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Abstract: The hierarchical medical treatment system is an efficient way to solve the problem of
insufficient and unbalanced medical resources in China. Essentially, classifying the different degrees
of diseases according to the doctor’s diagnosis is a key step in pushing forward the hierarchical
medical treatment system. This paper proposes a framework to solve the problem where diagnosis
values are given as picture fuzzy numbers (PFNs). Point operators can reduce the uncertainty of
doctor’s diagnosis and get intensive information in the process of decision making, and the Choquet
integral operator can consider correlations among symptoms. In order to take full advantage of these
two kinds of operators, in this paper, we firstly define some point operators under the picture fuzzy
environment, and further propose a new class of picture fuzzy point–Choquet integral aggregation
operators. Moreover, some desirable properties of these operators are also investigated in detail.
Then, a novel approach based on these operators for multiattribute decision-making problems in the
picture fuzzy context is introduced. Finally, we give an example to illustrate the applicability of the
new approach in assisting hierarchical medical treatment system. This is of great significance for
integrating the medical resources of the whole society and improving the service efficiency of the
medical service system.

Keywords: multiattribute decision making; picture fuzzy set; picture fuzzy point–Choquet
aggregation operators; hierarchical medical treatment system

1. Introduction

With increasing environmental issues, lung diseases are becoming a serious health problem in
China. As the medical facilities in grade III, class A hospitals are much better than those of in other
small hospitals, people prefer to go to those relatively high-level hospitals for treatment. As a result,
overcrowding in large hospitals is common, far exceeding the coping capacity. At the same time,
however, small hospitals or clinics waste medical resources. Under such circumstances, how to better
allocate limited medical resources and improve the input and output efficiency of the health care
system are new challenges for the medical system in China.

Developing a hierarchical medical treatment system is regarded as key an effective way to
solve the problem of insufficient and unbalanced medical resources, in which medical institutions
at various levels receive patients according to the degree and urgency of the diseases they have.
In such a system, common illnesses are treated at basic clinics, with patients transferred to more
specialized facilities if their condition demands it. Serious illnesses should be treated in higher-grade
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hospitals. At the same time, higher-grade hospitals can also transfer patients down to lower-grade
ones as their condition stabilizes. Thus, determining the severity of the illness is a key action in this
system. At present, with the increase in the number of patients with lung diseases, establishing an
appropriate approach to divide patients under different conditions into different levels of hospitals
is an effective way to make full use of limited medical resources and cure more patients with lung
diseases. However, the diagnosis for patient’s condition often involves multiple correlative criteria and
thus can be described as multiattribute decision making (MADM) problems. This paper proposes a
general framework in order to solve the MADM problem, which can be applied in the above scenario.

The essence of MADM is the process of ranking the alternatives and selecting an optimal scheme
among a set of alternatives with respect to a list of attribute value. Recently, MADM has received
much attention from scholars and has been widely applied to economic management and daily life.
For example, Tang et al. [1] proposed an algorithm for group decision making with incomplete hesitant
fuzzy linguistic preference relations and applied it to flood disaster risk evaluation. Qi [2] developed
two effective multicriteria decision making (MCDM) approaches based on defined prioritized average
aggregation operators and applied them to tackle complex emergency response solutions evaluation
problems. Lin [3] proposed a linear program and a procedure for solving linguistic MADM problems
with risk preferences and incomplete weight information, and further applied it to low-carbon
tourism destination selection. Due to the increased complexity of real decision-making problems,
we usually have to face the difficulty of representing attribute values appropriately. Chatterjee
et al. [4] proposed a novel hybrid method encompassing factor relationship and multi-attributive
border approximation area comparison methods for selection and evaluation of non-traditional
machining process. Roya et al. [5] proposed a rough group analytic hierarchy process approach
to the evaluation supplier criteria in the company for producing metal washers for the automotive
industry. Vasiljević et al. [6] developed rough strength relational decision making and trial evaluation
laboratory model to analyze the individual priorities of key success factors of hospital’s performance
measures. As a generalization of the intuitionistic fuzzy set (IFS) [7], the picture fuzzy set (PFS)
introduced by Cuong [8] is a very effective tool to express the complex fuzzy information because it is
characterized by three functions expressing the degree of positive, neutral, and negative memberships
at the same time. Because of this advantage, the PFS has been widely investigated and quite a few
achievements have been made [9–13]. Among them, an important research topic in the research fields
of MADM is aggregation operator theory, that can aggregate a collection of individual evaluated values
into one. Abbas et al. [14] presented a comprehensive review on aggregation operator theory and
decision-making approaches between 1986 and 2017. Among these aggregation operators, traditional
aggregation operators, such as arithmetic and geometric operators for the IFS and neutral averaging
operators [15] are based on the assumption that the attributes are independent of one another. However,
the attributes of the problem are often correlative in the real decision-making process, especially in
medical diagnosis. For example, to evaluate patients based on the following symptoms of lung diseases:
(vital signs, body temperature, cough and hemoptysis), we want to place more emphasis on hemoptysis
than on body temperature. However, on the other hand, we also want to pay more attention to patients
who have severe hemoptysis and high body temperature, because hemoptysis and hyperthermia are
two classical symptoms of pneumonia. Therefore, we need to find some new ways to deal with these
situations where the decision data are correlative. The Choquet integral [16] introduced by Choquet is
a useful tool to address the problem. Many scholars have made quite a few achievements in this field
and applied the Choquet integral in MADM problems. By using Choquet integral and quasi-arithmetic
means, Zhou and Chen [17] proposed a combined continuous quasi-arithmetic Choquet integral
operator and a combined continuous generalized Choquet integral operator. In order to globally reflect
the interactions between elements, Meng and Zhang [18] further defined the probabilistic generalized
semivalue-induced continuous Choquet weighted averaging operator and the induced continuous
Choquet geometric mean operator. Xu [19] used the Choquet integral to propose some operators for
aggregating intuitionistic fuzzy values with correlative weights and further extended those operators
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to interval-valued intuitionistic fuzzy sets. Yager [20] proposed an approximation to the Choquet
integral criteria aggregation that did not require ordering. By extending Marichal’s concept of entropy
for fuzzy measures, Liu et al. [21] proposed a new method for determining fuzzy measures of the
Choquet integral. Wen et al. [22] introduced Choquet integral-based linguistic operators under fuzzy
heterogeneous environments for supplier selection in supply chain management. Some scholars also
extended the Choquet integral to other fuzzy environments, such as in interval intuitionistic fuzzy
information [23], the dual hesitant fuzzy environment [24], the interval-valued intuitionistic hesitant
fuzzy environment [19] and the Pythagorean fuzzy environment [25]. Point operators are another
aggregation tool to reduce the uncertainty of the aggregated arguments and thus obtain intensive
information in the process of decision making. Since the point operator was proposed [26], it has
been applied to many fields and has attracted increasing attention. Liu and Wang [27] proposed
some point operators to translate IFS into another one. Xia and Xu [28] used the point operators
to propose some operators for aggregating intuitionistic fuzzy values, and further extended those
operators to intuitionistic multiplicative sets [29]. Peng [30,31], and Xing [32] also extended point
operators to Pythagorean fuzzy sets, interval-valued Pythagorean fuzzy sets, and dual hesitant fuzzy
sets, respectively.

However, the medical diagnosis problem in the real world is complex than many other
applications. For instance: (1) We need to exactly express fuzzy information, and picture fuzzy
numbers (PFNs) can depict doctors’ diagnoses for patients with respect to the symptoms; (2) We need
to consider correlations among symptoms, and then the Choquet integral operator can be utilized
to solve this problem; and (3) We need to reduce the uncertainty of doctor’s diagnosis data and get
intensive information when diagnosing diseases. We can select point operators to achieve this function
by adjusting the degree of doctor’s diagnosis data with some parameters. In order to solve above
problems simultaneously, it is necessary to combine point operator with Choquet integral operator
under picture fuzzy environment. Thus, the goal of this paper is to establish a new decision-making
method that can not only control the certainty of doctor’s diagnosis data, but also deal with these
situations where the diagnosis data are correlative. Then we apply new decision-making method
to judge patient condition, and patients with different conditions are divided into different levels of
hospitals instead of all patients rushing to large hospitals.

The rest of this paper is organized as follows. In the following section, we review some basic
concepts related to PFS and the Choquet integral. In Section 3, we define some picture fuzzy point
operators. In Section 4, by combining the point operators with Choquet integral operator, we propose
the picture fuzzy point–Choquet averaging (PFPCA) operator, the picture fuzzy point–Choquet
geometric (PFPCG) operator, the generalized picture fuzzy point–Choquet averaging (GPFPCA)
operator and the generalized picture fuzzy point–Choquet geometric (GPFPCG) operator. Some
prominent properties and special cases of these proposed operators are also studied. In Section 5,
we introduce a novel method for solving MADM with picture fuzzy information based on the proposed
operators. In Section 6, we provide an application example about assisting the hierarchical medical
system to show the performance of new method.

2. Preliminaries

In the section, we briefly review some basic notions including PFS and the Choquet integral.

2.1. Picture Fuzzy Sets

Definition 1 [8]. Let X be an ordinary fixed set; then a picture fuzzy set P defined on X is given by

P =
{〈

x, µp(x), ηp(x), vp(x)
〉
|x ∈ X

}
, (1)
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where µp(x) is the positive degree of x ∈ X, and ηp(x) and vp(x) are the neutral degree and negative degree,
respectively, satisfying

µp(x) + ηp(x) + vp(x) ≤ 1. (2)

The uncertainty associated with PFS πP(x) = 1− µp(x)− ηp(x)− vp(x) is also defined. In the
case ηp(x) = 0, PFS is reduced to the IFS, and when both µp(x), vp(x) = 0, PFS is reduced to the
fuzzy set.

For simplicity, we use the pair (µ(x), η(x), v(x)) to denote a general PFN that can be denoted by
p = (µ, η, v).

Given three PFNs p = (µ, η, v), p1 = (µ1, η1, v1), p1 = (µ2, η2, v2), Cuong [8] defined the
operations of intersection, union, complement and inclusion for them, which can be described as below:

p1 ∩ p2 = (min(µ1, µ2), max(η1, η2), max(v1, v2)), (3)

p1 ∪ p2 = (max(µ1, µ2), min(η1, η2), min(v1, v2)), (4)

pc = (v, η, µ), (5)

p1 ⊆ p2, if µ1 ≤ µ2, η1 ≤ η2 and v1 ≥ v2. (6)

Wei [9] further defines some operational laws for PFNs as shown below:

p1 ⊕ p2 = ((µ1 + µ2 − µ1µ2), η1η2, v1v2), (7)

p1 ⊗ p2 = (µ1µ2, η1 + η2 − η1η2, v1 + v2 − v1v2), (8)

λp =
(

1− (1− µ)λ, ηλ, vλ
)

, (9)

pλ =
(

µλ, 1− (1− η)λ, 1− (1− v)λ
)

. (10)

Definition 2 [13]. For two PFNs p1 = (µ1, η1, v1), p2 = (µ2, η2, v2), their relations are defined as follows:

p1 ≥ p2 iff ∀xX, µ1 ≥ µ2, v1 ≤ v2, (11)

p1 = p2 iff ∀xX, µ1 = µ2, v1 = v2. (12)

In order to rank the PFNs, Garg [13] gave the score function and accuracy function of PFNs.

