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Abstract: Widely scattered urban villages (UVs) and increasingly serious urban heat islands
(UHIs) are common urban problems in highly urbanized regions, especially in the developing
countries. However, the influences of UVs on UHIs remain little understood. In this study, different
methodologies are performed to retrieve land surface temperature (LST) from thermal bands and
the nearest object-oriented method with spectral, texture, shape metrics using ZY-3 high-resolution
satellite imagery, and road network data are used to extract UVs and other land-use types in the
Guangzhou–Foshan (GF) core areas of Pearl River Delta (PRD). Moreover, the relationship between
LST and land-use types is then analyzed on the multiple scales. The results show that five land-use
types (vegetation, normal construction land (NCL), UVs, water, and unused land) extracted by the
object-oriented method were qualified for subsequent analysis because of satisfactory overall accuracy
(0.887) and the Kappa coefficient (0.863). In the GF core areas presenting the most outstanding UHI
effect across the PRD region, about 60.5% of the total area is covered by the impervious surfaces,
including NCL (50.4%) and UVs (10.1%). The average LST of UVs was 1.89–2.97 ◦C lower than
that of NCL. According to the average contribution index of thermal effect and the Pearson’s
correlation coefficients, UVs present a relatively lower contribution to UHI and a weaker warming
effect than NCL, but possess a higher contribution to UHI and a stronger warming effect than other
land-use types, resulting in some slightly lower LST-valleys in the UVs adjacent to the NCL and
distinct LST-peaks of UVs close to vegetation and water on the surface temperature profile lines.
This work increases our understanding of the relationship between increasingly serious UHIs and
widely distributed UVs, and would be valuable for local authorities to monitor and improve urban
environment in metropolitan regions.
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1. Introduction

In recent years, rapid urbanization leads to temperature rise in cities all around the world,
forming an urban heat island (UHI). In addition to thermal discomfort, urbanization in the developing
world often leads to the problem of informal settlements (e.g., urban villages (UVs) and slums) [1–4].
However, the relationships between these informal urban settlements and abnormal urban thermal
environment remain little understood.

Dramatic transformations and reconstruction of urban space were induced by the living and
production demands of ever increasing population during the rapid urbanization. A large number of
rural villages on edges of cities can become engulfed, leaving the rural settlements intact and scattered
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throughout the urban area [2,5–8]. The development of UVs is neither authorized nor scientifically
planned. As a result, UVs are commonly featured by small and dense substandard buildings,
absent vegetation coverage, poor sanitary conditions, overcrowded population, and environment
pollution [9,10], which attract increasing attention from local urban planners and policymakers who
concentrate on the urban renewal and better living environment.

The UHIs are defined by the temperature differences between urban areas and suburban/rural
areas [11–15]. Urbanization leads to the transformation of natural landscapes, such as vegetation, water
bodies, and agrarian lands, into impervious surfaces, such as construction land. This transformation
reduces vegetation evapotranspiration, increases solar radiation absorption, influences the local and
regional climate, and gives rise to the UHI [16]. The UHI can be evaluated with air and surface
temperatures. The studies of UHI based on air temperatures were mainly to evaluate the intensity of
heat islands [17] and simulate the urban temperatures using the Weather Research and Forecasting
model [18,19] or Met office Unified model [20]. However, air temperature data are obtained from
meteorological stations, and their sparse distribution makes a spatially continuous analysis difficult [21].
Therefore, numerous studies of UHI have been mainly analyzed based on land surface temperature
(LST), which can be derived from thermal infrared bands from Landsat [22–24], Moderate Resolution
Imaging Spectroradiometer (MODIS) [25] or Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) [26].

The relationship between LST and land use/land cover (LULC) has been a recent research hotspot,
which can provide a scientific basis for urban planning and the regulation of regional environment.
Numerous studies have shown that the spatiotemporal patterns of UHIs were influenced to various
degrees by different land-use types [22,27,28]. Among them, the construction land makes the largest
contribution to the UHI effect, while forest land, farmland, parks, and water bodies tend to mitigate
the UHI effect [29–31]. However, UVs are seldom considered as a separate category from construction
land to quantitatively analyze the effect of UVs on UHIs. The main reason is that the mapping of
UVs is difficult indeed because unplanned development leads to complex spectral and spatiotemporal
patterns [10]. Recently, a few studies of informal settlements in developing countries have used
high-resolution remotely sensed data to detect it. Hofmann et al. [8] and Rhinane et al. [32] used
an object-oriented approach to detect informal settlements and the precision of the classification was
satisfactory. Owen and Wong [33] proposed to detect informal settlements with spectral, texture,
geomorphology and road accessibility metrics, and indicated that roads and texture play a key role in
depicting the differences between informal and formal settlements.

