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Abstract: The food supply chain is a complex system that involves a multitude of “stakeholders”
such as farmers, production factories, distributors, retailers and consumers. “Information asymmetry”
between stakeholders is one of the major factors that lead to food fraud. Some current researches
have shown that applying blockchain can help ensure food safety. However, they tend to study the
traceability of food but not its supervision. This paper provides a blockchain-based credit evaluation
system to strengthen the effectiveness of supervision and management in the food supply chain.
The system gathers credit evaluation text from traders by smart contracts on the blockchain. Then the
gathered text is analyzed directly by a deep learning network named Long Short Term Memory
(LSTM). Finally traders’ credit results are used as a reference for the supervision and management of
regulators. By applying blockchain, traders can be held accountable for their actions in the process
of transaction and credit evaluation. Regulators can gather more reliable, authentic and sufficient
information about traders. The results of experiments show that adopting LSTM results in better
performance than traditional machine learning methods such as Support Vector Machine (SVM) and
Navie Bayes (NB) to analyze the credit evaluation text. The system provides a friendly interface for
the convenience of users.
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1. Introduction

As a global problem, food safety significantly affects the public health and food safety issues have
been a major subject of numerous articles in the media. Over the past few years, many food scandal
cases have been disclosed in the media such as the China milk scandal that emerged in 2008 and the
UK horse meat scandal in 2013 [1]. Recently, the “gutter oil” scandal [2] has raised food safety fears
once again in China. More and more food safety problems have arisen and caused illnesses that have
gained national and government attention. These problems also expose the many cracks which exist in
the current food safety management system.

In the food supply chain, there are multiple “stakeholders” [3] that act as key trading participants
such as farmers, production factories, distributors, retailers and consumers. These traders prefer to
selectively provide the food information that is beneficial to them in the trading process for making
a high profit. This easily leads to food fraud and food safety problems. As with any hard-to-regulate
field, regulators can hardly collect reliable and authentic information to implement supervision because
of the unreliable information providers in the supply chain. In conclusion, because of the complexity of
the food supply chain and “information asymmetry” [4] between traders, the credit risks of traders have
increased rapidly. The credit of traders is a key factor affecting the food safety. Constructing a credit
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evaluation system based on the blockchain technology [5] could help the government regulators
engaged in food safety obtain more reliable, authentic and sufficient information.

In recent years, some studies have linked blockchain technology with the food supply chain.
For example, Tian discussed the potential benefit of blockchain technology in the agri-food supply
chain. Then Tian proposed a traceability system based on blockchain to improve the transparency of
the food supply chain and enhance food safety [6,7]. Nestle, IBM and Walmart have also conducted
a study of blockchain [8] in order to manage supply chains with increased efficiency and to detect and
mitigate against food safety problems. In October 2016, Walmart opened the Walmart Food Safety
Collaboration in Beijing as it signed a collaboration agreement with IBM and Tsinghua University.
It aims to implement food tracking in the supply chain by blockchain. However, there is still an existing
gap in these researches in that they tend to focus on studies to explore traceability of food [9] rather than
strengthen the supervision of traders. It has become clear that blockchain represents an opportunity to
efficiently manage supply chain data across a complex network from farmers, production factories,
distributors, retailers and consumers. Different from the direction of previous research, a credit
evaluation system based on blockchain is presented in this paper. In the system, all transaction
and credit evaluation of traders are grouped together and stored in blocks. They are logged and
stamped with information about the time, amount and participants as if a notary were present at every
transaction [10]. Based on blockchain, the system provides a transparent and accountable platform to
supervise and mange traders in the food supply chain. It meets the requirements of traders for a better
supply chain collaboration and supervised environment.

The challenges and contributions of this paper can be summarized in the following three points:

1) This paper implements a credit evaluation system that adopts blockchain technology to strengthen
the supervision and management of traders in food supply chain. The whole flow of processing
logic about the system is given by smart contracts which are written by “chaincode” [11].

Complexities in food supply chains and information asymmetry between traders lead to regulators
hardly being able to gather reliable and authentic information to supervise and manage traders.
Blockchain technology provides a feasible approach to solve these problems in the supply chain.
Many studies have piloted the use of blockchain to trace items in supply chains [12]. However,
blockchain technology is still in an early phase in the food supply chain, where researchers are much
more focused on the traceability of food [13] rather than supervision and management of traders.
Faced with this challenge, the system presented in this paper focuses on the regulation process in food
supply chains. First, traders need evaluate trading partners by smart contracts after they conduct
a transaction. Then the transaction information, especially credit evaluation information about traders
are gathered by the system. The gathered credit evaluations are input into a trained LSTM model for
analysis and processing. Finally the system generates credit evaluation results and feeds back the
results to regulators for supervision and management.

2) The system applies Hyperledger blockchain [14] to meet the challenges of the different
authentications and permissions needed for different roles (traders and regulators) in the food
supply chain. It also ensures that traders can be held accountable for the credit evaluation process
while traders’ (or evaluators’) real identities remain anonymous.

