig values in Table 7, DO and landscape metrics did not show a great linear
correlation in this paper, whereas with the increase in spatial scales, Sig dropped with the raise in
the study scale, indicating that correlation models established at a large scale have better explanatory
power than those at a small scale. The values of Sig at the 2000 m buffer and river catchment did not
show a decreasing tendency, and we speculated that the reason lies in the small distances between
monitoring sites in the Jiulong River. The catchments divided in this study may overlap with the
2000 m buffer zones, affecting the significant results of the relational models. Sig was the lowest at
the 1000 m scale, but the model coefficient table indicated that there were no landscape metrics that
related linearly with DO. We concluded that DO had a non-linear relation with landscape metrics.

Table 7. The linear model general situation of DO.

DO Model R R2 Standard Estimation Error Sig

DO-100 0.716 a 0.513 1.117 0.902
DO-500 0.853 a 0.728 0.835 0.609
DO-1000 0.904 a 0.817 0.684 0.409
DO-2000 0.858 a 0.736 0.822 0.593

DO-Catchment 0.885 a 0.784 0.744 0.488
a: predictive variables.

4.3. Linear Analysis of CODMn and Landscape Metrics

CODMn had a clear linear correlation with the landscape metrics at the catchment scale in the Jiulong
River basin on the basis of the significance values in Table 8. The Sig of the linear regression models that
was established for the CODMn and landscape metrics decreased rapidly with the improvement in the
spatial scale. The Sig values of the models at the riparian buffers were all larger than 0.05, demonstrating
that CODMn had no linear correlation with the landscape metrics at the buffer scales, while Sig at the
catchment scale was 0.029, and thus, they had a significant linear relationship. The reason for this
phenomenon was that compared with the riparian buffers, the influence of landscape pattern on water
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quality at the catchment scale was more suitable for the transmission of non-point source pollutants
(which mainly refer to the oxidizable substances) in a watershed. The transmission of oxidizable
substances along with surface runoff is a spatiotemporal process, and the division of the riparian
buffers cuts apart the continuous space-time process. Hence, the linear regression model established at
the catchment scale is the most convincing in the study of the relationship between landscape metrics
and CODMn.

Table 8. The linear model general situation of CODMn.

CODMn Model R R2 Standard Estimation Error Sig

CODMn-100 0.935 a 0.875 0.363 0.262
CODMn-500 0.938 a 0.880 0.356 0.250

CODMn-1000 0.958 a 0.918 0.294 0.153
CODMn-2000 0.952 a 0.907 0.314 0.181

CODMn-catchment 0.987 a 0.975 0.162 0.029
a: predictive variables.

The regression coefficients at the catchment scale are showed in Table 9. ENN_MN had the
greatest impact on CODMn according to the results of significance. Furthermore, HRULCI significantly
influenced CODMn because HRULCI was calculated based on the minimum hydrological unit, and the
catchment consisted of several minimum hydrologic response units.

Table 9. The model significance table of CODMn.

Coefficients Constant NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

Unstandardized Coefficients −150.52 −7 × 10−6 0.031 −0.009 −0.01 0.024 −0.017 −0.06 0.207 110.483
Standard Estimation error 160.39 0 0.045 0.016 0.007 0.019 0.004 0.038 0.166 30.966

Significance 0.414 0.892 0.541 0.606 0.256 0.286 0.024 0.201 0.301 0.063

The linear regression model of the catchment scale calculated according to Table 9 is shown below.

CODMn = −7.8802× 10−7 ×NP + 0.31× PD− 0.009× LPI− 0.01× LSI + 0.024×
AWMSI− 0.017× ENNMN − 0.063× IJI + 0.207×AI + 11.483×HRULCI− 15.520,

(1)

4.4. Linear Analysis of TP and Landscape Metrics

The TP and landscape metrics were more closely related compared with other water quality
indices based on Table 10. The credible linear regression model was established at every riparian buffer,
and spatial scales had a slight effect on TP. F was lowest at the 500 m buffer scale, and values in the rest
of the buffer scales were almost the same. In contrast, the significance value at the catchment scale was
much higher, and the occurrence of this result was inevitable, which did not indicate that the study at
the catchment was meaningless. The residential land and cultivated land are mainly distributed on
both sides of the river, and non-point source pollutants consisting of phosphorus enter the water body
and have a more significant influence on water quality than those at farther landscapes. Compared
with the river catchment in which forestland inhibits the non-point source pollution, landscape metrics
have greater effects on water quality indices at the riparian buffers.
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Table 10. The linear model general situation of TP.

TP Model R R2 Standard Estimation Error Sig

TP-100 0.994 a 0.988 0.032 0.010
TP-500 0.998 a 0.996 0.017 0.002
TP-1000 0.993 a 0.985 0.035 0.014
TP-2000 0.993 a 0.987 0.033 0.012

TP-catchment 0.874 a 0.764 0.139 0.532
a: predictive variables.