In this study, we perform to detect UVs based on the object-oriented classification method with
spectral, texture, shape metrics using ZY-3 high-resolution remotely sensed imagery and road data.
Moreover, we investigate the spatiotemporal patterns of UHIs in the core areas of Guangzhou–Foshan
(GF) metropolitan area in the Pearl River Delta (PRD) region, using LST data retrieved from Landsat
thermal bands, and explore the contribution of UVs to the UHI effect on the multiple scales. This study
would provide support for dynamically monitoring the ecological effect of UVs, and preventing some
UVs-related public health risk and the regulation of regional environment.

2. Study Areas and Data

The PRD, with the GF metropolitan area as the central region, located in Southern China
(21◦27′–23◦56′ N, 111◦59′–115◦26′ E), covers a total area of 44,700 square kilometers (Figure 1). It has
a marine subtropical monsoon climate, an annual average temperature of 20–22 ◦C, and an annual
rainfall of 1720 mm, with rain and higher temperatures occurring during the same summer period.
In 2017, the gross domestic product of the PRD region reached one trillion dollars, and the permanent
resident population reached 59.98 million at the end of that year [34]. The PRD, in particular the GF
region, has a large number of UVs during the rapid urbanization over the past decades. For example,
Guangzhou City has 138 UVs, while Shenzhen has more than 1000, with 200 within the Special
Economic Zone [35].
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Figure 1. Study areas and satellite data coverage of the Guangzhou-Foshan (GF) in China and locations
of profile lines. The data covered consist of the following satellite images (large to small): Landsat 8
Operational Land Imager (OLI) (RGB 321), ZY 3 (RGB 432).

Table 1 outlines the data employed for this study. Before retrieving LST, radiation calibration was
performed on the MODIS data, along with geometric correction and cropping of the imagery. For the
Landsat 5/8 data (Appendix A), radiometric calibration and Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) atmospheric correction were performed. We used ZY-3 satellite data
to obtain land-use type data including that of the UVs in the core areas of GF. This data set includes
multispectral and panchromatic images with spatial resolutions of 5.8 m and 2.1 m, respectively.
Prior to extraction, we performed geometric corrections and orthorectifications, as well as fusion
processing of multispectral and panchromatic images by Pan Sharpening. In addition, road data from
Open Street Map (OSM) were used as ancillary data to extract land-use types.

Table 1. Overview of the multitemporal data.

Data Date Resolution Source Purpose

MOD021KM
MOD11A1

22 September 2011

1 km
https://ladsweb.

modaps.eosdis.nasa.
gov/search/

To retrieve LST in the PRD region
and verify the accuracy of LST in

the GF core areas

11 October 2013
18 October 2015
23 October 2017

Landsat-5 or 8

21 September 2011

30 m
http:

//www.gscloud.cn/
To retrieve more detailed LST in the

GF core areas
12 October 2013
18 October 2015
23 October 2017

ZY 3 14 April 2014 5.8 m/2.1 m http://www.cresda.
com/CN/

To extract UVs and other land-use
types in the GF core areas

Road data from
Open Street Map / / http://www.

openstreetmap.org
To serve as auxiliary data for

extracting land use information

3. Methods

As shown in Figure 2, the data-processing procedure involved in this paper mainly includes:
(1) retrieve LST based on MODIS data as well as UHI spatial pattern analysis of the PRD region;
(2) retrieve LST from Landsat-5 thematic mapper (TM) and Landsat-8 thermal infrared sensor (TIRS),
and UHI spatial pattern analysis in typical UHI core areas of PRD; (3) extract UVs and other land-use
types in typical UHI core areas; and (4) analyze contribution difference of UVs and other land-use

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.cresda.com/CN/
http://www.cresda.com/CN/
http://www.openstreetmap.org
http://www.openstreetmap.org
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types to UHIs. Among them, (1) and (2) relate to retrieval of LST using remote sensing images.
We first performed LST retrieval and UHI spatial pattern analysis of the PRD region using remotely
sensed imagery with a spatial resolution of 1 km. We also selected a typical UHI core area of PRD
(i.e., core areas of GF) and performed LST retrieval and UHI spatial pattern analysis using remote
sensing images with a higher spatial resolution (30 m). Then, we extracted land-use type data from
high-resolution remotely sensed imagery for the selected areas (step 3). Finally, we comprehensively
analyzed the influence and contribution of each land-use type in the selected areas, especially UVs,
to the regional UHI. These procedures will be further described below.