The Hyperlydger Fabric blockchain is a consortium blockchain that comprises peer to peer
networks. On the one hand, the permitted P2P network structure ensures that traders’ identities won’t
be exposed and the contents of their comments won’t be leaked. Thus, that is more suitable for traders
to effectively implement credit evaluations. Regulators can also obtain more reliable information
to implement the supervision. On the other hand, traders and regulators on Hyperledger Fabric
platform can acquire different authorizations and permissions issued by a Certificate Authority (CA).
That means regulators can conveniently acquire the highest authority to supervise and manage traders
in the food supply chain.
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3) The merge system is responsible for combining blockchain technology and a deep learning model
LSTM [15]. It adopts a trained LSTM model to directly analyze and process the gathered credit
evaluation text about traders. Finally the credit evaluation results of traders are generated and
the results fed back to regulators.

It is difficult for existing credit evaluation systems [5,16] to really play a regulatory role for the
multiple stakeholders in the food supply chain. These system are more suitable for e-trading between
two types of stakeholders (customers and sellers) rather than multiple traders. The system in the paper
relies on the LSTM deep learning method to analyze the sentiments of credit evaluation text directly
and generate a credit evaluation result. Compared with most existing methods, LSTM provides a much
higher accuracy rate than SVM and NB in the experiments. The system not only establishes traders’
credibility, but also focuses on the supervision of traders using the credit evaluation results.

This paper is organized as follows: in Section 2, the materials and methods of the system are
illustrated. It introduces the design decision and workflow of the system by adopting blockchain
technology and the LSTM model. Section 3 provides an introduction of the implementation and results
of the system. The paper next focuses on the discussion of the system by introducing the related work
about contribution of other researchers on this topic in Section 4. Section 5 presents the conclusions
and future directions of efforts about the system.

2. Materials and Methods

This section shows the basic architecture of the credit evaluation system (see Figure 1 below) first.
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Figure 1. The architecture of the credit evaluation system.

The system composes of two different types of entities (Traders and Regulators) and consists
of two modules (Module 1 and Module 2) based on the Hyperledger blockchain structure. For the
purpose of understanding the system, the design decisions of systems that adopt the Hyperledger
blockchain as underlying technology and the LSTM method are elaborated in the first subsection.

2.1. System Design Decision

2.1.1. Hyperledger Blockchain

As Figure 1 shows, the system adopts the Hyperledger Fabric 1.0 framework as the underlying
infrastructure. Hyperledger Fabric and Ethereum both are active platforms for distributed ledger
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solutions about blockchain. However these two popular frameworks have very different fields of
application. Table 1 provides a brief summary of the two frameworks.

Table 1. Comparison blockchain platform of Hyperledger Fabric and Ethereum.

Characteristic Hyperledger Fabric Ethereum

Category Consortium blockchain Public blockchain
Description Modular platform Generic platform
Governance Linux Foundation Ethereum developers
Authority Permissioned, private Permissionless, public or private

Smart contracts Chaincode (e.g., Go, Java) Smart contract code (e.g., Solidity)

Compared with Ethereum, Hyperledger blockchain is a popular permissioned blockchain
platform. P2P nodes in the Hyperledger blockchain form a consortium [13,14]. The system based
on Hyperledger blockchain consists of multiple normal nodes representing traders and regulatory
nodes. They acquire different authorizations and permissions issued by a Certificate Authority (CA).
Registered users including traders and regulators generate ECerts using the CA. ECert contains one or
more attribute names and values and specifies user’s name, roles, and passwords. Their authentication
and permission information can be checked using “membersrvc.yaml” which is in the “membersrvc”
folder. As shown in Figure 1, the system divides food supply chain users into two different types
of identities named traders and regulators. To give further explanations, the nodes of traders and
regulators have different features as follows:

Traders. Traders are the set of multi-stakeholders in the food supply chain such as farmers, production
factories, distributors, retailers and consumers. Formally, they are the set of general nodes in
permissioned P2P networks and they are treated equal during transaction. Their primary technical
features are as follows:

• The nodes of traders mainly respond to block generation and credit evaluation generation when
transactions are completed.

• Traders keep the records of transactions related to themselves.

Regulators. Regulators are the set of regulatory nodes. In permissioned P2P networks the set of
regulator’s features are as follows:

• The nodes of regulators perform checking at regular intervals (for example, a week) from all
nodes of traders to supervise and mange traders in the food supply chain.

• Regulators have the highest authority to manage the authentication, authorization and monitoring
of traders. They can access and manage all information of traders in a blockchain.

• Regulators maintain the complete records of traders including the transaction and credit
evaluation information.

The system based on blockchain has a lot of advantages compared to traditional systems.
For example, the properties of distribution, detrusting, security, transparency and traceability have
been used in the research of the food chain and food traceability. The rest of this subsection can be
summarized and the feasibility studies about the credit evaluation system adopting Hyperledger
blockchain pointed out:

1) Transparency and tamper-resistance. Blockchain consists of a continuously growing list of records,
called blocks, which are linked and secured using cryptography. Each block typically contains
a hash pointer as a link to a previous block, a timestamp and transaction data. All information
of traders or transactions are stored in blocks. They are public to regulators and can hardly be
modified. This can effectively avoid the risk arising from “information asymmetry” [17] in the
supply chain.
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2) Accountability and privacy. The credit evaluation system based on blockchain provides a reliable
platform to collect information of transaction and credit evaluation. Traders’ identities are
anonymous during the evaluation process. Thus they don’t have to worry about their identities
being exposed or the contents of their comments leaked, which enhances users’ confidence.
On the other hand, traders on the blockchain can be held accountable for their actions in the
process of transaction or credit evaluation because of the transparent and tamper-resistant
information provided.