Although the linear regression models of TP and landscape metrics established at different buffer
scales all had high accuracy, TP correlated closely with different metrics at different scales. According
to the regression coefficients calculated at different buffer scales, TP had a linear relation with PD,
LPI, ENN_MN, IJI, and AI at the 100 m scale and correlated with PD at the 500 m scale. TP had a
significant correlation with LPI at the 1000 m scale and related linearly with LPI and AWMSI at the
2000 m buffer. This phenomenon indicated the importance of scale in the study of the source-sink
landscape pattern. The significance of the regression model and the effect of landscape metrics on
water quality indicators will change at different study scales. It was proven that the appropriate scale
for analyzing the relationship between TP and landscape indices in the Jiulong River basin was the
500 m riparian buffer zone.

The linear regression model established according to Table 11 at the 500 m buffer was showed
as follows.

TP = −4.916× 10−6 ×NP + 0.01× PD + 0.02× LPI + 0.002× LSI− 0.043×AWMSI+

0.001× ENNMN + 0.001× IJI + 0.008×AI− 0.213×HRULCI− 0.848,
(2)

Table 11. The model significance table of TP.

Coefficients Constant NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

Unstandardized Coefficients −0.848 −5 × 10−6 0.01 0.02 0.002 −0.043 0.001 0.001 0.008 −0.213
Standard estimation 10.4 0 0.002 0.007 0.004 0.022 0 0.002 0.009 0.312

Significance 0.588 0.602 0.022 0.061 0.654 0.143 0.252 0.741 0.422 0.543

4.5. Linear Analysis of NH3-N and Landscape Metrics

NH3-N did not show a salient linear correlation with landscape metrics by analyzing the
significance values in this study in Table 12. Significance values of the regression models at the
500 m buffer and the 2000 m buffer were approximately 0.07 and close to 0.05; thus, NH3-N and
landscape metrics had weak correlations at the two scales. Based on further analysis of the significance
between NH3-N and different landscape metrics at the two scales, it was inferred that NH3-N was
weakly related to PD at the buffer zones with a width of 500 m, and NH3-N had a salient correlation
with LPI and AWMSI, while it was weakly correlated with IJI and HRULCI at the 2000 m scale.
Although the significance values of the linear regression models changed slightly at different study
scales, the relationship between NH3-N and various landscape metrics changed promptly, indicating
that the research scale was of great significance. The appropriate scale should be selected according to
the specific ecological process.
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Table 12. The linear model general situation of NH3-N.

NH3-N Model R R2 Standard Estimation Error Sig

NH3-N-100 0.960 a 0.921 0.190 0.146
NH3-N-500 0.974 a 0.950 0.151 0.079

NH3-N-1000 0.944 a 0.890 0.224 0.223
NH3-N-2000 0.976 a 0.953 0.147 0.072

NH3N-catchment 0.790 a 0.624 0.414 0.784
a: predictive variables.

The linear regression model of NH3-N and landscape metrics at the 2000 m scale was calculated
on the basis of Table 13, which was shown as follows.

NH3N = −3.974× 10 −5 ×NP + 0.051× PD + 0.03× LPI + 0.022× LSI− 0.243×
AWMSI− 0.003× ENNMN − 0.04× IJI + 0.067×AI− 4.157×HRULCI + 0.718,

(3)

Table 13. The model significance table of NH3-N.

Coefficients Constant NP PD LPI LSI AWMSI ENN_MN IJI AI HRULCI

Unstandardized Coefficients 0.718 −3 × 10−4 0.051 0.03 0.022 −0.243 −0.003 −0.04 0.067 −40.157
Standard estimation 100.998 0 0.036 0.008 0.013 0.053 0.002 0.014 0.113 10.647

Significance 0.952 0.147 0.253 0.032 0.19 0.02 0.327 0.063 0.596 0.086

4.6. Linear Analysis of TN and Landscape Metrics

The Sig of the regression models at different scales are showed shown in Table 14. TN was not
correlated linearly with landscape metrics in this study. Significance dropped with the increase of
study scale, indicating that landscape metrics had better explanatory power at the larger spatial scale.
The model significance at the catchment scale was the lowest, which was similar to the conclusion of
the analysis on CODMn analysis, and it was proven that the catchment scale was another crucial scale
while studying the relationship between landscape patterns and water quality indices. Analyzing
the regression significance of TN and various metrics at the catchment scale, ENN_MN had the most
significant effect on TN compared with other landscape metrics.

Table 14. The linear model general situation of TN.

TN Model R R2 Standard Estimation Error Sig

TN-100 0.825 a 0.680 20.667 0.698
TN-500 0.808 a 0.652 20.780 0.743

TN-1000 0.849 a 0.720 20.492 0.624
TN-2000 0.941 a 0.885 10.597 0.236

TN-catchment 0.948 a 0.900 10.493 0.199
a: predictive variables.