Figure 2. Overall flowchart of exploring the distinctive influences of UVs on urban heat islands (UHIs)
(UV: urban village, RF: roofs of factories, CB: conventional buildings).

3.1. Land Surface Temperature Retrieval from Thermal Infrared Data

As mentioned above, this paper discusses two levels of LST retrieval.

(1) LST retrieval in the PRD region. We retrieved LST of the entire PRD region from MODIS thermal
infrared bands with a resolution of 1 km and based on a split window 1 (SW1) algorithm [36]. First,
we extracted the 31st, 32nd, 1st, 2nd, and 19th bands of the PRD region. Second, we employed
the SW1 method to retrieve LST on 22 September 2011, 11 October 2013, 18 October 2015,
and 23 October 2017, respectively. During this process, we adopted estimated brightness
temperature, surface emissivity, and atmospheric transmittance. On this basis, due to the errors
caused by time phase, we used the standard deviation classification method to eliminate the
influence of errors on LST spatial pattern change [37]. The LST was classified into seven categories:
lowest, low, sub-low, medium, sub-high, high, and highest temperatures. The zones with the
highest, high, and sub-high temperatures were considered as UHI zones. Meanwhile, this study
introduced the urban heat island ration index (URI) [38]. The URI was described as shown in
Equation (1), where m is the normalization level index; i is the temperature level of urban areas
higher than that of the suburb; n is the number of temperature levels of urban areas higher than
that of the suburb; w is the weight value, which is the level of the ith level; and p is the percentage
of the ith level.

URI =
1

100m ∑n
i=1 wi pi (1)
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(2) LST retrieval of the typical UHI area. We retrieved LST of typical UHI area from Landsat thermal
infrared bands with a resolution of 30 m (Landsat-5 TM and Landsat-8 TIRS), using different
algorithms. First, we used the radiative transfer equation (RT), single channel method (SC) [39],
and mono-window algorithm (MW) [40] to retrieve surface temperature from Landsat-5 TM
data acquired on 21 September 2011; for the Landsat-8 TIRS data acquired on 18 October 2015,
we added a split-window 2 (SW2) algorithm [41]. Because no actually measured data for the
surface temperature were used, we adopted the data in the same period of MODIS LST products
to verify the retrieval results, in order to select an appropriate retrieval algorithm for Landsat-8
data acquired on 12 October 2013 and 23 October 2017.

3.2. Extraction of Land-Use Types

According to the spatiotemporal pattern of UHI within the PRD region, a typical UHI area is
to be selected for extracting land-use type information. The proposed method includes three parts,
which are described successively. All analyses were conducted using eCognition Developer 8.7
(Trimble, Trappentreustr, München, Germany).

3.2.1. Multi-Scale Segmentation of Images Combined with OSM Road Data

Multi-scale segmentation is a bottom-up method that combines adjacent pixels or small-segmented
objects to ensure the minimum average heterogeneity exists between the objects and maximum
homogeneity exists between intra-object pixels, in order to achieve image segmentation based on
local fusion. The segmentation scale range was set to be 290. Considering the high concentration of
buildings in UVs, the shape factor was set to 0.5, and the smoothness and compactness weights were
0.5. UVs appeared spatially as blocks divided by road networks. In this study, we added adaptive
auxiliary data (e.g., OSM road data) in the segmentation process to make it possible to highlight the
distinguishing features of the ground objects, while retaining the auxiliary data’s adaptability to the
spatial characteristics of UVs (Figure 3).

Figure 3. Comparison of segmentation results. (a) Results without Open Street Map (OSM) road data;
(b) results with OSM road data.

3.2.2. Extraction of Land-Use Types Based on the Nearest Neighbor Method

Before adopting the nearest neighbor classification method, it is necessary to establish the spectral,
spatial, and textural rules of each land-use type.

First, we considered both the spectral and shape features. Among the nine features initially
selected, seven were spectral features and inversion indicators, including four multispectral bands
(blue, green, red, near-infrared indicators), brightness, maximum difference scaling and normalized
difference vegetation index (NDVI); two were object shape features, which were the shape index
and length/width. Based on the classification sample and classification system, we optimized these
features. Based on the optimal feature dimensions, we calculated the degree of separation of each
feature dimension for different object types, and performed a preliminary classification, where we
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divided the land-use types into buildings (e.g., UVs, conventional buildings (CBs), and roofs of
factories (RFs)), road, unused land, vegetation, and water.

