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Abstract: Air pollution forecasting plays a vital role in environment pollution warning and control.
Air pollution forecasting studies can also recommend pollutant emission control strategies to mitigate
the number of poor air quality days. Although various literature works have focused on the
decomposition-ensemble forecasting model, studies concerning the endpoint effect of ensemble
empirical mode decomposition (EEMD) and the forecasting model of sub-series selection are
still limited. In this study, a hybrid forecasting approach (EEMD-MM-CFM) is proposed based on
integrated EEMD with the endpoint condition mirror method and combined forecasting model
for sub-series. The main steps of the proposed model are as follows: Firstly, EEMD, which sifts
the sub-series intrinsic mode functions (IMFs) and a residue, is proposed based on the endpoint
condition method. Then, based on the different individual forecasting methods, an optimal combined
forecasting model is developed to forecast the IMFs and residue. Finally, the outputs are obtained
by summing the forecasts. For illustration and comparison, air quality index (AQI) data from Hefei
in China are used as the sample, and the empirical results indicate that the proposed approach is
superior to benchmark models in terms of some forecasting assessment measures. The proposed
hybrid approach can be utilized for air quality index forecasting.

Keywords: air quality index; hybrid forecasting approach; ensemble empirical mode decomposition;
end effect; combined forecasting model

1. Introduction

Air pollution has become an increasingly important issue in environmental sciences. The general
public has become increasingly attentive to poor air quality forecasts due to the serious impact that
pollution has on human health and its limitation on outdoor activities, especially in China [1–3].
Therefore, the development of advanced air pollution forecasting systems is an emerging topic for
research studies.

Air pollution levels are assessed through various indicators. The AQI is the one that reflects air
quality status. According to calculation outcomes under the new ambient air quality standards of China
(GB3095-2012), it integrates multiple pollutants into a single numerical form covering six pollutants
(sulfur dioxide (SO2), nitrogen dioxide (NO2), PM2.5, PM10, ozone (O3) and carbon monoxide (CO) [4]).
Currently, AQI is a vital reference for outdoor activity decisions. It has six classes and provides
suggestions on outdoor activity correspondingly for different people in terms of different physical
qualities (Table 1). Therefore, it is necessary to develop an effective AQI forecasting model.
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Table 1. The AQI index and related information in China.

AQI AQI Classes Health Impact Suggestions

0∼50 Excellent The air quality is satisfactory It is suitable for normal actions for various people.
Have weak health effects Extremely sensitive people should51∼100 Good on extremely sensitive people reduce outdoor activities.

Light Children, the elderly and patients with101∼150 pollution Healthy people show signs of irritation heart disease should reduce outdoor activities.
Moderate It may affect the heart and respiratory Even healthy people should151∼200 pollution systems of healthy people reduce outdoor sports activities.

Serious The symptoms of heart disease and Children, the elderly and patients with201∼300 pollution lung disease increased significantly heart disease should stop outdoor activities.
Heavy Healthy people have obvious Healthy people should avoid201∼300 pollution strong symptoms outdoor activities.

According to existing literature, abundant forecasting models, including atmospheric chemical
transport forecasting models and data-driven forecasting models, have been proposed for air
quality and the indicator AQI. The atmospheric chemical transport forecasting model is a forecasting
system that provides a large-scale, offline, time-space continuous model that estimates intercontinental
transport of atmospheric pollutants. The intercontinental transport results in North America
and Europe can be obtained according to the atmospheric transport continuity equation [5,6].
However, the advantage of the data-driven forecasting model is that we can choose some statistical
models or artificial intelligence models according to the characteristics of the data, and it is easy for
us to solve them with software, while the disadvantage is how to select the appropriate factors to
describe air quality prediction systems. This paper focuses on the prediction of AQI; thus, we mainly
consider the data-driven forecasting models. Related data-driven forecasting models are classified into
three main types: models using traditional statistical methods, models applying artificial intelligence
techniques and models utilizing combined and hybrid forecasting approaches.

As for traditional statistical models, the auto-regressive integrated moving average (ARIMA)
model, the automated correction technique, multiple linear regression (MLR), the principal component
regression (PCR) technique and the non-parametric regression (NR) method have been widely applied
to AQI and air quality forecasting. For instance, Reikard and Slini et al. utilized the ARIMA model to
predict the AQI and air pollution [7,8]. Neal et al. developed an automated bias correction scheme
for air quality forecasting, and the proposed model has good precision in the five days forecasted
ahead [9]. Camillo et al. proposed a bias adjustment technique to improve air quality forecasting [10].
Goyal et al. used the MLR and PCR methods for air quality forecasting in Delhi, respectively [11,12].
Aoife et al. developed an NR model for hourly NO2 forecasting [13].