4.7. Accuracy Verification

According to the landscape metrics shown by Huaan Xipo and Xiamen Jiangdong in 2017 and
the multiple linear regression models of different metrics for water quality indices, we verified the
accuracy of three regression models by examining the data of two monitoring sites (Huaan Xipo,
Xiamen Jiangdong) in 2017. The simulated water quality indices are showed in Table 15.
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Table 15. The verification table of simulated water quality data.

Monitor Site-Water Quality Index Simulation Data Monitoring Data Range

Huaan-CODMn 2.8 1.33–3.01
Huaan-TP 0.07 0.037–0.356

Huaan-NH3-N 0.573 0.017–1.56
Xiamen-CODMn 1.94 2.62–5.02

Xiamen-TP 0.08 0.029–0.118
Xiamen-NH3-N 0.01 0.19–0.508

According to Table 15, the linear regression equations for CODMn, TP and NH3-N satisfied the
verification data in Huaan Xipo. The simulated result of TP was in the hydrological monitoring data
range, indicating that the regression model was credible in the Xiamen Jiangdong monitoring site.
The regression results of CODMn are close to the range, but the result of NH3-N was far from the
appropriate range. Considering the loss of monitoring data of Xiamen Jiangdong in 2017 and the
credible simulation model of CODMn in Huaan Xipo, we speculated that this model was effective
in Xianmen Jiangdong as well. The simulation of NH3-N at the Xianmen Jiangdong site was quite
different from the monitoring data, which demonstrated that the regression model was not applicable
at this site.

4.8. Discussion

Landscape metrics have some indicative value for water quality, but their responses to varying
scale is different [27]. Scale effect has been an important topic for a long time in the study of landscape
patterns, and the determination of the appropriate scale is a crucial issue [20]. Sun et al. pointed out
that landscape metrics were the dominant factors of water quality in the whole watershed and 200 m
buffer zones and the impact of landscape metrics on water quality enhanced with the expansion of
buffer zones [24]. Xiao et al. applied metrics describing landscape composition and pattern at class
level and studied the correlation between landscape metrics and water quality parameters at 100 m
site buffers, 500 m site buffers, 1000 m buffers, and 2000 m site buffers, and it was pointed out that
scales played an important role when analyzing the relationship between landscape characteristics
of different land use types and water quality [19]. Li et al. demonstrated the impacts of land use
in riparian zone on water quality [29]. However, the transmission of pollutants along with surface
runoff in a catchment should be further studied as an independent ecological process. We analyzed the
correlation between landscape metrics and water quality parameters at different buffer scales and at
the catchment scale in this paper. Some water quality indicators were closely correlated with landscape
metrics at the buffer scales, and take TP as an instance, Sig of different buffer scales were lower than
0.05 which indicated that TP was correlated with landscape metrics at the buffer scales, however Sig at
the catchment was larger than 0.05 and TP was not correlated with landscape metrics at the catchment
scale. While for CODMn, the results were different apparently. CODMn was correlated with landscape
metrics at the catchment scale and the correlation was not significant at the different buffers.

The linear regression models constructed in this study can be divided into two categories.
Dependent variables of the first class are TP, CODMn, and NH3-N, and those of the second class
are pH, DO, and TN. The first class models reflect the salient correlation between water quality indices
and landscape metrics. In contrast, regression models of the second class indicate that the correlation
between the corresponding water quality indicators and landscape metrics is not significant, and at a
certain scale, such as pH and landscape metrics at the buffers and the catchment scale, is not correlated.
We found that the significance of the regression model changed with the varied spatial scales by
comparing the models of certain water quality indices established at different scales. The appropriate
scale making the second kind of models incredible was not determined in this paper, but the tendency
was such that the significance changed when different spatial scales were explained by analyzing the
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varied significance values. Taking pH, for instance, the results showed that the regression model at the
100 m scale was more credible than that at the large scale.

5. Conclusions

In the study on the relationship between landscape patterns and water quality indices in the
Jiulong River basin, the linear regression equations of water quality indicators and landscape metrics
were established at different scales in this paper. The catchment with ecological significance was
employed as the complementary scale for the riparian buffer zones. The calculation results showed
that the great advantage of the regression model of CODMn and landscape metrics was established
at the catchment scale. It was proven that the relationship between the water quality indices and
landscape metrics had a salient scale effect by comparing the multiple linear regression models at
different scales. Not only the impact of landscape metrics on water quality but also the landscape
categories with great influence on the water quality indices will change when the spatial scale changes.

The research results deepen the understanding of the relationship between landscape pattern
and water quality in multi time-space scale and have significance for non-point source pollution
control, such as the optimization of landscape spatial structure. Taking pH and DO as an example,
this paper put forward a suitable scale for the relationship research between landscape pattern and
the above water quality indicators. Through the analysis of the regression model of CODMn and
landscape pattern index, we demonstrated that the catchment area is an important study scale to study
the relationship between the landscape pattern and the water quality index in the basin. The above
conclusions are of great significance to the research of the relationship between non-point source
pollution and landscape pattern.
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