In addition, we used the gray-level co-occurrence matrix (GLCM) method to extract the texture
features of UVs [42,43] to supplement the spectral and shape features to extract UVs from buildings.
The GLCM method describes precise textures by analyzing the spatial correlation of gray scales
with high computational efficiency. Therefore, based on the preliminary classification of buildings,
we collected 30 samples, ten each for UVs, CBs, and RFs (Figure 4).

Figure 4. Sample selection: UV, CB and RF (From top to bottom).

To improve the efficiency of UV extraction, we performed t-test to compare the differences in
eight textures in UVs, CBs, and RFs (Table 2). From the t-test results, we can see that the contrast,
dissimilarity, StdDev, and mean textures of UV were not significantly different from those of other objects.
Therefore, we excluded these four textures. We selected the remaining four textures as alternatives:
homogeneity 90◦, angular second moment (Ang. 2nd moment) 45◦, entropy 90◦, and correlation 90◦.

Table 2. Student’s t-test of texture feature differences.

Relationship Homogeneity Contrast Dissimilarity Entropy Ang. 2nd
Moment Mean StdDev Correlation

UV–CB_all 1.078 −0.881 −1.291 2.731 * −0.538 0.686 −1.514 −0.822
UV–RF_all −1.92 0.019 0.900 2.465 * −0.611 0.384 −1.251 −1.408
CB–RF_all −2.657 * 0.869 1.855 −0.306 −0.145 −0.330 0.544 −0.333
UV–CB_0◦ 0.859 −1.463 −1.911 2.685 * −2.206 0.585 −1.791 0.833
UV–RF_0◦ −1.722 −0.502 0.203 2.275 * −1.795 0.602 −1.273 0.251
CB–RF_0◦ −2.765 * 0.937 1.605 −0.516 0.556 −0.004 0.711 −0.28

UV–CB_45◦ 1.607 −1.146 −1.576 2.752 * −2.286 * 0.739 −1.527 −0.159
UV–RF_45◦ −1.389 −0.626 0.055 2.327 * −1.874 0.461 −1.717 −0.776
CB–RF_45◦ −2.197 0.663 1.258 −0.562 0.744 −0.256 0.432 −0.327
UV–CB_90◦ −0.296 1.208 0.868 2.854 * −2.198 0.460 −1.009 −3.400 **
UV–RF_90◦ −2.330 * 1.474 2.198 2.470 * −2.06 −0.298 −0.432 −2.489 *
CB–RF_90◦ −2.405 * 0.037 1.864 −0.544 0.754 −0.913 0.384 0.802

UV–CB_135◦ 2.008 −0.826 −1.369 2.741 * −2.286 * 0.803 −1.468 −1.341
UV–RF_135◦ −1.193 0.540 0.954 2.269 * −1.801 0.469 −1.452 −1.74
CB–RF_135◦ −1.805 1.122 2.071 −0.526 0.617 −0.390 0.569 −0.868

* This value is significant at the level of 0.05. ** This value is significant at the level of 0.01.

Finally, based on the feature space optimization tool of eCognition Developer 8.7, we selected
four textures, four spectral bands, and two feature shapes to optimize the feature selection. According
to the feature differentiation index, we obtained the optimal feature dimensions and further divided
the buildings into UVs, CBs, and RFs.
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3.2.3. Accuracy Verification

This paper selected 531 verification sample points by referring to Google Earth imagery and the
random point selection methods, and used the Training and Test Area (TTA) Mask file and confusion
matrix analysis methods of eCognition Developer 8.7 to evaluate the extraction accuracy of land-use
type data. The kappa coefficient and producer’s accuracy/user’s accuracy were computed for the
assessment. The producer’s/user’s accuracy is the ratio of the number of correctly classified samples
to the number of reference/classification samples. The kappa coefficient was written as shown in
Equation (2):

Kappa =
N ∑r

i=1 xii −∑r
i=1(xi+ × x+i)

N2 −∑r
i=1(xi+ × x+i)

(2)

where r is the number of rows in the confusion matrix of classification; xii is the number of along
the diagonal; xi+ is the total number of row i; x+i is the total number of column i; and N is the total
number of cells.

3.3. Evaluation of Contributions of Different Land-Use Types to Heat Island Effects

This study aims to use the contribution index of thermal effect to quantitatively evaluate the
contribution of different land-use types to the heat island effect in the core urban area of GF region.
The contribution index of thermal effect (Hi) refers to the degree of impact that the surface temperatures
of different land-use types have on the region’s average temperature, i.e., the contribution of each
land-use type to the region’s heat island effect. Hi and the contribution of the initial heat island effect
(H′i ) were shown in Equations (3) and (4):

Hi =
H′i

∑n
i=1 H′i

∗ 100% (3)

H′i =
∑n

j=1
(
Tij − Ta0

)
∗ ni

Ta0N
(4)

where Tij is the temperature of the jth pixel with temperatures above the average regional temperature
in the land category i; Ta0 represents the average temperature of the region during imaging; ni is the
number of pixels in the land category i, of which the temperature is higher than the average regional
temperature; and N represents the region’s land area. To simplify the comparison, we performed data
normalization and obtained the contribution indices of different land-use types.