3) Authorization and permission. The features of the consortium blockchain Hyperledger can
provide different access control permissions via the CA. Regulators acquire higher authority
than ordinary nodes of traders in the system based on Hyperledger blockchain, making it more
suitable for regulators to supervise and manage traders in the food supply chain.

4) Chaincode. Hyperledger Fabric provides the logic of the system by smart contracts. Smart contracts
run on the blockchain-based virtual machine and can be automatically executed by calling “chaincode”.
Chaincode provides a variety of functions to invoke, update or query the data stored in the ledger.
It can more quickly meet the needs of users and it is more effective for integrating regulators’ work
into existing systems with a minimum of cost. In the system, traders complete the transaction and
credit evaluation by chaincode. Regulators also call chaincode to query a transaction or gather the
credit evaluation text of traders.

From the foregoing, Hyperledger Fabric as one of the most famous consortium blockchains
provides a more flexible and easily used framework for the system to be developed. The above features
are beneficial to establish the technological environment of a reliable credit evaluation system in the
food industry.

2.1.2. LSTM Method for Credit Evaluation

Sentiment analysis has long been a hot topic in natural language processing [18]. It can identify,
extract and organize sentiments from generated texts such as product reviews. Many remarkable
methods (SVM and NB) have been proposed for sentiment analysis. With the development of deep
learning, many deep learning approaches (RNN and CNN) have emerged as powerful computational
models improve the state-of-the-art in many sentiment analysis tasks [19]. The Long Short Term
Memory network is a special kind of neural network architecture published in 1997 by Hochreiter and
Schmidhuber, and later refined and popularized by many people in subsequent work. Compared with
SVM and NB in the experiments, adopting the LSTM model to implement the sentiment classification
of credit evaluation text acquires a much higher accuracy rate [18]. The next paragraphs describe
existing problems of original credit evaluation systems and this paper presents the advantages by
applying LSTM to solve these existing problems.

At present, major electronic trading platforms like “taobao.com” and “eachnet.com” have
established credit evaluation systems to help regulators establish traders’ credibility [20].
These e-trading platform may be divide customers’ evaluations into two classes: “praise” and “bad
review”, each corresponding to an integral evaluation. They use the accumulated credit rating model
to add or subtract the original credit scores directly. For example, evaluation of successful transactions
each corresponding to a credit score, specifically for the “praise” plus one point and “bad review”
a one point deduction. The model is as follows:

Rn = Rn−1 + rn, rn ∈ {0, 1} (1)

In Equation (1), Rn and Rn−1 respectively represent the credit score after the committed
transactions numbered n and n−1, {0, 1} denotes the participants’ attitude {“negative”, “positive”}.
Meanwhile, 1 is added or subtracted from the original credit scores. However, this model is too simple
in that can’t take into consideration the credit rating of evaluators, the amount of transactions and so
on. On this basis, “paipai.com” sets a weight for the amount of transactions It takes the product of the
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traders’ credit scores and the weight of the effective transactions’ amount as the final credit value for
traders. The new evaluation model can be expressed as follows:

Rn = ∑n
i=1 Ri ×Wi, Ri ∈ {0, 1}; i, Wi ∈ {0, +∞} (2)

In Equation (2), Rn and Ri represent the credit score after the committed transactions number
of n and i, respectively, Wi indicates the weight of the transaction Ni’s amount. The weight of
the transaction’s amount is determined in advance by the electronic trading platform. The greater
the amount of transactions, the more objective and authentic the evaluations and the higher of the
transactions’ weight. However, this model does not take into account the credit rating of traders.
The credit evaluation is still not scientific.

In these exiting credit evaluation systems, customers directly give a credit evaluation of “praise”
or “bad review” to sellers when the transaction is committed. Thus, these credit evaluation system just
needs to focus on which class of e credit evaluation is given by costumers, then the class corresponds
to a credit score. They don’t focus on the sentiment of the evaluation text. Meanwhile, there are only
two types of stakeholders in the evaluation process. It is unilateral process for evaluating that sellers
don’t have a chance to give credit evaluations to customers. It shows that existing systems are more
focused on how to establish sellers’ credibility, making it difficult to play a regulatory role in the issue
of trustworthy transactions and “information asymmetry” between “multi-stakeholders” in the food
supply chain.

For these problems, this paper relies on LSTM to implement the evaluation process by analyzing
the sentiment of credit evaluation texts (e.g., “The fruit doesn’t look very fresh” or “The logistics
service is a little bit slower”) directly. The model focuses on supervision and management of traders
by analyzing the credit evaluation text and generating at last a credit evaluation result. A two-way
credit evaluation standard is adopted between traders. The system gathers traders’ transaction and
credit evaluation information based on blockchain. Suppose a trader t ∈ T has a credit evaluation from
a trading partner during the transactions e ∈ E. The model represents the credit evaluation text as
a document d with n sentences {S1, S2, · · · , Sn}, where the ith sentence Si consists of m words such as
{wi

1, wi
2, · · · , wi

m}.
The LSTM network is a type of recurrent neural network used in deep learning where very large

architectures can be successfully trained. The architecture of LSTM network is shown in Figure 2.
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An LSTM layer is composed of a number of “cells” that are explicitly designed to store information
for a certain period of time. LSTM has many variations. In a simple LSTM one cell consists of three
gates (input, forget, output). The mathematical theories of the LSTM cell in hidden layer are as follows:

iij
fi
j

oi
j

=
 σ

σ

σ

(W·[hi
j−1, wi

j] + b) (3)