Definition 3 [13]. Suppose that p = (µ, η, v) is a PFN; then the score function of p is shown as follows:

Sp = µp − vp. (13)

Definition 4 [13]. Suppose that p = (µ, η, v) is a PFN; then the accuracy function of p is shown as follows:

Hp = µp + ηp + vp. (14)

Based on the score and accuracy function of PFN, Garg further defines the following ranking
rules to compare two PFNs.

Definition 5. For two PFNs:
if Sp1 > Sp2 , then p1 > p2, (15)
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if Sp1 = Sp2 , then (16)

if Hp1 > Hp2 , then p1 > p2,

if Hp1 = Hp2 , then p1 = p2.

2.2. Choquet Integral Operator

The fuzzy measure can be used to define a weight on each combination of criteria in the Choquet
integral model. In this subsection, we introduce the definitions of fuzzy measure and Choquet integral.

Definition 6 [33]. A fuzzy measure on X is a set function ρ : Γ(x)→ [0, 1], with the following conditions:

(1) ρ(φ) = 0, ρ(X) = 1 (boundary conditions),
(2) A, B ∈ X and A ⊆ B, then ρ(A) ≤ ρ(B) (monotonicity).

However, we generally need to determine 2n − 2 values for n criteria, which is quite complex,
and thus it is not easy to give such fuzzy measure according to Definition 6. Therefore, the following
σ-fuzzy measure ρ is further defined:

ρ(A ∪ B) = ρ(A) + ρ(B) + σρ(A)ρ(B), (17)

where A ∪ B = φ, and the parameter σ ∈ [−1,+∞) denotes the interaction between attributes.
In Equation (17):

(1) If σ = 0, then σ-fuzzy measure ρ reduces to ρ(A ∪ B) = ρ(A) + ρ(B), A ∪ B = φ, which is defined
as an additive measure. In this situation, if all the elements in X are independent, we get

ρ(A) = ∑
xi∈A

ρ(xi). (18)

(2) If all the elements in X are finite, then

ρ(A) = ρ

(
n
∪

i=1
xi

)
=


1
σ

[
n
∏
i=1

(1 + σρ(xi))− 1
]

, σ 6= 0

∑
xi∈A

ρ(xi), σ = 0
, (19)

where xi ∩ xj = Φ, for i, j = 1, 2 · · · n, and i 6= j.
(3) If ρ � 0, then σ-fuzzy measure ρ reduces to ρ(A ∪ B) � ρ(A) + ρ(B), which is defined as a

super-additive measure.
(4) If −1 ≤ ρ ≺ 0, then σ-fuzzy measure ρ reduces to ρ(A ∪ B) ≺ ρ(A) + ρ(B), which is defined as a

sub-additive measure.

When using a fuzzy measure to model the importance of decision criteria set S, a well-known
aggregation function is the Choquet integral [16].

Definition 7. Let f be a positive real-valued function on X and ρ be a fuzzy measure on X. The discrete Choquet
integral of f with respect to ρ is defined as

(C)
∫

f dρ =
n

∑
i=1

[
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

)]
fσ(i), (20)
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where σ(i) denotes a permutation of (1, 2 · · · n) such that fσ(1) ≥ fσ(2) ≥ · · · ≥ fσ(n), and Aσ(0) = φ,

Aσ(i) =
{

xσ(1), · · · xσ(i)

}
.

3. Some Point Operations for Picture Fuzzy Numbers and Their Properties

Motivated by the idea of intuitionistic fuzzy point operators [28] and dual hesitant fuzzy point
operators [32], we will define a series of picture fuzzy point operations to obtain more intensive
information and further analyze some desirable properties of these operations, which are very useful
in the remainder of this paper.

Definition 8. For a PFN p = (µ, η, v), let α, β, γ ∈ [0, 1], we define some PF point operators: PFN ∩ PFN as
follows:

Dα,β(p) =
{

µp + απp, ηp + βπp, vp + (1− α− β)πp
}

, (21)

Fα,β,γ(p) =
{

µp + απp, ηp + βπp, vp + γπp
}

, (22)

where α + β + γ ≤ 1
Gα,β,γ(p) =

{
αµp, βηp, γvp

}
. (23)

It is obvious that the above PF point operators transform a PFN into another one.
From Equations (21) and (22), we know that Dα(p) assigns all the uncertainty into the other three parts
of a PFS, while Fα,β,γ(p) only assigns part of the uncertainty. Meanwhile, we can get πDα(p) = 1− πp,
and πFα,β,γ(p) = πp(1− α− β− γ), which means that Fα,β,γ(p) and Dα(p) can reduce the uncertainty
of PFS, and increase the positive degree, neutral degree, and positive degree. Similarly, From Equation
(23), we know that Gα,β,γ(p) can reduce the positive degree, neutral degree, and positive degree,

and πGα,β,γ =
(

1− αµp − βηp − γvp

)
, which means that Gα,β,γ(p) increases the uncertainty of PFS.

Then, we discuss some properties of the operator Fα,β,γ(p) in detail.

Theorem 1. Let p = (µ, η, v) be a PFN and taking α, β, γ ∈ [0, 1], then(
Fα,β,γ(pc)

)c
= Fγ,β,α(p), (24)(

Gα,β,γ(pc)
)c

= Gγ,β,α(p). (25)

If

α =
µp

µp + ηp + vp
, β =

ηp

µp + ηp + vp
and γ =

vp

µp + ηp + vp
then Fα,β,γ(p) = (α, β, γ). (26)

Proof. We prove the Equation (24) holds, and (25), (26) can be proved analogously.

(1) From pc = (v, η, µ), we get(
Fα,β,γ(pc)

)c
=
(
vp + απp, ηp + βπp, µp + γπp

)c
= Fγ,β,α(p).

(2) Then

Fα,β,γ(p) =
(

µp +
µp

µp+ηp+vp
πp, ηp +

ηp
µp+ηp+vp

πp, vp +
vp

µp+ηp+vp
πp

)
=
(

µp
µp+ηp+vp

, ηp
µp+ηp+vp

, vp
µp+ηp+vp

)
= (α, β, γ)

.

Based on the operations of the PFNs, let D0
α(p) = F0

α,β,γ(p) = G0
α,β,γ(p) = H0

α,β,γ(p) = p; we then
get the following Theorem 2. �
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Theorem 2. Let p = (µ, η, v) be a PFN and taking α, β, γ ∈ [0, 1], and α + β + γ 6= 0, then

Dn
α(γ) =

{
µp + απp, ηp + βπp, vp + (1− α− β)πp

}
, (27)

Fn
α,β,γ(p) =

(
µp + απpτ, ηp + βπpτ, vp + γπpτ

)
, (28)

where τ = 1−(1−α−β−γ)n

α+β+γ ,
Gn

α,β,γ(p) =
(
µpαn, ηpβn, vpγn). (29)

The proof of this theorem is provided in Appendix A.
In the following, a numeric example is forwarded to illustrate Theorems 1 and 2.

Example 1. Let p = (0.15, 0.35, 0.25) be a PFN, then the point operators of p can be calculated according to
Definition 8 (Suppose α = 0.4, β = 0.3, γ = 0.2). Firstly, we can obtain πp = 1− (0.15+ 0.35+ 0.25) = 0.25,

and τ = 1−(1−α−β−γ)n

α+β+γ = 1−0.1n

0.9 , then we have

Dα,β(p) ={0.15 + 0.25α, 0.35 + 0.25β, 0.25 + 0.25(1− α− β)} = (0.25, 0.425, 0.325), (30)

Fα,β,γ(p) = (0.15 + 0.25α, 0.35 + 0.25β, 0.25 + 0.25γ) = (0.25, 0.425, 0.3), (31)

Gα,β,γ(p) = (0.15α, 0.35β, 0.25γ) = (0.06, 0.105, 0.05). (32)

Similarly,
Dn

α(γ) =(0.25, 0.425, 0.325), (33)

Fn
α,β,γ(p) =

(
0.15 +

1− 0.1n

9
, 0.35 +

0.75× (1− 0.1n)

9
, 0.25 +

5× (1− 0.1n)

9

)
, (34)

Gn
α,β,γ(p) = {0.15× 0.4n, 0.35× 0.3n, 0.25× 0.2n}. (35)

From Theorem 2, we can easily obtain the following properties.

Theorem 3. Let p = (µ, η, v) be a PFS, and n be a positive integer. Taking α, β, γ ∈ [0, 1], then(
Fn

α,β,γ(pc)
)c

= Fn
γ,β,α(p), (36)

(
Gn

α,β,γ(pc)
)c

= Gn
γ,β,α(p). (37)

Theorem 4. Let p = (µ, η, v) be a PFS, and n be a positive integer. Taking α, β, γ ∈ [0, 1], the relation ≤ is
defined as A ≤ B if and only if µFn

α,β,γ(p) ≤ µFn−1
α,β,γ(p), and vFn

α,β,γ(p) ≤ vFn−1
α,β,γ(p), and then

(
Fn

α,β,γ(pc)
)c

= Fn
γ,β,α(p), (38)

πFn
α,β,γ
≤ πFn−1

α,β,γ
. (39)

If α =
µp

µp + ηp + vp
, β =

ηp

µp + ηp + vp
, γ =

vp

µp + ηp + vp
, then Fn

α,β,γ(p) = Fα,β,γ(γ). (40)

Definition 9. Let α, β, γ ∈ [0, 1], and α + β + γ ≤ 1. We define the following limit:

lim
n→∞

Fn
α,β,γ(p) = lim

n→∞

{
µFn

α,β,γ(p), ηFn
α,β,γ(p), vFn

α,β,γ(p)

}
. (41)
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Theorem 5. Let α, β, γ ∈ [0, 1], and α + β + γ ≤ 1; then we have

lim
n→∞

Fn
α,β,γ(p) == Dn

α
α+β+γ , β

α+β+γ

(p). (42)

Proof of Theorem 5. According to Theorem 7, we get

lim
n→∞

µFn
ξζ(γ)

= lim
n→∞

(
µp + απp

1− (1− α− β− γ)n

α + β + γ

)
= µp +

α

α + β + γ
πp,

lim
n→∞

ηFn
ξζ(γ)

= lim
n→∞

(
ηp + βπp

1− (1− α− β− γ)n

α + β + γ

)
= ηp +

β

α + β + γ
πp,

lim
n→∞

vFn
ξζ(γ)

== vp +
γ

α + β + γ
πp.

So we have

lim
n→∞

Fn
α,β,γ(p) = lim

n→∞

{
µFn

α,β,γ(p), ηFn
α,β,γ(p), vFn

α,β,γ(p)

}
=
{

µp +
α

α+β+γ πp, ηp +
β

α+β+γ πp, vp +
γ

α+β+γ πp

}
= Dn

α
α+β+γ , β

α+β+γ

(p)

�

4. Picture Fuzzy Point–Choquet Integral Aggregation Operators and Their Properties

In order to get more intensive information from PFS and efficiently deal with correlations among
arguments at the same time, we combine picture fuzzy point operators with the Choquet integral
operator to propose some new class of aggregation operators for aggregating picture fuzzy information
in this section. Some desirable properties of proposed aggregation operators are also discussed
in detail.