In addition, in order to further study the relationships of surface temperature to UVs, normal
construction land, water, and vegetation, this paper randomly selected 40 points inside the UVs and
generated buffers with radii of 0.2, 0.5, 0.8, and 1 km. We analyzed the relationship between the area
proportion of different land-use types and surface temperature in each buffer zone, using Pearson’s
correlation coefficients.

3.4. Profile Analysis of Land Surface Temperature in Typical Urban Heat Island Areas

The temperature profile analysis can be used to explore the internal structure of the heat islands
in downtown and urbanized areas. However, it can also be used for analyzing the differences in
LST between urban and rural lands, as well as the effect of urban expansion on heat islands [44].
Using ArcGIS 10.3 (ESRI, Redlands, CA, USA) software, this study randomly selected nine surface
temperature profile lines from west to east and from north to south (locations of profile lines and serial
numbers of profile lines in Figure 1). Based on the ZY-3 high-resolution remotely sensed imagery,
we subdivided the land-use types on each profile line and marked them with different colors, so that
we could more intuitively and accurately analyze the differences in surface temperature profile lines
between different land-use types.
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4. Results

4.1. Spatiotemporal Patterns of Urban Heat Island

The LST exhibited clear spatial differentiation characteristics in the PRD region. As illustrated in
Figure 5, the zones with the highest, high, and sub-high temperatures (i.e., UHI zones) were mainly
distributed in four areas, the GF core areas, the Guangzhou–Dongguan city interface, Shenzhen,
and the Zhongshan–Zhuhai city interface. Meanwhile, the lowest and low temperature zones were
mainly distributed in Zhaoqing, Northern Huizhou, and Northern Guangzhou. The spatial pattern of
LST in the PRD region has not changed significantly during 2011–2017. Accordingly, the core areas of
GF were considered as a typical area for further analysis of UHI in detail.

Figure 5. Spatiotemporal patterns of land surface temperature (LST) in the Pearl River Delta (PRD) region
with four typical areas on 22 September 2011, 11 October 2013, 18 October 2015 and 23 October 2017.

The comparisons of the LST retrieval results using different algorithms and the MODIS LST
products were shown in the Supplementary Files (the scatter plots in Figures S1 and S2 and statistic
parameters in Table S1). Similarly, UHI zones in the GF core areas were also spatially differentiated.
As shown in Figure 6, these zones were observed in each administrative district, like Liwan, Nanhai
and Changchneg Districts. In particular, UHI zones in 2015 and 2017 were spatially clustered near the
interface of Liwan and Nanhai Districts. In contrast, the zones with lower temperature, rather than
those with the sub-low temperature level, were mainly distributed in the northern part of Tianhe
District, the eastern part of Haizhu District, and the western part of Chancheng District. Meanwhile,
the UHI effect presented an overall downward trend according to the URI decreasing to 0.2031, as well
as the slightly decline of the UHI area proportion from 32.06 to 30.34% (Table 3). These results showed
that the UHI effect in the GF core areas was mitigated to some degree in the past 7 years.
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Figure 6. Spatiotemporal patterns of LST in the core urban areas of GF on 22 September 2011,
11 October 2013, 18 October 2015 and 23 October 2017. (LST_AVG: average LST; LST_SD: LST
standard deviation).

Table 3. Variation of graded area of LST in the core areas of GF.

Class
2011 2013 2015 2017

Area/km2 Per/% Area/km2 Per/% Area/km2 Per/% Area/km2 Per/%

Lowest 6.525 1.05 5.36 0.86 1.26 0.20 2.60 0.42
Low 34.21 5.48 45.77 7.33 46.57 7.46 38.01 6.09

Sub-low 127.51 20.43 106.77 17.11 121.64 19.49 129.97 20.83
Medium 255.79 40.99 261.12 41.84 255.47 40.94 264.12 42.32
Sub-high 176.71 28.32 176.07 28.21 162.47 26.04 149.22 23.91

High 22.03 3.53 27.66 4.43 33.68 5.40 35.48 5.68
Highest 1.30 0.21 1.31 0.21 2.95 0.47 4.70 0.75