Each cell’s stored value is “guarded” by three gates that permit or deny modification of the cell’s
value. iij is the feature matrix after output gate treatment. The “input” gate turns on when the input to
the LSTM layer should influence the cell’s value. fi

j is the feature matrix after the forget gate selection.
The “forget” gate and it turns on when the cell’s stored value should be reset. oi

j is the output feature
matrix. The “output” gate and it turns on when the cell’s stored value should propagate to the next
layer. In above formula, gates use a sigmoid activation, σ is the sigmoid function, W is the weight
matrix of each gate, b is the offset of each gate. The parameters W and b need to be trained:

gi
j = tanh (W·[hi

j−1, wi
j] + b) (4)

In Equation (4), the input and cell state are often transformed with tanh. tanh is the hyperbolic
tangent function. � represents the multiplication of matrix elements:

ci
j = fi

j�ci
j−1 + iij� gi

j (5)

In this formula, the currently input cell state is determined by the previous and current feature
matrix input. For example, when the input word wi

j is given, the current cell state ci
j and hidden state

hj can be updated with the previous cell state ci
j−1 and hidden state hi

j−1.

hi
j = oi

j�tanh(ci
j) (6)

In Equation (6), hi
j is the final output of the LSTM. It is determined by the oi

j of the output gate
and the feature matrix input of the cell state at the current time calculated in Equation (5).

In above formula, [hi
1, hi

2, · · · , hi
m] stands for an average pooling layer to obtain the sentence

representation of the credit evaluation text si. When the input sentence of credit evaluation text Si

is given, the sentence embeddings [s1, s2, · · · , sn] into LSTM and then we can obtain the document
representation d through an average pooling layer just like the example of Equation (5).

LSTM supports time steps and it provides a way to address the time-series prediction problem.
LSTM attaches great importance to content-based features rather than local text information. It is
suitable for credit evaluation systems to predict the ratings of credit evaluations according to their text
information directly. At present, the system just outputs the credit evaluation results in two ratings
(“positive” and “negative”). For example, the results of “positive” means the trader obtains high
praise and he is worthy of trust in the food supply chain, while a “negative” result means the trader
has obtained many bad reviews and complaints in the food supply chain so he needs to improve the
service quality.

2.2. Workflow of the Credit Evaluation System

Based on the two types of entities (traders and regulators) mentioned above, the credit evaluation
system combining Hyperledger blockchain and LSTM consists of two specific modules as follows:

Module 1. Collect transaction and credit evaluation information. This module is designed
primarily for the roles of traders. Traders can call the smart contracts which are written by
“chaincode” to conduct the transactions through an interface of the application. When transaction is
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completed, traders evaluate the trading partner subjectively by smart contracts. During this process,
the information of transaction and credit evaluation about the traders are all collected into the ledger.

Module 2. Implement the process of credit evaluation for regulation. Module 2 implements the
credit evaluation and it is designed primarily for the roles of regulators. The credit evaluation
texts about traders are created and stored inside the ledger by Module 1 during the trading process.
Then regulators monitor periodically checking these information from ledgers. Regulators can directly
access to the ledgers to search and gather the information of the traders by smart contracts on the
blockchain. When regulators obtain the credit information text about traders, the module will utilise
the trained LSTM model to analyze and process the sentiment of the gathered text. Finally, the system
generates the credit evaluation result (“positive” or “negative”) by LSTM and feeds back the result
to regulators. These pieces of information such as credit evaluation results during the process of
evaluation are all stored into the ledger.

In the paper, credit evaluation-classification experiments with the binary-class LSTMs are
performed and the model classifies any given credit evaluation results into the level “positive” and
“negative”. “positive” and “negative” respectively represent the credit evaluation of “praise” and “bad
review”. The regulatory agency in the food supply chain can verify and take corresponding measures
in a timely manner depending on the credit evaluation result. Finally, this section presents a simple
example to illustrate the work flow of the system in the following steps. Traders A and B are the subject
of transaction in food supply chain:

1) Traders A and B complete a food trading transaction such as a sale of vegetables and fruit based
on blockchain.

2) Trader B gives a credit evaluation to his trading partner A based on his satisfaction with his
purchases, logistics service quality and food quality during the trade.

3) Collect the credit evaluation text of A at regular intervals (e.g., a week). These credit evaluation
texts may be given by B, C and so on.

4) Input the gathered credit evaluation text into the trained LSTM model to analyze the sentiments
of these texts.

5) The LSTM model outputs a credit evaluation result as “positive” or “negative”. For example,
if A received more reviews like “The fruit doesn’t look very fresh”, “Its service is awful” or
“The logistics service is a little bit slower”, then these texts are input into the trained LSTM model
and the model will output a “negative” result for A.

6) The same steps 2 to 5 are performed by the other trader B.
7) Regulators periodically monitor and check traders’ credit evaluation results. They can verify the

results and take corresponding measures in time.

3. Results

As shown in Figure 3, blockchain decomposes into five separate layers (actuator layer is ignored
in Hyperledger). The blue boxes in the graphic are the three layers we mainly pay attention to.
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3.1. The Interface of the Integrated System and the Experimental Environment

To facilitate accessibility, the paper implements the prototype as a web application that can be
accessed via an URI (Uniform Resource Identifier) from browser. Users can access the URI by manually
running a local Hyperledger Fabric client.