4.1. Picture Fuzzy Point–Choquet Averaging Operator

Definition 10. Let Ω be the set of all PFNs, and pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs,
taking αi, βi, γi ∈ [0, 1]. Then we define the series of PFPCA operators): Ωm → Ω , if

F(C1)
∫

pdρ = PFPCADn
α,β(p1, p2 · · · pn) =

m

∑
i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Dn

ασ(i),βσ(i)

(
pσ(i)

)
, (43)

F(C2)
∫

pdρ = PFPCAFn
α,β,γ(p1, p2 · · · pn) =

m

∑
i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Fn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

)
, (44)

F(C3)
∫

pdρ = PFPCAGn
α,β,γ(p1, p2 · · · pn) =

m
∑

i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Gn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

)
, (45)

where σ(i) denotes a permutation of (1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), and Gσ(i) is the
attribute corresponding to pσ(i).

By operational laws defined in Section 2.1, we can obtain the following theorem.

Theorem 6. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, and σ(i) be a permutation of
(1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), Gσ(i) is the attribute corresponding to pσ(i), and Aσ(0) = φ
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Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
, taking ω̃i = ρ

(
Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, αi, βi, γi ∈ [0, 1], αi + βi + γi ≤ 1. Then,

the aggregated values by the series of PFPCA operators are also PFNs:

PFPCADn
α,β(p1, p2 · · · pn) =

{
1−

m
∏
i=1

(
1−

(
µpσ(i) + αiπpσ(i)

))ω̃i
, 1−

m
∏
i=1

(
1−

(
ηpσ(i) + βiπpσ(i)

))ω̃i

m
∏
i=1

(
vpσ(i) + (1− αi − βi)πpσ(i)

)ω̃i
} , (46)

PFPCAFn
α,β,γ(p1, p2, . . . , pm)=

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
(47)

where

µFn
αi ,βi ,γi

(pi)
= µpσ(i) + αiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

ηFn
αi ,βi ,γi

(pi)
= ηpσ(i) + βiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

vFn
αi ,βi ,γi

(pσ(i))
= vpσ(i) + γiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

PFPCAGn
α,β,γ(p1, p2, . . . , pm)=

((
1−

m

∏
i=1

(
1− µpσ(i)α

n
i

)ω̃i

)
,

m

∏
i=1

(
ηpσ(i) β

n
i

)ω̃i
,

m

∏
i=1

(
vpσ(i)γ

n
i

)ω̃i

)
. (48)

The proof of this theorem is provided in Appendix B.
In the following, a numeric example is forwarded to illustrate Theorem 6.

Example 2. Let p1 = (0.25, 0.35, 0.15), p2 = (0.42, 0.18, 0.37), p3 = (0.34, 0.27, 0.16) be PFN. Then we
aggregate the three PFNs by the following steps:

Step 1. Identify the fuzzy measure of the n attributes of G according to Equations (17) and (19).
Suppose that the fuzzy measures of attributes of G are given as follows:

ρ(G1) = 0.38, ρ(G2) = 0.27, ρ(G3) = 0.36.

Firstly, according to Equation (19), the value of σ is obtained: σ = −0.029, and then the fuzzy
measures of attribute sets of G = {G1, G2, G3, G4} can be calculated by Equation (13), shown as
follows:

ρ(G1, G2) = 0.65, ρ(G1, G3) = 0.74, ρ(G2, G3) = 0.63, ρ(G1, G2, G3) = 1.

Step 2. By score functions, we rearrange the three PFNs in descending order, shown as follows:

s(p1) = 0.1, s(p2) = 0.05, s(p3) = 0.18,

pσ(1) = (0.34, 0.27, 0.16), pσ(2) = (0.25, 0.35, 0.15), pσ(3) = (0.42, 0.18, 0.37).

Then we can get
Aσ(1) = {G3} , A1σ(2) = {G1, G3} , A1σ(4) = {G1, G2, G3} ,

ρAσ(1)
= ρG3 = 0.36, ρAσ(2)

− ρAσ(1)
= ρG1G3 − ρG3 = 0.38, ρAσ(3)

− ρAσ(2)
= ρG2G3G4 − ρG1G3 = 0.26.

Step 3. Calculate the point operators of pi according to Definition 8 (Suppose α = 0.3, β = 0.4,
γ = 0.1, n = 3). Firstly, we can obtain πpσ(1) = 1− (0.25 + 0.35 + 0.15) = 0.25, πpσ(2) = 1− (0.42 +

0.18 + 0.37) = 0.03, πpσ(3) = 1− (0.34 + 0.27 + 0.16) = 0.23. Then we have

F3
α,β,γ

(
pσ(1)

)
=
(

0.25 + 0.25× 1−0.23

0.8 , 0.35 + 0.25× 1−0.23

0.8 , 0.15 + 0.25× 1−0.23

0.8

)
= (0.56, 0.66, 0.46),
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F3
α,β,γ

(
pσ(2)

)
=
(

0.42 + 0.03× 1−0.23

0.8 , 0.18 + 0.03× 1−0.23

0.8 , 0.37 + 0.03× 1−0.23

0.8

)
= (0.46, 0.22, 0.41),

F3
α,β,γ

(
pσ(3)

)
=
(

0.34 + 0.23× 1−0.23

0.8 , 0.27 + 0.23× 1−0.23

0.8 , 0.16 + 0.23× 1−0.23

0.8

)
= (0.63, 0.56, 0.45)

Step 4. Utilize the PFPCAFn
α,β,γ(p1, p2, p3) operator to aggregate the three PFNs and get the

aggregated p as follows:

p =
m
∑

i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Fn

αi,βi ,γi

(
pσ(i)

)
=

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ρ(Aσ(i))−ρ(Aσ(i−1))
)

,
m
∏
i=1

(
ηFn

αi ,βi ,γi
(pσ(i))

)ρ(Aσ(i))−ρ(Aσ(i−1))

,
m
∏
i=1

(
vFn

αi ,βi ,γi
(pσ(i))

)ρ(Aσ(i))−ρ(Aσ(i−1))
)

=
((

1− (1− 0.56)0.36 × (1− 0.46)0.38 × (1− 0.63)0.26
)

, 0.660.36 × 0.220.38 × 0.560.26, 0.460.36 × 0.410.38 × 0.450.26
)

.

Example 2 gives a detailed portrait of the PFPCAFn
α,β,γ(p1, p2, p3) operator. It should be pointed

out that the PFPCAFn
α,β,γ(p1, p2, p3) operator includes a reorder step and it is similar to the famous

ordered weighted averaging (OWA) operator. In the following, we discuss some properties of the
above PFPCA operators.

Theorem 7. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs. Taking k � 0, then

PFPCADn
α,β(kp1, kp2, . . . , kpm) = kPFPCADn

α,β(p1, p2, . . . , pm), (49)

PFPCAFn
α,β,γ(kp1, kp2, . . . , kpm) = kPFPCAFn

α,β,γ(p1, p2, . . . , pm), (50)

PFPCAGn
α,β,γ(kp1, kp2, . . . , kpm) = kPFPCAGn

α,β,γ(p1, p2, . . . , pm). (51)

Proof. We prove the Equation (50) holds for all m, and the others can be proved analogously.
By the operational law in Section 2.2, we have

kpi =
(

1− (1− µi)
k, ηi

k, vi
k
)

and

PFPCAFn
α,β,γ(kp1, kp2, . . . , kpm) =

(
1−

m

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)kω̃i

,
m

∏
i=1

η
kω̃i
Fn

αi ,βi ,γi
(pi)

,
m

∏
i=1

vkω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
,

and hence

kPFPCAFn
α,β,γ(p1, p2, . . . , pm) = k

(
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

,
m
∏
i=1

η
kω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
(

1−
m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)kω̃i

,
m
∏
i=1

η
kω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m
∏
i=1

vkω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
= PFPCAFn

α,β,γ(kp1, kp2, . . . , kpm)

Therefore, Equation (50) holds, which completes the proof. �

Theorem 8. Let pi and qi be two collections of PFNs, then

PFPCADn
α,β(p1 ⊕ q1, p2 ⊕ q2, . . . , pn ⊕ qm)

= PFPCADn
α,β(p1, p2, . . . , pm)⊕ · · · ⊕ PFPCADn

α,β(q1, q2, . . . , qm)
(52)

PFPCAFn
α,β,γ(p1 ⊕ q1, p2 ⊕ q2, . . . , pn ⊕ qm)

= PFPCAFn
α,β,γ(p1, p2, . . . , pm)⊕ · · · ⊕ PFPCAFn

α,β,γ(q1, q2, . . . , qm)
(53)
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PFPCAGn
α,β,γ(p1 ⊕ q1, p2 ⊕ q2, . . . , pn ⊕ qm)

= PFPCAGn
α,β,γ(p1, p2, . . . , pm)⊕ · · · ⊕ PFPCAGn

α,β,γ(q1, q2, . . . , qm)
(54)

Proof. We prove the Equation (53) holds for all m, and the others can be proved analogously.
By the operational law in Section 2.2, we have

pi ⊕ qi =
(
µpi + µqi − µpi µqi , ηpi ηqi , vpi vqi

)
,

PFPCAFn
α,β,γ(p1 ⊕ q1, p2 ⊕ q2, . . . , pn ⊕ qm)

=

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(p

σ(i)
)

)ω̃i
(

1− µFn
αi ,βi ,γi

(q
σ(i)

)

)ω̃i
)

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(p

σ(i)
)
η

ω̃i
Fn

αi ,βi ,γi
(q

σ(i)
)
,

m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(p

σ(i)
)
vω̃i

Fn
αi ,βi ,γi

(q
σ(i)

)

)
,

PFPCAFn
α,β,γ(p1, p2, . . . , pm)⊕ PFPCAFn

α,β,γ(q1, q2, . . . , qm)

=

(
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(p

σ(i)
)

)ω̃i
(

1− µFn
αi ,βi ,γi

(q
σ(i)

)

)ω̃i

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(p

σ(i)
)
η

ω̃i
Fn

αi ,βi ,γi
(q

σ(i)
)
,

m
∏
i=1

ν
ω̃i
Fn

αi ,βi ,γi
(p

σ(i)
)
ν

ω̃i
Fn

αi ,βi ,γi
(q

σ(i)
)

)
= PFPCAFn

α,β,γ(p1, p2, . . . , pm)⊕ PFPCAFn
α,β,γ(q1, q2, . . . , qm)

.

Therefore, Equation (53) holds, which completes the proof. �

Theorem 9. (Idempotency). If pi = (µi, ηi, vi) are equal, i.e., pi = p = (µ, η, v) for all i, then

PFPCADn
α,β(p1, p2, . . . , pm) = Dn

α,β, (55)

PFPCAFn
α,β,γ(p1, p2, . . . , pm) = Fn

α,β,γ, (56)

PFPCAGn
α,β,γ(p1, p2, . . . , pm) = Gn

α,β,γ. (57)

Proof. We prove the Equation (56) holds for all m, and the others can be proved analogously.
Since pi = p = (µ, η, v) for all i, then

PFPCAFn
α,β,γ(p1, p2, . . . , pm) =

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)

=

1−
(

1− µFn
αi ,βi ,γi

(p)

) m
∑

i=1
ωi

,
(

ηFn
αi ,βi ,γi

(p)

) m
∑

i=1
ωi

,
(

vFn
αi ,βi ,γi

(p)

) m
∑

i=1
ωi

 =

(
1−

(
1− µFn

αi ,βi ,γi
(p)

)
, ηFn

αi ,βi ,γi
(p), vFn

αi ,βi ,γi
(p)

)
=

(
µFn

αi ,βi ,γi
(p), ηFn

αi ,βi ,γi
(p), vFn

αi ,βi ,γi
(p)

)
= Fn

α,β,γ.