As for AI techniques, artificial neural networks (ANN) and support vector regression (SVR)
might be the famous models for air quality forecasting. Jiang et al. [14], Hooyberghs et al. [15],
Ordieres et al. [16], Voukantsis et al. [17], Elangasinghe et al. [18] and Feng et al. utilized ANN
techniques for AQI and air pollution forecasting [19], respectively. Ortiz-García et al. and Yeganeh et al.
applied the SVR algorithms to forecasting O3 and CO [20,21]. Wang et al. proposed a comprehensive
warning system based on a modified least squares support vector machine and a cloud model, and the
empirical results showed that the warning system yielded remarkably high performance and has been
widely used [22]. Generally, the ANN is different from traditional statistical models. It is capable of
modeling non-linear relationships between input and output variables and is often used in forecasting
variables in complex systems. However, non-linear relationships described by the ANN model are
unsuitable to present an analytic expression for the forecasting model.

Another suitable model for unstable and nonlinear time series is the hybrid forecasting approach,
which integrates the EEMD algorithms [23] and single forecasting model. The main steps of the hybrid
forecasting approach are as follows: firstly, employing the EEMD algorithms to sift the original data to
obtain one group of smoother IMFs and a residue; then, utilizing the forecasting model for IMFs
and the residue; at last, summing forecasts and obtaining outputs. Hybrid AI models are popular in
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practical application in the fields of crude oil price forecasting [24–26], wind speed forecasting [27],
electrical load forecasting [28,29] and air quality forecasting. Zhu et al. proposed two hybrid models for
daily AQI forecasting in Xingtai [30]. Niu et al. proposed a novel hybrid decomposition-and-ensemble
model for PM2.5 based on complementary EEMD, the grey wolf optimizer and SVR [31]. Zhou et al.
presented a general regression neural network (GRNN) model combining EEMD. In this research,
the EEMD technique was exploited to decompose raw PM2.5 data into some IMFs and residues,
and GRNN was implemented to forecast each IMF and residue series [32]. The empirical tests showed
that hybrid AI models are more effective and robust than any single model.

However, on the one hand, despite the effectiveness and robustness of hybrid forecasting models
based on EEMD, these approaches always neglect the endpoint effect. As discussed in [33,34],
however, the two ends of a time series will disperse, while the series is decomposed by EEMD,
and this dispersion, termed the end effect, would “empoison” the whole time series, gradually
making the results distorted. To be more specific, the end effect occurs during the sifting process,
when the endpoints cannot be identified as the extrema in the procedure of decomposition. Wu et al.
proposed an improved method for restraining the end effect in empirical mode decomposition by
using known points to extend both the beginning and end of the series [34]. On the other hand,
the selection of a suitable forecasting model for sub-series is a tough problem. Combination forecasting
was initially introduced by Bates and Granger [35]. It improves forecasting accuracy and reduces
risk effectively; thus, it leads to wide application in social-economics, the eco-environment and
management, etc. [36,37]. Therefore, to address these issues, a hybrid forecasting approach has
been proposed with integrated EEMD based on the endpoint condition method and the combined
forecasting model for sub-series forecasting. The main steps of the proposed model are as follows
successively: applying EEMD with the endpoint condition method to sift the original AQI time series;
considering that forecasting accuracy varies with time points and methods, constructing the optimal
combined forecasting model by applying the induced ordered weighted averaging (IOWA) operator,
summing the forecast outputs and testing the forecasting accuracy.

The primary contributions of this paper are described as follows:

• Based on the decomposition and ensemble strategy, the endpoint condition method is utilized to
sift IMFs and residues.

• A hybrid forecasting approach is proposed based on the varied weight combined forecasting
model and EEMD.

• Some evaluation measures and model test are employed to estimate the forecasting performance of
the developed hybrid approach.

• The developed hybrid approach significantly improves the forecasting accuracy of AQI.

The structure of this study is organized as follows: Section 2 introduces the study city and
dataset. Section 3 proposes several individual forecasting models and hybrid forecasting approaches.
The forecasting results and performance are discussed in Section 4. Finally, conclusions and further
research are discussed in Section 5.

2. Study Area and Dataset

Hefei is the capital city of Anhui Province in China, located at north latitude 31◦18′, east longitude
117◦27′ (Figure 1). Hefei is an important national science and education center and the first national
science and technology innovation city. Hefei is also one of the famous tourist cities. With the
development of the economy, the air quality of Hefei is also getting worse, which poses a threat to
people’s health and travel. Therefore, accurately forecasting the AQI index can provide good advice for
people’s outdoor activities. In this study, the data of AQI were collected from the web sites http://www.
zhb.gov.cn/ and http://www.tianqihoubao.com/aqi/hefei.html. We selected the dataset of daily AQI
from 1 January 2016–31 May 2018 with a total of 884 observations; the mean was 85.00; the maximum
was 275; the minimum was 17. The class of AQI in Hefei ranged from Class I–Class V (Figure 1).

http://www.zhb.gov.cn/
http://www.zhb.gov.cn/
http://www.tianqihoubao.com/aqi/hefei.html
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The sample data were partitioned into subsets, i.e., training set (1 January 2016–30 April 2018) and
testing set (1 May 2018–30 May 2018).