As shown in the system architecture, the system consists of two basic components: Module 1:
Collect information of transaction and credit evaluation and Module 2: Implement the process of
credit evaluation for regulation. Figure 4 shows the detailed design of the integrated system for
credit evaluation. The red box in Figure 4 below shows the functional interface of Module 1. It is
mainly designed for traders. It provides the functions for traders to implement the food transaction
(see Figure 5) and credit evaluation (see Figure 6) on the blockchain. The yellow box shows the interface
of Module 2. It provides the functions for regulators to query traders’ information of transaction or
credit evaluation (see Figure 7).Int. J. Environ. Res. Public Health 2018, 15, x 9 of 20 
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When traders complete the functions of Module 1, all information about the transaction and credit
evaluation are grouped together in “blocks”. Blocks are some of the essential parts of the blockchain.
As shown in the orange box in the figure, all information are logged and stamped with a timestamp
and block hash. These technologies guarantee the data’s integrity and safeguard that it could not be
tampered with. Thus all traders’ information can be stored in a secure and tamper-resistant manner
on the blockchain. Figure 7 shows a snapshot of the web application for regulators to query trader’s
(e.g., Trader A) detailed information about the transaction and credit evaluation.
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All components and functions of the system above were developed in the Hyperledger Fabric
version 1.0 environment. All the experiments about LSTM that we report in this paper were performed
by Python 3.5. It adopts Keras as the structure. Keras is a deep learning library for Python,
and it provides a large number of current popular deep learning models. More details of the basic
environment are given in Table 2.
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Table 2. Experiment environment.

Environment Details

PC Intel (R) Xeon (R) CPU 2.40 GHz (2 Processors), 12.0 GByte Memory
OS Ubuntu 16.04 Desktop

Language go 1.9.2 Linux/AMD64, jquery-3.1.1, bootstrap-3.3.7, Python 3.5
Containerization Docker 17.10.0
Hash Function SHA-256
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3.2. The Implementation of Smart Contracts

This paper has already mentioned the concepts of smart contracts and “chaincode” in the
Hyperledger blockchain. Figure 8 shows the general flow of the smart contracts in Module 1 and
Module 2. In the figure, chaincode is used to express the logic of the system flow. It describes the users’
need and provides code showing how the scenario was tackled, based on the architecture of the credit
evaluation system. Chaincode is deployed in the Docker which is the container of the Hyperledger
blockchain to perform the smart contracts. Once the chaincode is deployed, it obtains the unique
address which users can use to interact with. Then its functions can be triggered by transactions sent
to the smart contract address. Chaincode as a Turing-complete language is written flexibly in Go,
Javascript and Java language. Considering that the majority of chaincode are written in Go, in this
article we are only focusing on that one. Some snippets of chaincode are illustrated with the following
example and these code implement the major functions of system. First of all, the chaincode needs to be
initialized of the smart contracts both in Module 1 and Module 2. It also implements the initialization
of two traders’ accounts (see Example 1).

Example 1. A snippet of chaincode presenting the initialization process.
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In Example 1, the variables of A and B are trader entities in the food supply chain. The variables
Aval and Bval are the assets that A and B hold, respectively. Next, the transaction and credit evaluation
information of the traders needs to be collected by Module 1 in Figure 1. It includes a smart contract in
Module 1 and highlights the implementation by chaincode. Traders A and B complete the transaction
by calling the internal function CompleteTransaction() of chaincode (see Example 3). When transaction
is completed, traders B give credit evaluation to A by calling the function CompleteEvaluation()
(see Example 4). As shown in Example 2, the function Invoke() encapsulates the functionality of
CompleteTransaction() and CompleteEvaluation().

Example 2. Snippet of chaincode providing a simple interface for use to implement the
functions of Module 1.
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Example 3. The following snippet of chaincode presenting the transaction process between
traders A and B. The variable X is the value of the transaction. In the transaction, A transfers
assets equivalent to X units to B.

Int. J. Environ. Res. Public Health 2018, 15, x 12 of 20 

 

Example 3. The following snippet of chaincode presenting the transaction process between traders A 
and B. The variable X is the value of the transaction. In the transaction, A transfers assets equivalent 
to X units to B. 

 

Example 4. Snippet of chaincode presenting the credit evaluation process when a transaction is 
completed. 

 

The credit system realizes the chaincode above mainly for gathering the credit evaluations from 
traders. Then the system implements the credit evaluation by Module 2 in Figure 1. It shows the process 
with two steps: (a) Acquire the gathered credit evaluation text by the function QueryEvaluation() of 
chaincode (see Example 6), (b) Input the gathered credit evaluation text into the trained LSTM model to 
analyze the sentiment of the text (this step will be described in detail in the next subsection). Finally, the 
output of the model shows the result of the traders’ credit evaluation. Regulators can request traders’ 
information by calling the function of Query() in the chaincode (see Example 5). It also contains two 
functions that are implemented by the chaincode of QueryTransaction() (see Example 7) and 
QueryEvaluation(). 

Example 5. Snippet of chaincode providing a simple interface used to implement the functions of 
Module 2. 

 
  

Example 4. Snippet of chaincode presenting the credit evaluation process when a transaction
is completed.

Int. J. Environ. Res. Public Health 2018, 15, x 12 of 20 

 

Example 3. The following snippet of chaincode presenting the transaction process between traders A 
and B. The variable X is the value of the transaction. In the transaction, A transfers assets equivalent 
to X units to B. 