�

Theorem 10. (Monotonicity) Let pi =
(
µpi , ηpi , vpi

)
and qi =

(
µqi , ηqi , vqi

)
(i = 1, 2, . . . , m) be two

collections of PFN. If µpi ≤ µqi , ηpi ≥ ηqi and vpi ≥ vqi holds for all i (i = 1, 2, . . . , m), then

PFPCADn
α,β(p1, p2, . . . , pm) ≤ PFPCADn

α,β(q1, q2, . . . , qm), (58)

PFPCAFn
α,β,γ(p1, p2, . . . , pm) ≤ PFPCAFn

α,β,γ(q1, q2, . . . , qm), (59)

PFPCAGn
α,β,γ(p1, p2, . . . , pm) ≤ PFPCAGn

α,β,γ(q1, q2, . . . , qm). (60)

Proof. We prove the Equation (59) holds for all m, and the others can be proved analogously.
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By Theorem 6, we get

PFPCAFn
α,β,γ(p1, p2, . . . , pm) =

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
,

PFPCAFn
α,β,γ(q1, q2, . . . , qm) =

((
1−

m
∏
i=1

(
1− µFn

αi ,βi ,γi
(qσ(i))

)ω̃i
)

,
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(qσ(i))

,
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(qσ(i))

)
.

Since µpi ≤ µqi and vpi ≥ vqi , we can get(
1−

m

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)
≤
(

1−
m

∏
i=1

(
1− µFn

αi ,βi ,γi
(qσ(i))

)ω̃i
)

and
m

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

≥
m

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(qσ(i))

,
m

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

≥
m

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(qσ(i))

.

By Definition 6, we get PFPCAFn
α,β,γ(p1, p2, . . . , pm) ≤ PFPCAFn

α,β,γ(q1, q2, . . . , qm). �

Theorem 11. (Boundedness) Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, then

d−Dn
α,β
≤ PFPCADn

α,β ≤ d+Dn
α,β

, (61)

d−Fn
α,β,γ
≤ PFPCAFn

α,β,γ(p1, p2, . . . , pm) ≤ d+Fn
α,β,γ

, (62)

d−Gn
α,β,γ
≤ PFPCAGn

α,β,γ(p1, p2, . . . , pm) ≤ d+Gn
α,β,γ

, (63)

where d+∆ =

(
max

i
(µ∆), min

i
(v∆)

)
and d−∆ =

(
min

i
(µ∆), max

i
(v∆)

)
and ∆ denotes Dn

α,β, Fn
α,β,γ, Gn

α,β,γ.

Proof. We prove the Equation (62) holds for all m, and the others can be proved analogously.
From Theorem 6, we can get

PFPCAFn
α,β,γ(p1, p2, . . . , pm) =

((
1−

m

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

,
m

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
m

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
.

By the definition of d+Fn
ξ,ζ

, d−Fn
ξ,ζ

we can get

1−
m
∏
i=1

(
1−min

(
µFn

αi ,βi ,γi
(pσ(i))

))ω̃i

≤ 1−
m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

≤ 1−
m
∏
i=1

(
1−max

(
µFn

αi ,βi ,γi
(pσ(i))

))ω̃i

FPCAFn
α,β,γ

(
p−1 , p−2 , . . . , p−m

)
≤ PFPCAFn

α,β,γ(p1, p2, . . . , pm) ≤ FPCAFn
α,β,γ

(
p+1 , p+2 , . . . , p+m

)
.

By Definition 7, we get d−Fn
α,β,γ
≤ PFPCAFn

α,β,γ(p1, p2, . . . , pm) ≤ d+Fn
α,β,γ

. �

By giving different values of the parameters, we get the following special cases.

Theorem 12. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, then
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(1) If ωi = ω̃i = ρ
(

Aσ(i)

)
− ρ

(
Aσ(i−1)

)
, then the series of PFPCA operators are all reduced to the

series of picture fuzzy point averaging (PFPWA) operators. In particular, if mi =
1
m , (i = 1, 2, . . . , m),

then PFPCA operators is reduced to a picture fuzzy averaging (PFA) operator, which is defined as:

PFA =


√√√√1−

(
m

∏
i=1

(
1− µ2

i
))1/m

,

(
m

∏
i=1

ηi

)1/m

,

(
m

∏
i=1

vi

)1/m
.

(2) If n = 0, ω̃i = ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, and ρ(A) =

|A|
∑

i=1
ω̃i for all A ⊆ X, where |A| is the number

of the elements in set A, ω̃ = (ω̃1, ω̃2, · · · ω̃m)
T , ω̃i ∈ [0, 1], ∑m

i=1 ω̃i = 1, then the PFPCA operator is
reduced to a picture fuzzy order-weighted averaging (PFOWA) operator defined by Garg [13].

(3) If n = 0, ω̃i = ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, then the series of PFPCA operators are all reduced to the series

of picture fuzzy weighted averaging (PFWA) operators defined by Garg [13].

4.2. Picture Fuzzy Point–Choquet Geometric Operator

Definition 11. Let Ω be the set of all PFNs, and pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs,
taking αi, βi, γi ∈ [0, 1]. Then we define the series of PFPCG operators: Ωm → Ω , if

F(C4)
∫

pdρ = PFPCGDn
α,β(p1, p2 · · · pm) =

m

∏
i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Dn

ασ(i),βσ(i)

(
pσ(i)

)
, (64)

F(C5)
∫

pdρ = PFPCGFn
α,β,γ(p1, p2 · · · pm) =

m
∏
i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Fn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

)
, (65)

F(C6)
∫

pdρ = PFPCGGn
α,β,γ(p1, p2 · · · pm) =

m
∏
i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))
Gn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

)
, (66)

where σ(i) denotes a permutation of (1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), and Gσ(i) is the

attribute corresponding to pσ(i), Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
, Aσ(0) = φ.

By operational laws defined in Section 2.1, we can obtain the following theorem.

Theorem 13. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, and σ(i) be a permutation
of (1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), Gσ(i) is the attribute corresponding to pσ(i),

Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
, Aσ(0) = φ. Taking ω̃i = ρ

(
Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, αi, βi, γi ∈ [0, 1], αi + βi +

γi ≤ 1, then the aggregated values by the series of PFPCG operators are also PFNs, and

PFPCGDn
α,β(p1, p2 · · · pm) ={

m
∏
i=1

(
µpσ(i) + (1− γi − βi)πpσ(i)

)ω̃i
, 1−

m
∏
i=1

(
1−

(
ηpσ(i) + βiπpσ(i)

))ω̃i
,

m
∏
i=1

(
1−

(
vpσ(i) + γiπpσ(i)

))ω̃i
} (67)

PFPCGFn
α,β,γ(p1, p2, . . . , pm) =

(
m
∏
i=1

µ
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

, 1−
m
∏
i=1

(
1− ηFn

αi ,βi ,γi
(pσ(i))

)ω̃i

, 1−
m
∏
i=1

(
1− vFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

(68)

where

µFn
αi ,βi ,γi

(pi)
= µpσ(i) + αiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

ηFn
αi ,βi ,γi

(pi)
= ηpσ(i) + βiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,
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vFn
αi ,βi ,γi

(pσ(i))
= vpσ(i) + γiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi

PFPCGGn
α,β,γ(p1, p2, . . . , pm) =

((
1−

m

∏
i=1

(
1− µpσ(i)α

n
i

)ω̃i

)
,

m

∏
i=1

(
ηpσ(i) β

n
i

)ω̃i
,

m

∏
i=1

(
vpσ(i)γ

n
i

)ω̃i

)
(69)

Theorem 14. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs. Taking k � 0, then

PFPCGDn
α,β

(
pk

1, pk
2, . . . , pk

m

)
=
(

PFPCGDn
α,β(p1, p2, . . . , pm)

)k
, (70)

PFPCGFn
α,β,γ

(
pk

1, pk
2, . . . , pk

m

)
=
(

PFPCGFn
α,β,γ(p1, p2, . . . , pm)

)k
, (71)

PFPCGGn
α,β,γ

(
pk

1, pk
2, . . . , pk

m

)
=
(

PFPCGGn
α,β,γ(p1, p2, . . . , pm)

)k
. (72)

Theorem 15. Let pi =
(
µpi , ηpi , vpi

)
and qi =

(
µqi , ηqi , vqi

)
(i = 1, 2, . . . , m) be two collections of PFNs, then

PFPCGDn
α,β(p1 ⊗ q1, p2 ⊗ q2, . . . , pm ⊗ qm)

= PFPCGDn
α,β(p1, p2, . . . , pm)⊗ PFPCGDn

α,β(q1, q2, . . . , qm),
(73)

PFPCGFn
α,β,γ(p1 ⊗ q1, p2 ⊗ q2, . . . , pm ⊗ qm)

= PFPCGFn
α,β,γ(p1, p2, . . . , pm)⊗ PFPCGFn

α,β,γ(q1, q2, . . . , qm),
(74)

PFPCGGn
α,β,γ(p1 ⊗ q1, p2 ⊗ q2, . . . , pm ⊗ qm)

= PFPCGGn
α,β,γ(p1, p2, . . . , pm)⊗ PFPCGGn

α,β,γ(q1, q2, . . . , qm).
(75)

Parallel to Theorems 9–11, the series of PFPCG operators have properties similar to PFPCA
operators such as idempotency, monotonicity, and boundedness under some conditions, which are
omitted in order to save space.

ωi = ω̃i = ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

)
.

4.3. Generalized Picture Fuzzy Point–Choquet Averaging Operator

Definition 12. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, taking αi, βi, γi ∈ [0, 1], λ � 0,
and αi + βi + γi ≤ 1. Then we define a series of GPFPCA operators: Ωm → Ω, if

F(C7)
∫

pdρ = GPFPCADn
α,β(p1, p2 · · · pn) =

(
m
∑

i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))(
Dn

ασ(i),βσ(i)

(
pσ(i)

))λ
)1/λ

, (76)

F(C8)
∫

pdρ = GPFPCAFn
α,β,γ(p1, p2 · · · pn) =

(
m
∑

i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))(
Fn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

))λ
)1/λ

, (77)

F(C9)
∫

pdρ = GPFPCAGn
α,β,γ(p1, p2 · · · pn) =

(
m
∑

i=1

(
ρ
(

Aσ(i)

)
− ρ
(

Aσ(i−1)

))(
Gn

ασ(i),βσ(i),γσ(i)

(
pσ(i)

))λ
)1/λ

. (78)

where Gσ(i) is the attribute corresponding to pσ(i), Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
, Aσ(0) = φ, and σ(i) denotes a

permutation of (1, 2, . . . , m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m).