URI 0.2346 0.2416 0.2370 0.2031

4.2. Results and Analysis of Land-Use Types

According to the overall accuracy (0.876) and the Kappa coefficient (0.851) (Table 4), the land-use
types were well extracted from the ZY-3 high-resolution remote sensing images. As far as the producer’s
and user’s accuracy were concerned, the UVs possessed slightly lower accuracies (77.6% and 84.6%)
than those of vegetation (94.7% and 98.2%), water (98.6% and 97.2%), and roads (89.0% and 87.2%),
although the omission and commission of UVs have been appropriately controlled by the texture
selection procedure. In a word, the present extraction accuracy can meet the demands of subsequent
analysis. Then, the roads, CBs, and RFs were combined into the normal construction land (NCL) type,
resulting in the five major land-use types including NCL, UVs, unused land, vegetation, and water.

Table 4. Confusion matrix of land classification.

Class Vegetation Road Water Unused Land UV CB RF Sum

Vegetation 54 0 0 0 1 0 0 55
Road 1 89 0 0 5 4 3 102
Water 0 0 143 2 2 0 0 147

Unused land 1 4 2 42 4 8 1 62
UV 0 5 0 2 66 5 0 78
CB 1 2 0 1 2 23 0 28
RF 0 0 0 1 5 4 48 58

Sum 57 100 145 48 85 44 52 531
Producer’s accuracy 0.947 0.890 0.986 0.875 0.776 0.523 0.923

User’s accuracy 0.982 0.872 0.972 0.677 0.846 0.821 0.827

Overall accuracy 0.876

Kappa 0.851
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In terms of urban space, the GF core areas were highly urbanized. According to the area ratio
of five land-use types as illustrated in Figure 7, more than 60% of the core areas were covered by
impervious surfaces including NCL (50.1%) and UVs (10.4%). In comparison, about 31% of this region
was covered by permeable surfaces (vegetation, 28.0%; water area, 8.4%). Similar to the spatial patterns
of UHI zones, UVs also appeared in each administrative district. There were several zones with
spatially clustered UVs as labeled by black dotted ovals in Figure 7, including the zones near the Pearl
River fork between Yuexiu and Haizhu Districts, the Wangjiegang forest park in Chancheng District,
the Pingzhou Branch of Provincial People’s Hospital in Nanhai District. These results indicated that
the GF core areas were featured by widely distributed UVs.

Figure 7. Classification result in the core urban areas of GF.

4.3. Contributions of Different Land-Use Types to Urban Heat Island

The average surface temperature and UHI contribution index (Hi) varied with the land-use
types across the GF core areas. The five land-use types were ranked from the highest to the lowest
surface temperature values as follows (Table 5): NCL > unused land > UVs > vegetation > water,
which persisted during 2011–2017. The average surface temperature of NCL was 1.89–2.97 ◦C higher
than that of UVs. In comparison, the sequence of Hi for these land-use types was slightly different:
NCL > UVs > vegetation > unused land > water, and this order also remained unchanged in this
period. These results showed that different land-use types made different contributions to the spatial
patterns of UHI across the GF core areas, and NCL contributed the most to the UHI effect across the
GF core urban areas, followed by UVs.

Table 5. Average surface temperatures and thermal effect contribution indices of thermal effect for
different land-use types (AVG: average; SD: standard deviation).

Class
2011 2013 2015 2017

AVG ± SD Hi/% AVG ± SD Hi/% AVG ± SD Hi/% AVG± SD Hi/%

Vegetation 29.42 ± 2.61 3.00 32.57 ± 2.93 2.90 31.21 ± 2.76 1.91 27.78 ± 2.41 1.30
Water 28.33 ± 1.82 0.01 28.82 ± 2.84 0.01 28.06 ± 2.86 0.01 25.97 ± 1.84 0.01
NCL 34.88 ± 2.66 92.85 38.71 ± 2.60 92.67 36.80 ± 2.91 93.57 32.59 ± 2.47 95.03
UVs 32.99 ± 1.72 3.78 35.74 ± 1.74 4.08 34.74 ± 1.81 4.17 30.31 ± 1.50 3.29

Unused Land 33.08 ± 2.71 0.36 35.56 ± 2.60 0.34 35.75 ± 2.37 0.34 30.40 ± 2.02 0.37

In addition, the average regional LST was correlated with the proportions of area of various
land-use types. According to the Pearson’s correlation coefficients in Table 6, the average LST values
decreased significantly when the proportion of area covered by the permeable surfaces (vegetation
and water) increased in the UV-centered buffer zones. Meanwhile, surface temperature increased
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remarkably when those of area covered by the impervious surfaces (NCL and UVs) were higher in
these buffer zones. In contrast to the significantly positive influence of NCL on the surface temperature,
the contribution of UVs was not remarkable, which means that UVs and NCL possessed weak and
strong warming effects in the core areas, respectively.