 

Example 4. Snippet of chaincode presenting the credit evaluation process when a transaction is 
completed. 

 

The credit system realizes the chaincode above mainly for gathering the credit evaluations from 
traders. Then the system implements the credit evaluation by Module 2 in Figure 1. It shows the process 
with two steps: (a) Acquire the gathered credit evaluation text by the function QueryEvaluation() of 
chaincode (see Example 6), (b) Input the gathered credit evaluation text into the trained LSTM model to 
analyze the sentiment of the text (this step will be described in detail in the next subsection). Finally, the 
output of the model shows the result of the traders’ credit evaluation. Regulators can request traders’ 
information by calling the function of Query() in the chaincode (see Example 5). It also contains two 
functions that are implemented by the chaincode of QueryTransaction() (see Example 7) and 
QueryEvaluation(). 

Example 5. Snippet of chaincode providing a simple interface used to implement the functions of 
Module 2. 

 
  

The credit system realizes the chaincode above mainly for gathering the credit evaluations from
traders. Then the system implements the credit evaluation by Module 2 in Figure 1. It shows the process



Int. J. Environ. Res. Public Health 2018, 15, 1627 13 of 21

with two steps: (a) Acquire the gathered credit evaluation text by the function QueryEvaluation()
of chaincode (see Example 6), (b) Input the gathered credit evaluation text into the trained LSTM
model to analyze the sentiment of the text (this step will be described in detail in the next subsection).
Finally, the output of the model shows the result of the traders’ credit evaluation. Regulators can
request traders’ information by calling the function of Query() in the chaincode (see Example 5). It also
contains two functions that are implemented by the chaincode of QueryTransaction() (see Example 7)
and QueryEvaluation().

Example 5. Snippet of chaincode providing a simple interface used to implement the
functions of Module 2.
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Example 6. The following snippet of chaincode realizes the function of querying the
transaction information of Trader A. TraderId is the unique identifier of the trader.
The function queries the information of corresponding trader by accepting the variable
of TraderId.
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3.3. The Implementation of LSTM Model

The general flowchart of sentiment analysis process of credit evaluation text is illustrated in
Figure 9. In this section, experiments are designed according to this flowchart to verify the performance
of the sentiment analysis of Chinese credit evaluation text by the LSTM network.
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3.3.1. Experimental Dataset

For the purpose of the experiment, reviews of a Chinese text dataset (https://spaces.ac.cn/
archives/3414) that were collected and shared by the nternet user named Jianlin Su are adopted.
The crawler code is written in Python and the amount of the review corpus including the field “food”
is more than 20,000 reviews.

In the experimental corpus, the review corpus may contain multiple features, such as in “The food
stays fresh, and I like it very much, but the logistics service is not good”. In this paper, the experiments
adopts the binary-class LSTM and the model classifies the given credit evaluation results into two levels:
“positive” marked as 1 and “negative” marked as 0. Sentiment polarity of the food’s freshness is marked
as 1, which indicates the traders hold a positive attitude about the food quality. Sentiment polarity of
the logistics service feature is marked as 0, which represents the traders holds a negative attitude about
the logistics service. Then the labeled corpus is randomly divided into training and validation (test)
sets. The training set is used for the model training. The proportion of the quantity of the corpus in
the training and validation set affects the experimental results during the process. In this experiment,
we select “positive” and “negative” reviews with the same number from experiment review corpus.
And we construct a training dataset and validation dataset of 7:3 based on the selected reviews data.
At this point the pre-processing of the reviews dataset is complete.

Next, as shown in Figure 9, word segmentation for text of training dataset is performed using the
open source word segmentation tool NLPIR-ICTCLAS2016, written by Zhang of the Chinese Academy of
Sciences (Institute of Computing Technology, Chinese lexical analysis system, http://ictclas.nlpir.org/).
The vectorization of the corpus is implemented by training word vectors through Google’s open source
word2vec. After training and testing with the specimens, the model is able to analyze the credit evaluation
collected by Module 1, and finally provides an objective evaluation to the traders.

3.3.2. Evaluation Metrics

The model is tested using the validation dataset to verify the validation of the model and evaluate
its performance. The results of sentiment analysis of the credit evaluation are evaluated by the
experiment’s accuracy value, F1-score, Area Under the Curve (AUC) and loss.

https://spaces.ac.cn/archives/3414
https://spaces.ac.cn/archives/3414
http://ictclas.nlpir.org/
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Accuracy. Accuracy is the most intuitive performance measure. This metrics is used to evaluate how
accurate the model’s prediction is compared to the true data.

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

F1-score. F1 score is the harmonic average of the precision and recall (in Equations (8) and (9)),
where an F1 score reaches its best value at 1 and worst at 0. It takes both false positives and false
negatives into account and F1 is usually more useful than accuracy:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1− Score =
2× (Precision× Recall)

Precision + Recall
(10)

In above formula, True Positives (TP) are the correctly predicted positive values which means
that the value of actual class is yes and the value of predicted class is also yes. True Negatives (TN) are
the correctly predicted negative values. False Positives (FP) mean that actual class is no and predicted
class is yes. False Negatives (FN) mean that actual class is yes but predicted class in no.