By operational laws defined in Section 2.1, we can obtain the following theorem.
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Theorem 16. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, and σ(i) be a permutation of
(1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), Gσ(i) is the attribute corresponding to pσ(i), Aσ(0) = φ,

Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
, and taking ω̃i = ρ

(
Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, αi, βi, γi ∈ [0, 1], αi + βi + γi ≤ 1,

then the aggregated values by the series of GPFPCA operators are also PFNs.
(1)

GPFPCADn
α,β(p1, p2 · · · pn) =

{
1−

m
∏
i=1

(
1−

(
µpσ(i) + αiπpσ(i)

)λ
)ω̃i

,

1−
(

1−
m
∏
i=1

(
1−

(
1− ηpσ(i) − (1− βi)πpσ(i)

)λ
)ω̃j

)1/λ

, 1−
(

1−
m
∏
i=1

(
1−

(
1− vpσ(i) − (1− γi)πpσ(i)

)λ
)ω̃j

)1/λ


;

(2)

GPFPCAFn
α,β,γ(p1, p2, . . . , pm) =(1−

m
∏
i=1

(
1− µλ

Fn
αi ,βi ,γi

(pσi )

)ω̃i
) 1

λ

, 1−

1−
m
∏
i=1

(
1−

(
1− ηFn

αi ,βi ,γi
(pσi )

)λ
)ω̃i

 1
λ

, 1−

1−
m
∏
i=1

(
1−

(
1− vFn

αi ,βi ,γi
(pσi )

)λ
)ω̃i

 1
λ


where

µFn
αi ,βi ,γi

(pi)
= µpσ(i) + αiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

ηFn
αi ,βi ,γi

(pi)
= ηpσ(i) + βiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

vFn
αi ,βi ,γi

(pσ(i))
= vpσ(i) + γiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
;

(3) GPFPCAFn
α,β,γ(p1, p2, . . . , pm) =

(1−
m
∏
i=1

(
1− µλ

pσ(i)
αnλ

i

)ω̃i
) 1

λ

, 1−
[

1−
m
∏
i=1

(
1−

(
1− ηpσ(i) β

n
i

)λ
)ω̃i

] 1
λ

, 1−
[

1−
m
∏
i=1

(
1−

(
1− vpσ(i)γ

n
i

)λ
)ω̃i

] 1
λ

.

Parallel to Theorems 9–11, the series of GPFPCA operators have properties similar to PFPCA
operators such as idempotency, monotonicity, and boundedness under some conditions, which are
omitted in order to save space.

4.4. Generalized Picture Fuzzy Point–Choquet Geometric Ooperator

Definition 13. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, taking αi, βi, γi ∈ [0, 1], λ � 0,
and αi + βi + γi ≤ 1. Then we define a series of GPFPCG operators: Ωm → Ω, if

F(C10)
∫

pdρ = GPFPCGDn
α,β(p1, p2 · · · pm) =

1
λ

m

∏
i=1

(
λDn

ασ(i),βσ(i)

(
pσ(i)

))(ρ(Aσ(i))−ρ(Aσ(i−1)))
, (79)

F(C11)
∫

pdρ = GPFPCGFn
α,β,γ(p1, p2 · · · pm) =

1
λ

m

∏
i=1

(
λFn

ασ(i),βσ(i)γσ(i)

(
pσ(i)

))(ρ(Aσ(i))−ρ(Aσ(i−1)))
, (80)

F(C12)
∫

pdρ = GPFPCGGn
α,β,γ(p1, p2 · · · pm) =

1
λ

m
∏
i=1

(
λGn

ασ(i),βσ(i)γσ(i)

(
pσ(i)

))(ρ(Aσ(i))−ρ(Aσ(i−1)))
. (81)

Similarly, we can obtain the following theorem:
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Theorem 17. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, and σ(i) be a permutation of
(1, 2 · · ·m) such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(m), Gσ(i) is the attribute corresponding to pσ(i), Aσ(0) = φ,

and Aσ(i) =
{

Gσ(1), · · · Gσ(i)

}
. Taking ω̃i = ρ

(
Aσ(i)

)
− ρ
(

Aσ(i−1)

)
, αi, βi, γi ∈ [0, 1], αi + βi + γi ≤ 1,

then the aggregated values by the series of GPFPCG operators are also PFNs, and
(1)

GPFPCGDn
α,β(p1, p2 · · · pn) =1−

(
1−

m
∏
i=1

(
1−

(
1− µpσ(i) − (1− αi)πpσ(i)

)λ
)ω̃i

)1/λ

, 1−
m
∏
i=1

(
1−

(
ηpσ(i) + βiπpσ(i)

)λ
)ω̃i

,

1−
m
∏
i=1

(
1−

(
vpσ(i) + γiπpσ(i)

)λ
)ω̃i

} ;

(2)

GPFPCGFn
α,β,γ(p1, p2, . . . , pm) =

1−
(

1−
m
∏
i=1

(
1−

(
1− µpσ(i) −

(
1− ασ(i)

)
πpσ(i)

)λ
)ω̃i

)1/λ

,

1−
m
∏
i=1

(
1−

(
ηpσ(i) + βσ(i)πpσ(i)

)λ
)ω̃i

, 1−
m
∏
i=1

(
1−

(
vpσ(i) + γσ(i)πpσ(i)

)λ
)ω̃i

} ,

where
µFn

αi ,βi ,γi
(pi)

= µpσ(i) + αiπpσ(i)
1−(1−αi−βi−γi)

n

αi+βi+γi
,

ηFn
αi ,βi ,γi

(pi)
= ηpσ(i) + βiπpσ(i)

1−(1−αi−βi−γi)
n

αi+βi+γi
,

vFn
αi ,βi ,γi

(pσ(i))
= vpσ(i) + γiπpσ(i)

1−(1−αi−βi−γi)
n

αi+βi+γi
;

(3)

GPFPCGGn
α,β,γ(p1, p2, . . . , pm) =1−

[
1−

m
∏
i=1

(
1−

(
1− µp

σ(i)
αn

i

)λ
)ωi

] 1
λ

,

(
1−

m
∏
i=1

(
1− ηλ

p
σ(i)

βnλ
i

)ω̃i
) 1

λ

,

(
1−

m
∏
i=1

(
1− vλ

p
σ(i)

γnλ
i

)ω̃i
) 1

λ

 .

Parallel to Theorems 13–15, the series of GPFPCG operators have properties such as idempotency,
monotonicity, and boundedness under some conditions, which are omitted in order to save space.

In fact, the correlations of these proposed aggregation operators can be further studied. Here, we
take PFPCAFn

α,β,γ as an example.

Theorem 18. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, Then the operation of complement
on them is as follows:

PFPCAFn
α,β,γ(pc

1, pc
2, . . . , pc

m) = PFPCAFn
α,β,γ(p1, p2, . . . , pm)

c, (82)

PFPCGFn
α,β,γ(pc

1, pc
2, . . . , pc

m) = PFPCGFn
α,β,γ(p1, p2, . . . , pm)

c, (83)

GPFPCAFn
α,β,γ(pc

1, pc
2, . . . , pc

m) = GPFPCGFn
α,β,γ(p1, p2, . . . , pm)

c, (84)

GPFPCGFn
α,β,γ(pc

1, pc
2, . . . , pc

m) = GPFPCAFn
α,β,γ(p1, p2, . . . , pm)

c. (85)

By Theorems 3–5, we can easily obtain the following theorems.
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Theorem 19. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, then the operation of the complement
to aggregation operators is as follows:[

PFPCAFn
α,β,γ(pc

1, pc
2, . . . , pc

m)
]c

= PFPCAFn
α,β,γ(p1, p2, . . . , pm), (86)

[
PFPCGFn

α,β,γ(pc
1, pc

2, . . . , pc
m)
]c

= PFPCGFn
α,β,γ(p1, p2, . . . , pm), (87)[

GPFPCGFn
α,β,γ(pc

1, pc
2, . . . , pc

m)
]c

= GPFPCGFn
α,β,γ(p1, p2, . . . , pm), (88)[

GPFPCAFn
α,β,γ(pc

1, pc
2, . . . , pc

m)
]c

= GPFPCAFn
α,β,γ(p1, p2, . . . , pm). (89)

Theorem 20. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, then

lim
n→∞

PFPCAFn
α,β,γ(p1, p2, . . . , pm) = PFPCADn

α
α+β+γ , β

α+β+γ ,
(p1, p2, . . . , pm), (90)

lim
n→∞

PFPCGFn
α,β,γ(p1, p2, . . . , pm) = PFPCGDn

α
α+β+γ , β

α+β+γ ,
(p1, p2, . . . , pm), (91)

lim
n→∞

GPFPCAFn
α,β,γ(p1, p2, . . . , pm) = GPFPCADn

α
α+β+γ , β

α+β+γ ,
(p1, p2, . . . , pm), (92)

lim
n→∞

GPFPCGFn
α,β,γ(p1, p2, . . . , pm) = GPFPCGDn

α
α+β+γ , β

α+β+γ ,
(p1, p2, . . . , pm). (93)

Theorem 21. Let pi = (µi, ηi, vi) be a collection of PFNs, If αi =
µpi

µpi+ηpi+vpi
, βi =

ηpi
µpi+ηpi+vpi

, γi =
vpi

µpi+ηpi+vpi
, (i = 1, 2, . . . , m) then

PFPCAFn
α,β,γ(p1, p2, . . . , pm) = PFPCAFα,β,γ(p1, p2, . . . , pm), (94)

PFPCGFn
α,β,γ(p1, p2, . . . , pm) = PFPCGFα,β,γ(p1, p2, . . . , pm), (95)

GPFPCAFn
α,β,γ(p1, p2, . . . , pm) = GPFPCAFα,β,γ(p1, p2, . . . , pm), (96)

GPFPCGFn
α,β,γ(p1, p2, . . . , pm) = GPFPCGFα,β,γ(p1, p2, . . . , pm). (97)

In following, we discuss the differences and relationships between PFPCA, PFPCG, GPFPCA,
and GPFPCG operators in detail.

In the case where λ = 1, the GPFPCA operator reduces to the PFPCA operator in Definition
10, and the GPFPCG operator reduces to the PFPCG operator in Definition 11. On the other hand,
the PFPCA operator is an arithmetic aggregation operator, and thus the PFPCG operator can be
treated its geometric form. Similarly, GPFPCG operator is geometric form of GPFPCA operator. Since
m
∏ xi

λi ≤
m
∑

i=1
λixi when xi � 0, λi � 0,

m
∑

i=1
λi = 1, the relationships between the aggregated values

obtained by the PFPCA, PFPCG, GPFPCA, and GPFPCG operators are shown as follows:

Theorem 22. Let pi = (µi, ηi, vi)(i = 1, 2, . . . , m) be a collection of PFNs, then

PFPCGFn
α,β,γ(p1, p2, . . . , pm) ≤ PFPCAFn

α,β,γ(p1, p2, . . . , pm), (98)

GPFPCGFn
α,β,γ(p1, p2, . . . , pm) ≤ GPFPCAFn

α,β,γ(p1, p2, . . . , pm), (99)

PFPCGFn
α,β,γ(p1, p2, . . . , pm) ≤ GPFPCAFn

α,β,γ(p1, p2, . . . , pm), (100)

GPFPCGFn
α,β,γ(p1, p2, . . . , pm) ≤ PFPCAFn

α,β,γ(p1, p2, . . . , pm). (101)
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Thus, we can conclude that the values obtained by the PFPCG operator are not bigger than the
ones obtained by the PFPCA and GPFPCA. The values obtained by the GPFPCG operator are not
bigger than the ones obtained by the PFPCA and GPFPCA operators for any value of λi � 0. Therefore,
decision makers can select the four different operators according to their preferences and actual needs.

5. A New Method to Multiattribute Decision-Making with Picture Fuzzy Information

In the present section, we introduce a novel approach to MADM under the picture fuzzy
environment. A typical MADM problem with picture fuzzy information can be described as: let
X = {x1, x2, . . . , xm} be a set of alternatives, and G = {G1, G2, . . . , Gs} be a set of attributes. Decision
makers are organized to make decisions over alternatives. For attribute Gj(j = 1, 2, . . . , s) of alternative
xi(i = 1, 2, . . . , m), decision makers are required to use a PFN to express their preference information,
which can be denoted as pij =

(
µij, ηij, vij

)
(i = 1, 2, . . . , m; j = 1, 2, . . . , s). Therefore, a picture fuzzy

decision matrix can be obtained P =
(

pij
)

m×s. In the following, based on the picture fuzzy aggregation
operators, a novel approach to solve this problem is introduced.