Lastly, the influences of land-use types on the spatial patterns of UHI could be further understood
according to the analysis of the profile lines across the GF core areas.

Table 6. Pearson’s correlation coefficients of surface temperature and area ration of different land-use types.

Year Impervious Surfaces NCL UVs Permeable Surfaces

2011 0.604 ** 0.292 ** 0.194 −0.680 **
2013 0.943 ** 0.220 ** 0.189 * −0.694 **
2015 0.525 ** 0.182 * 0.147 −0.591 **
2017 0.427 ** 0.230 ** 0.060 −0.500 **

* This value is significant at the level of 0.05. ** This value is significant at the level of 0.01. NCL and UVs were
classified into the category of impervious surfaces while the permeable surfaces included water and vegetation.

On the LST profile line 1 (see the other profile lines in the Supplementary Files in Figure S3),
the surface temperature values for all 5 land-use types formed a waving curve from 2011 to 2017
(Figure 8). The average temperature of all profile lines in 2011–2017 were ranked from the highest to
the lowest as follows: NCL > UVs > Vegetation > Water. As the largest contributor to the UHI effect,
NCL was mainly indicated by outstanding peaks on the profile lines. Water and vegetation appeared
as obvious valley-shapes due to their relatively low surface temperature. UVs tended to be featured by
clear valley shapes when they were adjacent to NCL (labeled by blue dotted rectangles) on the profile
lines. However, when adjacent to the vegetation and water bodies (labeled by purple dotted rectangles),
UVs showed a small peak shape on the profile lines, indicating an UHI phenomenon. In the GF core
areas, the areas with small peak shapes were, for example, near the Zhujiang fork between Yuexiu and
Haizhu Districts, nearby the Guangjun Business Center in Haizhu District, and near Huolushan Park in
Tianhe Park. The results indicated that UVs were widespread and mainly surrounded by NCL, so that
the slight but clear surface temperature valleys could be presented in this highly urbanized region.

Figure 8. Profile analysis results of Line 1 (NCL_AVG: average surface temperature of normal
construction land; UVs_AVG: average surface temperature of UVs; Vegetation_AVG: average surface
temperature of vegetation; Water AVG: average surface temperature of water).
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5. Discussion

To our knowledge, our study concentrated on the effects of widely scattered UVs on increasingly
serious UHIs in some metropolitan regions for the first time. In this study, we analyzed the influences
of UVs, as well as other land-use types, on the spatiotemporal patterns of UHI in the GF core areas by
means of multi-source remote sensing data. This study will help to understand the spatiotemporal
patterns of UHI in the urban area with numerous UVs, which can provide local environmental
and hygienic authorities with useful clues about environmental enhancement and related public
health management.

It has been proved that the object-oriented classification method is an effective solution for
detecting the informal settlements (e.g., UVs and slums) [8,32], as well as the scenarios-based
classification [10], landscape metrics and transfer learning [9]. However, the development of UVs
in China has seldom been reported or analyzed using the object-oriented classification method.
In addition, image segmentation is still difficult and challenging [45–47]. Numerous studies indicated
that image segmentation efficiency was improved when adding some auxiliary data, such as digital
elevation models, cadastral, population, or road network [48,49]. In our study, OSM road data was
employed as auxiliary data for improving the efficiency of ZY-3 high-resolution remotely sensed
imagery segmentation. Moreover, the extraction of texture using the GLCM method was used to
enrich the features of ground objects to overcome the disadvantages of shape and spectral features in
identifying UVs from CBs and RFs. As a result, UVs and other land-use types were effectively extracted
in the GF core areas with an overall accuracy of 0.876 and the Kappa coefficient of 0.851. The results
indicated that the nearest object-oriented method had strong adaptability and high efficiency and
could be considered as an alternative approach to detect UVs in China.