AUC. AUC stands for area under the ROC curve. Receiver Operating Characteristic (ROC) curves
typically feature true positive rate on the Y axis, and false positive rate on the X axis. ROC is
actually slightly non-intuitive, while AUC can intuitively predict over accuracy for binary classification.
The AUC value is equivalent to the probability that a randomly chosen positive example is ranked
higher than a randomly chosen negative example and a higher value is better.

Loss. Training a network is finding the parameters that minimize a loss function (or cost function).
Loss is often used in the training process to find the “best” parameter values for the model
(e.g., weights in neural network). The cost function is the binary cross entropy. For a target G
and a network output O, the binary cross entropy can defined as in Equation (11):

f(G,O) = −(G × log(O) + (1 − G) × log(1 − O)) (11)

Lower loss of the model at test time means experiment has lower prediction error and better
performance. One can acquire the mean loss by feeding the model a batch of inputs.

3.3.3. Evaluation Results of the Experiments

This section presents the results of the four experiments:

Experiment 1. The following experiment tests the accuracy and loss of LSTM model on the corpus of
Chinese text dataset with fixed amounts.

The graph’s horizontal axis in Figure 10 shows the number of epochs to train the model. In this
experiment, the value of epoch is 15. The vertical axis shows the value of accuracy and loss about
training and validation data for every epoch in experiment.
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Experiment 2. The following experiment shows the fitting results and performance of different value
of the epoch.

The corpus for training the LSTM is selected randomly, which means every time the performance
evaluation result is different. Adjusting epochs with different value is necessary to find better fitting
results and performance. This experiment performs five times and the performance is evaluated by the
loss metric of the experiment. The training and validation trajectory is plotted in Figure 11. It shows
that five experiments’ overall trend is roughly the same, and the curve fitting of test results performs
well when the epoch value is set as 3.
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Experiment 3. This experiment tests the accuracy, loss and F1-score of the results on LSTM model.

In this experiment, the performances of accuracy, loss and F1-score of the LSTM model become
better than before with the increase of corpus and we set the epoch value as 3. The specific trend is
shown in Figure 12: the graph’s horizontal axis shows the scale of both “positive” or “negative” corpus.
The vertical axis shows the value of accuracy, loss and F1-score with the increase of data size. It shows
that data accuracy and F1-score consistently increase with the scale of the corpus. Then it holds nearby
a constant value of 90%.
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Experiment 4. The final experiment results are compared the SVM model, NB model and LSTM model
on the same Chinese text dataset as shown in Figure 13.
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According to the data comparison in figure, the performance of the sentiment analysis of the
LSTM model on the Chinese text dataset is greatly enhanced, compared with the traditional learning
models SVM and NB.

In fact, many scholars have participated in completed experiments and published professional
papers on the performance comparison different algorithms [21,22] about sentiment analysis.
Compared to the SVM and NB models’ high computational complexity for classification the use
of the LSTM networks for sentiment analysis of text features does not require a priori knowledge,
such as syntactic parsing or a sentiment lexicon. LSTM can be more effective to learn the feature
space and to capture temporal dependencies based on the recurrent neural network. LSTM model has
long-term memory of the context of credit evaluation texts, which makes up for the disadvantage of
the traditional sentiment analysis of neglecting credit evaluation feature text context, which makes the
judgment of emotional tendency on credit evaluation features more accurate.

In further research, we will continue exploring the method of more exact and effective multiple
classifications. Then the credit evaluations can be categorized into several grades such as grade 1,
grade 0 and grade −1. For example, grade 1 represents that “The trader obtains high praise and he is
worthy of trust in the food supply chain. The trader provides a perfect service in the process of trading
and the food provided by the trader has good good-quality.”; grade 0 means that “The service quality
of the trader is just common level and it is to be improved”; grade −1 represents that “The trader
obtains many bad reviews and complaints in the food supply chain. The trader usually offers slow
and rude service and he needs to improve the service quality.”
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4. Discussion

The purpose of this section is to provide a brief overview of existing studies of blockchain
technology and mainly focus on the studies which apply the blockchain technology in the food
area. Then the credit evaluation system based on blockchain proposed in this paper is considered in
comparison with the work of existing credit evaluation systems.

With the rapid development of computer technology, network technology and information
technology, electronic commerce plays a more and more important role in modern people’s work
and lives, and more and more traders prefer to make transactions on line. However, information
asymmetry [4,17] between traders has led to a rapid increase of the credit risk of traders. With the
higher demand for product quality and transparency in on-line transactions, credibility systems were
created by the desires to effectively ensure the quality of transaction products. This is especially
important in the area of food. Food is vital to people’s lives and food safety has always been valued by
all sectors of society [1,2]. Regulators have realized that tackling modern technologies to build a credit
evaluation system between traders is vital to promote food security during the transactions.

Many food safety assurance systems have been implemented in China to satisfy consumers’
demands for higher quality in the food market [23]. For example, foundation of China’s food
safety assurance system named “Food Quality Safety Market Access System (QS System, China)” is
implemented by AQSIQ in a compulsive way; Green Food certification, Organic food certification,
China’s Brand-name Product, ISO quality system and other systems are implemented by producers
in a voluntary way. However, they just point out the standards of food detection while they do not
participate in the regulation process.