Step 1. Generally, there are two kinds of attributes: benefit attributes and cost attributes. Therefore,
the decision matrix should be normalized in the decision matrix by

pij =

{ (
µij, ηij, vij

)
q Gj ∈ I1(

vij, ηij, µij
)

q Gj ∈ I2
, (102)

where I1 represents benefit attributes and I2 represents cost attributes. Then a normalized decision
matrix can be obtained.

Step 2. Identify the fuzzy measure of the attributes of G.
Step 3. Rearrange the PFNs in a descending order based on the score function Sp by Definition 9

or accuracy function Hp by Definition 10.
Step 4. For alternative xi(i = 1, 2, . . . , m), utilize the series of PFPCA operators, or the series of

PFPCG operators, or the series of GPFPCA operators, or the series of GPFPCG operators to aggregate
all the attributes values. Therefore, we can get overall values pi(i = 1, 2, . . . , m) of alternatives.

Step 5. Calculate scores of pi(i = 1, 2, . . . , m).
Step 6. Rank alternatives xi(i = 1, 2, . . . , m) according to the rank of the corresponding

overall values.

6. Applications in Supporting the Hierarchical Medical Treatment System with the
Proposed Approach

Air pollution is currently the principal issue in the field of environmental health and PM2.5 (fine
particulate matter with a aerodynamic diameter of less than 2.5 µm) has become the most important
air contaminant in most cities of China, increasing health risks to the Chinese population with respect
to respiratory and lung system diseases. Abundant evidence has revealed that exposure to particulate
matter air pollution increases the risk of lung cancer since particulate matter with hazardous substances
can enter the human body through the respiratory system and is deposited into the lung, giving rise
to the damage of pulmonary function. As the research results published in The Lancet [34,35] show,
among the risk factors affecting the burden of disease, ambient air pollution rank fourth as risk factor
that contributed most to disability adjusted life-years. Air pollution has caused long-lasting adverse
effects on respiratory health, and the adverse effect represents a substantial burden with regard to
disease prevention and management.

Today, the number of patients with lung disease is soaring due to the above air pollution. In
addition, China’s grassroots medical services still leave much to be desired, which to some extent
force patients with lung disease to rush to large hospitals even if they only have simple lung health
issues. However, the number of patients exceeds the load capacity of the large hospitals, causing
great pressure. Under such circumstances, the concept of a hierarchical medical treatment system
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in accordance with China’s actual conditions by 2020 was introduced into the 13th Five Year Plan
(2016–2020). Through the hierarchical medical treatment system, patients with different conditions can
choose to go different levels of hospitals instead of all patients rushing to grade III, class A hospitals.
Essentially, classifying the different degrees of diseases is a key step in pushing forward the hierarchical
system. Therefore, in the present case analysis, we focus on classifying the different degrees of lung
diseases to support the hierarchical medical system in China. The specific statement about the medical
diagnosis problem is described as follows:

Suppose four patients, denoted by xi (i = 1, 2, 3, 4), who are possibly infected with lung diseases,
need to be diagnosed and distributed according to hierarchical medical treatment system. The four
patients are diagnosed from the following four symptoms (attributes) of the lung diseases: G1:
vital signs, including heart rate, blood pressure, and so on; G2: body temperature (shivering and
hyperthermia are two classical symptoms of pneumonia); G3: the frequency of cough; and G4: the
frequency of hemoptysis. We invited a doctor who is an expert in lung diseases from a large central
hospital. Then, the judgments provided by the doctor for the four patients with respect to the symptoms
were represented by PFNs and the decision matrix is shown in Table 1.

Table 1. The picture fuzzy decision matrix.

G1 G2 G3 G4

x1 (0.6, 0.1, 0.2) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3) (0.2, 0.3, 0.4)
x2 (0.4, 0.4, 0.1) (0.6, 0.3, 0.1) (0.5, 0.2, 0.2) (0.7, 0.1, 0.2)
x3 (0.2, 0.2, 0.3) (0.6, 0.2, 0.1) (0.4, 0.1, 0.3) (0.4, 0.3, 0.3)
x4 (0.6, 0.1, 0.3) (0.1, 0.2, 0.6) (0.1, 0.3, 0.5) (0.2, 0.3, 0.2)

With the above four diagnostic criteria for the lung diseases, the patient’s condition can be judged
by the doctor. According to the degree and urgency of lung diseases, patients can be distributed to
different levels and types of hospitals. Patients with severe conditions should be treated in grade
III, class A hospitals, and patients with less severe symptoms should be treated in grade II hospitals.
Other common illnesses can be treated in local hospitals. As mentioned in Section 2, the proposed new
decision-making method does not only control the certainty of doctor’s decision data, but also deals
with these situations where the decision data are correlative. Thus, the new decision-making method
is suitable to be employed here.

6.1. Decision-Making Process

(1) The decision-making steps based on the series of PFPCA operators
Step 1. As all the attributes (symptoms) are benefit attributes, the decision matrix does not need

to be normalized.
Step 2. Identify the fuzzy measure of the n attributes of G. Suppose that the fuzzy measures of

attributes of G are given as follows:

ρ(G1) = 0.2, ρ(G2) = 0.3, ρ(G3) = 0.2, ρ(G4) = 0.4

The ρ-fuzzy measure is used to calculate the fuzzy measure of attribute sets. Firstly, according to
Equation (19), the value of σ is obtained: σ = −0.237, and then the fuzzy measures of attribute sets of
G = {G1, G2, G3, G4} can be calculated by Equation (13), shown as follows:

ρ(G1, G2) = 0.486, ρ(G1, G3) = 0.400, ρ(G1, G4) = 0.580
ρ(G2, G4) = 0.680, ρ(G3, G4) = 0.581, ρ(G2, G3) = 0.486

ρ(G1, G2, G3) = 0.663, ρ(G1, G2, G4) = 0.840, ρ(G1, G3, G4) = 0.754
ρ(G2, G3, G4) = 0.840, ρ(G1, G2, G3, G4) = 1.
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Step 3. According to Table 1, by score functions, rearrange the PFNs in descending order, shown
as follows:

p1σ(1) = (0.5, 0.3, 0.1), p1σ(2) = (0.5, 0.1, 0.3), p1σ(3) = (0.2, 0.3, 0.4),p1σ(4) = (0.6, 0.1, 0.2),

p2σ(1) = (0.6, 0.3, 0.1), p2σ(2) = (0.5, 0.2, 0.2), p2σ(3) = (0.4, 0.4, 0.1), p2σ(4) = (0.7, 0.1, 0.2),

p3σ(1) = (0.6, 0.2, 0.1), p3σ(2) = (0.4, 0.1, 0.3), p3σ(3) = (0.2, 0.2, 0.3), p3σ(4) = (0.4, 0.3, 0.3),

p4σ(1) = (0.2, 0.3, 0.2), p4σ(2) = (0.6, 0.1, 0.3), p4σ(3) = (0.1, 0.3, 0.5), p4σ(4) = (0.1, 0.2, 0.6).

Then we can get

A1σ(1) = {G2} , A1σ(2) = {G2, G3} , A1σ(3) = {G2, G3, G4} , A1σ(4) = {G1, G2, G3, G4} ,

A2σ(1) = {G2} , A2σ(2) = {G2, G3} , A2σ(3) = {G1, G2, G3} , A2σ(4) = {G1, G2, G3, G4} ,

A3σ(1) = {G2} , A2σ(2) = {G2, G3} , A2σ(3) = {G1, G2, G3} , A3σ(4) = {G1, G2, G3, G4},

A4σ(1) = {G4} , A4σ(2) = {G1, G4} , A4σ(3) = {G1, G3, G4} , A4σ(4) = {G1, G2, G3, G4} .

Taking patientas x1 an example,

ρ1Aσ(1)
= ρG2 = 0.3,ρ1Aσ(2)

− ρ1Aσ(1)
= ρG2G3 − ρG2 = 0.186,

ρ1Aσ(3)
− ρ1Aσ(2)

= ρG2G3G4 − ρG2G3 = 0.354,ρ1Aσ(4)
− ρ1Aσ(3)

= ρG1G2G3G4 − ρG2G3G4 = 0.16

.
Thus, matrix of fuzzy measure is shown in Table 2:

Table 2. Matrix of fuzzy measure.

ρAσ(1)
ρAσ(2)

− ρAσ(1)
ρAσ(3)

− ρAσ(2)
ρAσ(4)

− ρAσ(3)

x1 0.3 0.186 0.354 0.16
x2 0.3 0.186 0.177 0.337
x3 0.3 0.186 0.177 0.337
x4 0.4 0.186 0.174 0.246

Step 4. (Suppose n = 1) For patients xi(i = 1, 2, 3, 4), utilize the series of PFPCA operators to
aggregate the all the attributes values. Therefore, we can get overall values pi of patients.

Without loss of generality, utilizing the PFPCAFn
α,β,γ operator in Theorem 6 to aggregate we get

p1 = (0.547, 0.201, 0.281), p2 = (0.592, 0.227, 0.168),

p3 = (0.462, 0.283, 0.314), p4 = (0.411, 0.212, 0.398).

Step 5. Calculating scores of pi(i = 1, 2, 3, 4) according to Definition 3, we can get

s(p1) = 0.266,s(p2) = 0.424,s(p3) = 0.148,s(p4) = 0.013.

Therefore, the rank of the overall values is p2 � p1 � p3 � p4.
Step 6. The rank about the patients’ conditions can be obtained according to the rank of pi,

which is x2 � x1 � x3 � x4. Further, the patients can be classified according to the ranking.
Therefore, the condition of patient 2 is the most serious, which means that patient 2 should be

treated in a grade III, class A hospital. Meanwhile, patient 4 should be treated in a local hospital since
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his condition is not so serious. On the basis of the availability of the ward, patients 1 and 3 can be
referred to other different types of hospitals.

(2) The decision-making steps based on the series of GPFPCA operators
Step 1. As all the attributes are benefit attributes, the decision matrix does not need to

be normalized.
Step 2. (Suppose n = 1, λ = 5) For patient xi (i = 1,2,3,4), utilize the series of GPFPCA operators to

aggregate the all the attributes values. Therefore, we can get overall values pi of patients.
Without loss of generality, we utilize GPFPCAFn

α,β,γ in Theorem 16 to aggregate, and get

p1 = (0.575, 0.443, 0.265), p2 = (0.615, 0.537, 0.102),

p3 = (0.506, 0.415, 0.289), p4 = (0.506, 0.265, 0.366).

Step 3. Calculating scores of pi (i = 1,2,3,4) according to Definition 9, we can get

s(p1) = 0.311,s(p2) = 0.513,s(p3) = 0.217,s(p4) = 0.140.

Therefore, the rank of the overall values is p2 � p1 � p3 � p4.
Step 4. The rank about the patients’ conditions can be obtained according to the rank of pi, which

is x2 � x1 � x3 � x4. Further, the patients can be classified according to the ranking.
Obviously, the ranking results of the two methods proposed in this paper are same. Thus, patient

2 should be treated in a grade III, class A hospital and patient 4 should be treated in a local hospital.