The UHI is an outstanding environment problem due to its profound influence on the lives of
urban residents, and some research have focused on how to mitigate it [50–53]. In our study, the UHI
effect in the GF core areas was mitigated to some degree in the past 7 years. It is due to the fact that
the joint GF development that has taken place in recent years has been accompanied by continuous
implementation of policies protecting and restoring green spaces and water areas for the improvement
of the ecological structure of the GF core areas. In addition, previous studies have pointed out that
the construction land is a predominant contributor and an important influencing factor of UHIs,
while vegetation and water can mitigate heat islands in the urban area [22,27,28]. These findings
are similar to our study that NCL presented the highest ground temperature, as well as the largest
contribution to UHIs in the GF core areas. In comparison, UVs, as a specific land-use type separated
from the construction land, possessed 1.89–2.97 ◦C lower surface temperature and a relatively weaker
warming effect, which may be related to the buildings’ tile roofs of UVs with higher reflectance than
cement roofs or their unique roofs with many potted plants [54]. In addition, the slight but clear surface
temperature valleys could be presented from surface temperature profile analysis results. These results
implied that the specific urban settlement (i.e., UVs) should be considered as a separate land-use type
when the influences of LULC on UHIs were to be investigated. It would supply useful reference for
monitoring and managing urban environment.

In fact, UVs are widely distributed in not only the GF core areas but also the other cities
(e.g., Shenzhen City) in the highly urbanized PRD region. In addition to the relatively lower
temperature, UVs are commonly featured by poor sanitation, overcrowding population, low coverage
public health services [9,10], resulting in a high environmental suitability for some biological vectors
(e.g., Aedes Albopictus), as well as the vector-borne diseases in these urban regions [55,56]. Accordingly,
UVs should be heavily emphasized due to their serious environmental health risk. Together with the
quick detection of UVs by using remote sensing, the unique influences of UVs on UHIs investigated in
this study would provide meaningful clues for monitoring biological vectors, as well as preventing
and controlling UVs-related infection in these urban areas with numerous UVs.

A few limitations of this study warrant mention. First, much earlier UVs information before
2012 should be obtained for the future analysis of the spatiotemporal variations of UVs, although the
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urban reconstruction focusing on the demolishing UVs was slowed down after the 2010 Asian Games.
Additionally, the extraction accuracy of all the land-use types could be further improved through
adding many more auxiliary data (i.e., openly accessible point of interest (POI) data). Finally, ground
temperature at night may be spatially different from that of daytime across the urban area and the
analysis of their difference could be conducted in future research to provide more meaningful support
for monitoring and regulating urban environment.

6. Conclusions

In summary, this paper draws the following conclusions:

(1) This study, for the first time, systematically verified the distinctive effect of the spatial distribution
of UVs on UHI, which was mainly characterized by the lower surface temperature and relatively
weaker warming effect of UVs than those of NCL.

(2) Multi-scale segmentation combined with road data and the extraction of UVs based on the nearest
neighbor method with spectral, shape and texture metrics provided methodological reference for
the detection of informal settlement (e.g., slums or UVs) in future research.

(3) This study provides theoretical support for the dynamic monitoring, transformation,
and redevelopment of UVs, preventing some UVs-related public health risk as well as the
regulation of the regional environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/8/1666/
s1. Figure S1: Scatter plot of different methodologies to retrieve surface temperature from Landsat-5 TM and
MODIS LST product on 21 September 2011, Figure S2: Scatter plot of different methodologies to retrieve surface
temperature from Landsat-8 TIRS and MODIS LST product on 18 October 2015, Figure S3: Temperature profile
analysis results of Line 2–9, Table S1: Different methodologies to retrieve surface temperature from Landsat-5 TM
and Landsat-8 TIRS.
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Appendix A

List of Landsat-5/8 images used for LST retrieval according to their path, row, date (dd/mm/yyyy)
and scene name.

Table A1. List of Landsat images used in this study.

Path Row Date Landsat Scene

122 44 21/09/2011 LT51220442011264BKT00
122 44 12/10/2013 LC81220442013285LGN01
122 44 18/10/2015 LC81220442015291LGN00
122 44 23/10/2017 LC81220442017296LGN00
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Table A2. List of acronyms.

Acronyms Acronyms of Full Name Acronyms Acronyms of Full Name

ASTER Advanced Spaceborne Thermal Emission and
Reflection Radiometer OSM Open Street Map

AVG Average PRD Peral River Delta

CB Conventional buildings RF Roofs of factories

FLAASH Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes RT Radiative transfer equation

GF Guangzhou and Foshan SC Single channel method

GLCM Gray level co-occurrence matrix SD Standard deviation

LST Land surface temperature SW Split window

LULC Land use/Land cover TIRS Thermal Infrared Sensor

MW Mono window TM Thematic mapper

MODIS Moderate resolution Imaging Spectroradiometer TTA Training and Test Area

NCL Normal construction land UHI Urban heat island

NDVI Normalized difference vegetation index URI Urban ratio index

OLI Operational Land Imager UVs Urban villages
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