As mentioned above, in recent years, credit evaluation systems in the food area have been
extensively studied by researchers. These credit evaluation systems can not only provide consumers
with correct information, eliminate worries, and ensure their life and health, but also provide
a decision-making reference for government departments or related regulators to manage food safety.
For example, a quality credit classification evaluation index system of food enterprises [16] was put
forward in 2015. It is composed of four key essentials: voluntary quality credit, ability, performance,
and quality sustainability. It proposes a new quality credit evaluation methodology for food enterprises.
Then researchers considered the credit risk in on-line transactions and proposed a system [5] to
standardize the processes of online supply chain using big data and blockchain technology. This work
provides a most vital step towards the system proposed in this paper.

As one of the best-known applications of blockchain, the crypto-currency Bitcoin was proposed
in 2009 in the famous white paper named “Bitcoin: A Peer-to-Peer Electronic Cash System” by
Nakamoto, which is speculated to be a fake name [24]. Nakamoto also proposed the blockchain
protocols as a public, immutable and ordered ledger of records by combining a distributed database
comprised of chronologically ordered and cryptographically interconnected blocks of transactions
with a decentralized consensus mechanism and cryptographic security measures [10,11].

Before blockchain applications appeared, blockchain was regarded as the underlying technique
support and the fundament of Bitcoin system. After that, many researchers abroad have began to
analyse and mine the knowledge hidden behind crypto-currencies, such as Ethereum, Ripple [25],
Litecoin [26] and so on. Additionally, several alternative blockchains have been proposed, such as
sidechains [27]. These are all considered to be Blockchain 1.0 technologies. In combination with
smart contracts, the technology has outgrown its origin in crypto-currencies. Then blockchain is
known as a distributed ledger and the new technology of smart contracts [28,29] are considered
Blockchain 2.0. In recent years, the idea of Blockchain 3.0 has been proposed to denote applications of
the distributed ledger technologies. At first, it focused on the financial sector, such as the insurance
claim process, the management of assets and the trading platform of E-commerce with its potential for
disintermediation. Then, was applied to a variety of nonfinancial sectors like food.

According to a McKinsey study, blockchain is the core technology that now has the most potential
to trigger the fifth wave of disruptive revolution after steam engines, electricity, information and
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Internet technology. With the gradual maturity of blockchain technology, many papers have proposed
the application of blockchain to food [30]. Several companies and organizations are also exploring ways
to use this shared, immutable ledger technology known as blockchain to “upgrade” the traditional
food system. One of the most striking happenings occurred in Aug 2017 IBM [31] announced that
it is working with a group of global food giants including Nestle and Walmart [8,32] to bring the
benefit of blockchains to the food supply chain. Then they launched the blockchain food safety alliance
in China with Fortune 500’s JD.com and Tsinghua University for the implementation of blockchain
for tracking food in the supply chain. These applications [6,7,12] optimize business transactions and
trading relationships with robustly secure business networks on blockchain both at scale and globally
and aim to improve the confidence in food safety about the food trading. However, these researchers
are more focused on the traceability of the traditional food supply chain [9,13] rather than supervision
and management of traders in food supply chain. They are mainly devoted to promise the traceable
and transparency for global food production. The exiting credit risk system proposed by Deng et al. [5]
is applied to the finance supply chain and it is more suitable for trading between two parties [20].
The situation of multiple stakeholders (more parties) in the supply chain is not well considered either.

Different from these previous works, this paper aims at the problems existing in the
supervision and management in the food supply chain especially “information asymmetry” [4,17] and
“multple stakeholders” [3]. It provides an innovative system named “credit evaluation system based
on blockchain for multiple stakeholders in the food supply chain” to implement the combination of
blockchain technology and the food supply chain. Blockchain technology as a distributed ledger
technology offers a decentralized, untrustworthy, accountable and transparent architecture that
enhances the effectiveness of the regulation on the supply chain.

5. Conclusions

This paper provides a credit evaluation system based on blockchain technology and proves that
the system proposed is effective for the food safety field. Blockchain ensures the authenticity of the
information of transaction and credit evaluation about traders in the food supply chain. It resolves the
situation with “asymmetric information” between “multiple stakeholders” because traders are held
accountable for their actions during trading on the blockchain. The system also combines blockchain
technology and the deep learning network LSTM to collect and analyze the credit evaluations of
traders in the food supply chain. It strengthens the effectiveness of the supervision and management by
generating and feeding back the credit evaluation result to regulators. Finally the goal of strengthening
the food safeguards in the food supply chain is achieved.

By validating and analyzing the precision of the credit evaluation system by different experiments,
we examine the performance of the evaluation metrics in the different models and with different
indicators. The experimental results show that the credit evaluation system based on blockchain
is feasible and efficacious on the Chinese text dataset about reviews by adopting the LSTM model.
However, there are several limitations in this article. Firstly, we simply consider the emotion-tags
of credit evaluation text into two level “positive” and “negative”. Thus, the method of more exact
and effective multiple classifications of multi-class emotion-tags needs to be explored. Secondly,
from the perspective of the dataset, the number of reviews in the text dataset in Chinese is not enough,
which limits the representation of models to precisely analyze the sentiment of the credit evaluation.
Future researchers need to train the model with more review text datasets. The performance of
the experiments on an English dataset which is distinct from the Chinese dataset also needs to be
considered in the future. Thirdly, there are still several major weaknesses in blockchain. For example,
each node on the blockchain network needs to store the entire history of the blockchain and the
growing blockchain size then becomes a growing concern issue. Leng et al. proposed a double
chain architecture based on blockchain technology [33] to enhance the efficiency of blockchain in the
agricultural supply chain, while because of blockchain’s relative novelty, this technology still has
a long way to go.
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