6.2. The Influence of the Parameter Vector λ on the Final Result

The prominent characteristic of our proposed operators is not only efficiently control the certainty
degree of PFS given by doctor but also model the medical diagnosis problem in a more flexible manner
using an additional parameter. To reflect the influences of different values of parameter λ on the
results, we utilize different parameter values of λ to rank the patients by the proposed GPFPCAFn

α,β,γ
operator, and results are shown in Table 3.

Table 3. Rankings with different value of parameter.

Parameters Score Value of pi (i = 1, 2, 3, 4) Ranking Results

λ = 5 s(p1) = 0.311 s(p2) = 0.513
s(p3) = 0.217 s(p4) = 0.14 x2 � x1 � x3 � x4

λ = 10 s(p1) = 0.350 s(p2) = 0.542
s(p3) = 0.297 s(p4) = 0.204 x2 � x1 � x3 � x4

λ = 15 s(p1) = 0.379 s(p2) = 0.562
s(p3) = 0.348 s(p4) = 0.231 x2 � x1 � x3 � x4

λ = 20 s(p1) = 0.401 s(p2) = 0.576
s(p3) = 0.381 s(p4) = 0.246 x2 � x1 � x3 � x4

λ = 30 s(p1) = 0.429 s(p2) = 0.594
s(p3) = 0.418 s(p4) = 0.262 x2 � x1 � x3 � x4

λ = 40 s(p1) = 0.446 s(p2) = 0.606
s(p3) = 0.438 s(p4) = 0.271 x2 � x1 � x3 � x4

λ = 50 s(p1) = 0.457 s(p2) = 0.614
s(p3) = 0.451 s(p4) = 0.276 x2 � x1 � x3 � x4

From Table 3, we can know that performance of the patients counts on the values of the parameters
λ and the score values may be different for different parameters of λ in the GPFPCAFn

α,β,γ operator.
However, the ranking result for patients’ conditions is always x2 � x1 � x3 � x4. By further analysis,
we can easily find that the score values by the GPFPCAFn

α,β,γ operator become bigger and bigger with
increasing values of λ.
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Figure 1 illustrates the scores of the patients’ conditions by the GPFPCAFn
α,β,γ operator as

assigned different values. From Figure 1, we can find that the scores of patient 3 are very close to those
of patient 1 with increasing values of λ. It is easily find that that condition of patient 2 is always the
most serious though the ranking results may be different for different parameters. Moreover, as the
values of λ become greater and greater, the score values of the patients’ conditions are very close to the
fixed values whatever the value of λ is.

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  24 of 32 

 

λ=40  ( ) =s p1 0.446 ( ) =s p2 0.606 ( ) =s p3 0.438 ( ) =s p4 0.271 2 1 3 4x x x x    

λ=50  ( ) =s p1 0.457 ( ) =s p2 0.614 ( ) =s p3 0.451 ( ) =s p4 0.276  2 1 3 4x x x x    

From Table 3, we can know that performance of the patients counts on the values of the 
parameters λ  and the score values may be different for different parameters of λ  in the 

n
, ,GPFPCAFα β γ operator. However, the ranking result for patients’ conditions is always 

  x x x x2 1 3 4 . By further analysis, we can easily find that the score values by the n
, ,GPFPCAFα β γ  

operator become bigger and bigger with increasing values of λ . 
Figure 1 illustrates the scores of the patients’ conditions by the n

, ,GPFPCAFα β γ  operator as 

assigned different values. From Figure 1, we can find that the scores of patient 3 are very close to 
those of patient 1 with increasing values of λ . It is easily find that that condition of patient 2 is always 
the most serious though the ranking results may be different for different parameters. Moreover, as 
the values of λ  become greater and greater, the score values of the patients’ conditions are very 
close to the fixed values whatever the value of λ  is. 

 

Figure 1. Score values when [ ]5,50λ ∈  by the n
α,β,γGPFPCAF  operator. 

6.3. Comparative Analysis 

In order to further illustrate the effectiveness and advantages of the proposed method in this 
paper, we can evaluate the performance of our methods and compare it with the existing methods. 

6.3.1. Validity Test 

We can employ the following testing criteria [36] to evaluate the performance of our methods. 
Test criterion 1: The most serious patient will not change when one of the serious patients is 

replaced with another slightly serious patient without changing the relative importance of each 
decision criteria; 

Test criterion 2: An effective MCDM method should follow a transitive property; 
Test criterion 3: A combined ranking of the patients should be the same as the ranking of original 

problem when we decompose an MCDM problem into smaller problems. 
Thus, in order to test the stability of the patients’ ranking under test criterion 1, we use a new 

decision matrix where diagnostic values of patients p1 , p3 , and p4  are replaced by less serious 

Figure 1. Score values when λ ∈ [5, 50] by the GPFPCAFn
α,β,γ operator.

6.3. Comparative Analysis

In order to further illustrate the effectiveness and advantages of the proposed method in this
paper, we can evaluate the performance of our methods and compare it with the existing methods.

6.3.1. Validity Test

We can employ the following testing criteria [36] to evaluate the performance of our methods.
Test criterion 1: The most serious patient will not change when one of the serious patients

is replaced with another slightly serious patient without changing the relative importance of each
decision criteria;

Test criterion 2: An effective MCDM method should follow a transitive property;
Test criterion 3: A combined ranking of the patients should be the same as the ranking of original

problem when we decompose an MCDM problem into smaller problems.
Thus, in order to test the stability of the patients’ ranking under test criterion 1, we use a new

decision matrix where diagnostic values of patients p1, p3, and p4 are replaced by less serious ones
denoted as p̃1, p̃3, and p̃4 respectively, which are determined by subtracting 0.1 from the original
positive degree and adding 0.1 to negative degree of patients p1, p3, and p4, respectively. The new
decision matrix now is shown in Table 4:
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Table 4. The new picture fuzzy decision matrix.

G1 G2 G3 G4

x1 (0.5, 0.1,0.1) (0.4, 0.3,0.2) (0.4, 0.1, 0.4) (0.1, 0.3, 0.5)
x2 (0.4, 0.4, 0.1) (0.6, 0.3, 0.1) (0.5, 0.2, 0.2) (0.7, 0.1, 0.2)
x3 (0.1, 0.2, 0.4) (0.5, 0.2, 0.2) (0.3, 0.1, 0.2) (0.3, 0.3, 0.4)
x4 (0.5, 0.1, 0.4) (0.1, 0.2, 0.7) (0.1, 0.3, 0.6) (0.1, 0.3, 0.3)

We get
p̃1 = (0.448, 0.201, 0.386),p̃2 = (0.592, 0.227, 0.168),

p̃3 = (0.359, 0.283, 0.419),p̃4 = (0.319, 0.213, 0.489)

and s( p̃1) = 0.062, s( p̃2) = 0.424, s( p̃3) = −0.06, s( p̃4) = −0.169.
According to the scores of p̃i, we can get x2 � x̃1 � x̃3 � x̃4. Therefore, patient 2 is in the most

serious condition again, which means that our method does not change the indication of the most
serious patient when non-severe patients are replaced by other more serious patients.

On the other hand, we can also add a new alternative p5 that is in less serious condition than p2

to test criterion 1. The alternative p5 is obtained by subtracting 0.1 from the original positive degree
and adding 0.1 to negative degree of patient p2. Then we use the proposed method in Theorem 6 to
rank pi (i = 1, 2, 3, 4, 5). We get p5 = (0.271, 0.328, 0.232) and s(p5) = 0.039. According to the scores of
p5, we can get x2 � x1 � x3 � x5 � x4, which means that the indication of patient remains unchanged
when adding a new alternative.

Hence, the proposed approach is effective under test criterion 1.
In order to test the validity of our method under criterion 2 and test criterion 3, we decompose the

original problem into three subproblems {p1, p2, p3}, {p2, p3, p4} and {p1, p3, p4}. Then we use same
approach to solve subproblems and get the ranking corresponding to each subproblem is x2 � x1 � x3,
x2 � x3 � x4 and x1 � x3 � x4 respectively. Then a combined ranking of the patients’ condition is
x2 � x1 � x3 � x4 which is identical to the original overall ranking of the un-decomposed problem.
Therefore, the proposed method is valid under test criterion 2 and test criterion 3.

6.3.2. The Advantages of the Proposed Method

To verify the effectiveness and advantages of our methods, we solve the same illustrative example
by using different MADM methods including the PFWA operator, the picture fuzzy hybrid averaging
(PFHA) operator, the picture fuzzy Einstein weighted average (PFEWA) operator in [13], and the
picture fuzzy weighted geometric (PFWG) and picture fuzzy hybrid geometric (PFHG) operators
in [12]. The ranking results are shown in Table 5.
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Table 5. Comparison of rankings with different aggregation operators.

Approaches Score Value of Xi (i = 1, 2, 3, 4) Ranking

Approach based on the PFWA operator [13] s(p1) = 0.199 s(p2) = 0.463
s(p3) = 0.222 s(p4) = −0.061 x2 � x1 � x3 � x4

Approach based on the PFHA operator [13] s(p1) = 0.239 s(p2) = 0.407
s(p3) = 0.171 s(p4) = −0.108 x2 � x1 � x3 � x4

Approach based on the PFWG operator [12] s(p1) = 0.243 s(p2) = 0.402
s(p3) = 0.103 s(p4) = −0.061 x2 � x1 � x3 � x4

Approach based on the PFHG operator [12] s(p1) = 0.327 s(p2) = 0.413
s(p3) = 0.279 s(p4) = 0.133 x2 � x1 � x3 � x4

Approach based on the PFEWA operator [13] s(p1) = 0.261 s(p2) = 0.425
s(p3) = 0.139 s(p4) = 0.005 x2 � x1 � x3 � x4

Approach based on PFPCAFn
α,β,γ

operator (in this paper)
s(p1) = 0.265 s(p2) = 0.424
s(p3) = 0.148 s(p4) = 0.013 x2 � x1 � x3 � x4

Approach based on the PFPCGFn
α,β,γ

operator (in this paper)
s(p1) = 0.204 s(p2) = 0.399
s(p3) = 0.095 s(p4) = 0.051 x2 � x1 � x3 � x4

Approach based on the GPFPCAFn
α,β,γ

operator (in this paper)
s(p1) = 0.310 s(p2) = 0.513
s(p3) = 0.217 s(p4) = 0.140 x2 � x1 � x3 � x4

Approach based on the GPFPCGFn
α,β,γ

operator (in this paper)
s(p1) = 0.095 s(p2) = 0.358

s(p3) = 0.111 s(p4) = −0.091 x2 � x3 � x1 � x4

From Table 5, we find that there are two final rankings obtained for the different eight operators;
seven of them (PFHA, PFWG, PFHG, PFEWA, PFPCAFn

α,β,γ, PFPCGFn
α,β,γ, GPFPCAFn

α,β,γ) produce
the same ranking result, i.e., x2 � x1 � x3 � x4 and two of them (PFWA and GPFPCGFn

α,β,γ) produce a
different ranking result, i.e., x2 � x3 � x1 � x4. Through the ranking results may be slightly different
by the above MADM methods, the condition of patient 2 is always the most serious and thus should
be treated in a grade III, class A hospital, and patient 4 should be treated in a local hospital. This fact
verifies that the new method we proposed is effective.

In the following, we compare our proposed operators with the existing operators, such as PFWA,
the picture fuzzy order weighted average (PFOWA) operator, PFHA, PFEWA, picture fuzzy Hammer
weighted averaging (PFHWA) operator in [13], and PFWG, the picture fuzzy order weighted geometric
(PFOWG) operator, PFHG, in [12], and the results are shown in Table 6.

Table 6. The comparison of different operators.

Aggregation Operators
Whether It Can

Consider Correlations
among Arguments

Whether It Can Control
the Certainty of PFNs

Flexible (Whether
There Is a Parameter to

Reflect Preferences)

PFWA [13] No No No
PFOWA [13] No No No
PFHA [13] No No No
PFWG [12] No No No

PFOWG [12] No No No
PFHG [12] No No No

PFEWA [13] No No No
PFHA [13] No No No

PFPCA Yes Yes Yes
PFPCG Yes Yes Yes

GPFPCA Yes Yes Yes
GPFPCG Yes Yes Yes

From Table 6, we can find our operators have the following superiorities compared with the
existing operators introduced in [12,13]:

(1) Compared with PFWA and PFWG in [12,13], the new proposed methods are more general and
flexible than those provided in the existing literature.



Int. J. Environ. Res. Public Health 2018, 15, 1718 25 of 29

(2) It should also be noted that the methods introduced in [12,13] are only based on the original
information, and thus cannot control the certainty degree, while the new proposed methods can
redistribute the membership or non-membership in PFNs according to different principles and
thus can get more intensive information from the original PFS.

(3) From Table 6, it can be concluded that aggregation operators introduced in [12,13] cannot consider
correlations among arguments, but the proposed aggregation operators can efficiently take the
various interactions among the decision criteria into account. Furthermore, when changing the
parameter λ, different scores are acquired shown as in Table 3, which makes decision making
more flexible and can meet the needs of different types of decision makers.

Based on the comparisons and analysis above, the methods proposed in this paper can not only
control the certainty of the decision data, but also deal with situations where the decision data are
correlative. Thus, the proposed approaches in this paper are superior compared with other methods.

7. Conclusions

The hierarchical medical treatment system is an efficient way to integrate all levels of medical
service system resources and release the pressure of large hospitals in China. In order to divide patients
under different conditions into different levels of hospitals in the hierarchical medical treatment system,
doctors need to make scientific assessments of patient’s condition based on their personal experience.
In this paper, we proposed a framework to the MADM problem under the picture fuzzy environment.
The analytical results show that the new approach is applicable and operational in medical diagnosis,
which provides convenience for supporting the hierarchical medical treatment system in China.

There are several main contributions of this work. Firstly, it defined some point operators under
picture fuzzy environment to reduce the uncertainty of doctor’s diagnosis data. By the point operators,
the PFNs are translated into other PFNs, which can express more intensive information. Secondly, this
paper proposed a new class of picture fuzzy point–Choquet operators including the PFPCA, PFPCG,
GPFPCA, and GPFPCG operators, which can not only reduce the uncertainty of doctor’s diagnosis
data, but also deal with these situations where the decision criteria (symptoms) are correlative. Thirdly,
it provided a novel approach to divide patients under different conditions into different levels of
hospitals based on the developed operators. Fourthly, the proposed approach has a wide range of
applications and can be further applied to other MADM problems, such as pilot hospital selection,
supplier selection, emergency decision making, and so on.

Although the proposed model serves better from both theoretical and practical perspectives,
this research still has some deficiencies. For instance, there are four parameters in the proposed
model and different parameters may lead to different results, while this paper only discusses the
influences of different values of parameter λ on results. Thus, an interesting topic worthy of further
study in the future is to determine the optimal parameter combination of the proposed operators.
Patient condition partially depends on doctor’s judgment, which may be a little subjective when
making decisions. Thus, in future study, we will consider utilizing probability theory, such as the
probabilistic Pythagorean fuzzy set [37], the proportional hesitant fuzzy set [38], and the probabilistic
interval-valued intuitionistic hesitant fuzzy set [39] to express doctor judgments.
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Appendix Proof of Theorem 2

Proof. We prove Equation (28) holds for all n, and the others can be proved analogously.
From Definition 5, we get Fα,β,γ(p), transform a PFN into another PFN, and

πFn
α,β,γ

= 1−
(
µp + απp

)
−
(
ηp + βπp

)
−
(
vp + γπp

)
=
(
1− µp − ηp − vp

)
(1− α− β− γ)= πp(1− α− β− γ)

Since F2
α,β,γ(p) = Fα,β,γ

(
Fα,β,γ(p)

)
, we have

F2
α,β,γ(p) = Fα,β,γ

(
Fα,β,γ(p)

)
=
{(

µp + απp + απFα,β,γ

)
,
(

ηp + βπp + βπFα,β,γ

)
,
(

vp + γπp + γπFα,β,γ

)}
.

Thus

πF2
ξ,ζ (γ)

=
(

1−
[
µp + απp + απFα,β,γ

]
−
[
ηp + βπ

q
γ + βπFα,β,γ

]
−
[
vp + γπ

q
γ + γπFα,β,γ

])
=
((

1− µp − ηp − vp
)
− (α + β + γ)πp − (α + β + γ)(1− α− β− γ)πp

)
= πp(1− α− β− γ)2

.
Since F3

α,β,γ(p) = Fα,β,γ

(
F2

α,β,γ(p)
)

, we have

F3
α,β,γ(p) = Fα,β,γ

(
F2

α,β,γ(p)
)
=
{(

µp + απp + α(1− α− β− γ)πp+
)
+ α(1− α− β− γ)2πp,(

ηp + βπp + β(1− α− β− γ)πp
)
+ β(1− α− β− γ)2πp,(

vp + γπp + γ(1− α− β− γ)πp
)
+ γ(1− α− β− γ)2πp

}
and πF3

α,β,γ(p) = πp(1− α− β− γ)3.

Similarly, we have

Fn
α,β,γ(p) = Fα,β,γ

(
Fn−1

α,β,γ(p)
)

=
{((

µp + απp + (1− α− β− γ)απp
)
+ (1− α− β− γ)2απp + · · ·+ (1− α− β− γ)n−1απp

)
,(

ηp + βπp + (1− α− β− γ)βπp
)
+ (1− α− β− γ)2φπp + · · ·+ (1− α− β− γ)n−1βπp,((

vp + γπp + (1− α− β− γ)γπp
)
+ (1− α− β− γ)2γπp + · · ·+ (1− α− β− γ)n−1γπp

)}
=
{

µp + απp
1−(1−α−β−γ)n

α+β+γ , ηp + βπp
1−(1−α−β−γ)n

α+β+γ , vp + γπp
1−(1−α−β−γ)n

α+β+γ

}
.

.
Therefore, Equation (28) holds, which completes the proof. �

Appendix Proof of Theorem 6

Proof. We prove the Equation (47) holds for all m, and the others can be proved analogously.
(i) We first prove PFPCAFn

α,β,γ is also a PFN.
As 0 ≤ µi, ηi, vi ≤ 1, 0 ≤ µi + ηi + vi ≤ 1, and

µFn
αi ,βi ,γi

(pσ(i))
= µpσ(i) + αiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

ηFn
αi ,βi ,γi

(pi)
= ηpσ(i) + βiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
,

vFn
αi ,βi ,γi

(pi)
= vpσ(i) + γiπpσ(i)

1− (1− αi − βi − γi)
n

αi + βi + γi
.
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Thus 0 ≤
m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

≤ 1, we get

0 ≤
(

1−
m

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)
≤ 1 and 0 ≤

m

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

≤ 1

Again

1−
m
∏
i=1

(
1− µFn

αi ,βi ,γi
(pi)

)ω̃i

+
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pi)

+
m
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pi)
≤

1−
m
∏
i=1

(
1− η

ω̃i
Fn

αi ,βi ,γi
(pσ(i))

− ν
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

)ω̃i

+
m
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

+
m
∏
i=1

ν
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

= 1

.
Hence, PFPCAFn

α,β,γ is a PFN according to Definition 5.
(ii) Next, we prove Equation (47) by using mathematical induction on m.
When m = 2, by the operational law (18) and (19) in Section 2.2, we have

PFPCAFn
α,β,γ(p1, p2) = ω̃1 p1 ⊕ ω̃2 p2

=

((
1−

(
1− µFn

α1,β1γ1
(p1)

)ω̃1
)

, ηω̃1
Fn

α1,β1,γ1
(p1)

, vω̃1
Fn

α1,β1γ1
(p1)

)
⊕
((

1−
(

1− µFn
α2,β2,γ2

(p2)

)ω̃2
)

, ηω̃1
Fn

α2,β2,γ2
(p2)

, vω̃2
Fn

α2,β2,γ2
(p2)

)
=

{(
1−

(
1− µFn

α1,β1γ1
(p1)

)ω̃1

+ 1−
(

1− µFn
α2,β2,γ2

(p2)

)ω̃2 −
(

1−
(

1− µFn
α1,β1γ1

(p1)

)ω̃1
)(

1−
(

1− µFn
α2,β2,γ2

(p2)

)ω̃2
))

,

ηω̃1
Fn

α1,β1,γ1
(p1)

ηω̃1
Fn

α2,β2,γ2
(p2)

, vω̃1
Fn

α1,β1,γ1
(p1)

vω̃2
Fn

α2,β2,γ2
(p2)

}
=

(
1−

(
1− µFn

α1,β1γ1
(p1)

)ω̃1(
1− µFn

α2,β2,γ2
(p2)

)ω̃2 , ηω̃1
Fn

α1,β1,γ1
(p1)

ηω̃1
Fn

α2,β2,γ2
(p2)

, vω̃1
Fn

α1,β1,γ1
(p1)

vω̃2
Fn

α2,β2,γ2
(p2)

})

=

(
1−

2
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

,
2

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
2

∏
i=1

ν
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

)

.

Thus, result is true for m = 2.
If Equation (47) holds for m = k, that is

PFPCAFn
α,β,γ(p1, p2, . . . , pk) =

(
1−

k

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

,
k

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
k

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
,

then, when m = k + 1, by the operational laws (7) and (9) in Section 2.2, we have

PFPCAFn
α,β,γ(p1, p2, . . . , pk+1) = PFPCAFn

α,β,γ(p1, p2, . . . , pk)⊕ ω̃k+1Fn
α,β,γ(pk+1)

=

(
1−

k
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

,
k

∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
k

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)

⊕
(

1−
(

1− µFn
αk+1,βk+1,γk+1

(pσ(k+1))

)ω̃i

, η
ω̃k+1
Fn

αk+1,βk+1,γk+1
(pσ(k+1))

, vω̃k+1
Fn

αk+1,βk+1,γk+1
(pσ(k+1))

)

=

{(
1−

k
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i

+ 1−
(

1− µFn
αk+1,βk+1,γk+1

(pk+1)

)ω̃k+1
−(

1−
k

∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)(

1−
(

1− µFn
αk+1,βk+1,γk+1

(pk+1)

)ω̃k+1
))

,

k
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pi)

η
ω̃k+1
Fn

αk+1,βk+1,γk+1
(pσ(i))

,
k

∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

vω̃k+1
Fn

αk+1,βk+1,γk+1
(pσ(i))

}
=

((
1−

k+1
∏
i=1

(
1− µFn

αi ,βi ,γi
(pσ(i))

)ω̃i
)

,
k+1
∏
i=1

η
ω̃i
Fn

αi ,βi ,γi
(pσ(i))

,
k+1
∏
i=1

vω̃i
Fn

αi ,βi ,γi
(pσ(i))

)
,

Thus, Equation (47) holds for m = k + 1.
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Therefore, Equation (47) holds for all m, which completes the proof. �
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