Figure 1. Geographic location of Hefei in China.

3. Methodology

This section presents a hybrid forecasting approach with EEMD and an optimal combined
forecasting model. In particular, Section 3.1 provides an overview of the proposed model,
and Sections 3.2–3.4 introduce EEMD, the individual forecasting technique and the optimal combined
forecasting model, respectively.

3.1. Overview of the Proposed Hybrid Methodology

To enhance forecasting accuracy, a hybrid forecasting approach with EEMD based on the mirror
method and the optimal combined forecasting model is proposed for AQI forecasting. We introduce
the mirror method for eliminating the impact of the endpoints because the endpoints adversely affect
the results of the decomposition by EEMD. Meanwhile, in order to address the difficult problem of
how to choose the model for forecasting the IMFs and residue, we propose a varied weight combined
forecasting model. The framework of the proposed hybrid forecasting approach is as illustrated
in Figure 2.

The main steps of the proposed hybrid forecasting approach are as follows:
Step 1: Data decomposition.
The EEMD with mirror method is applied to decompose the original AQI data xt(t = 1, 2, ..., N)

into N IMFs, ct(k), k = 1, 2, · · ·K, and one residue rt.
Step 2: Individual forecast.
In this step, individual forecast techniques, such as the general regression neural network

(GRNN) model, the nonlinear autoregressive neural network (NARNN) model and exponential
smoothing (ES) method, are employed to forecast the IMFs and residue series. Accordingly,
the forecasting results are denoted by cit(k) and rit, respectively.

Step 3: Combined forecasting model for IMFs and residue
To improve accuracy and diversify the risk of forecasting effectively, the combined forecasting

model is used to forecast IMFs and residue series by integrating different individual forecasting
models mentioned above. Considering that forecasting accuracy varies with time points and methods,
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the IOWA ensemble operator is applied to construct the optimal combined forecasting model.

The combined forecasting result can be written as ĉt(k) =
m
∑

i=1
wica−index(it) and r̂t =

m
∑

i=1
wira−index(it),

respectively, where m is the total number of individual models, and the weight wi meets the conditions

that wi ∈ [0, 1],
m
∑

i=1
wi = 1.

Step 4: Ensemble forecast.
In this step, the forecast results of AQI can be obtained by summing ĉt(k) and r̂t with a simple

addition approach. It can be described as:

x̂t =
K

∑
k=1

ĉt(k) + r̂t. (1)

Step 5: Model test and comparison.
The final outputs are obtained through the model test and comparison.
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Figure 2. Framework of the proposed hybrid forecasting approach.
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3.2. EEMD with the Endpoint Condition Method

3.2.1. EEMD

The EEMD technique, first proposed by Huang et al., is a kind of adaptive signal decomposition
technique using the Hilbert–Huang transform (HHT). The EEMD technique is an improvement of the
EMD technique [38], and it can be employed to nonlinear and non-stationary time series. The EEMD
technique decomposes the original series into IMFs and residue. The IMF is a function that satisfies
two conditions:

1. In the whole dataset, the number of zeros and the number of extreme crossings must either be
equal or differ at most by one;

2. At any point, the mean value of the envelope defined by the local maxima and local
minima is zero.

The calculation steps of the EEMD technique for an original time series are listed in the following:

Step 1: In the original time series xt, random white noise obeying a normal distribution is added to
generate the new time series yt.
Step 2: Let i = 0, yi,t = yt, and calculate all of the local maxima and local minima.
Step 3: Interpolate the local maxima by a cubic spline to obtain upper envelop hmax,i,t, and the
lower envelop hmin,i,t can be obtained similarly.
Step 4: Compute the mean envelop: mi,t = (hmax,i,t + hmin,i,t)

/
2.

Step 5: Let ri,t = yi,t−mi,t, and judge whether ri,t meets the two conditions of IMFs. If it satisfies the
two conditions, then ri,t is the i-th IMFi,t; otherwise, let yi,t = yi−1,t− ri−1,t, and repeat Step 2–Step 5.
Step 6: Repeat Step 2–Step 5 until the residue is a constant or trend time series.
Step 7: Based on different random white noise, repeat Step 1–Step 6 NE times; NE is the number of
ensemble members.
Step 8: Find the ensemble and mean results from Step 7 to obtain the final result, i.e., the IMFi,t and
the residue ri,t.

3.2.2. Endpoint Condition Method

In this study, we introduce a sample and effective method, i.e., the mirror method (MM). The MM
uses the known points to extend both the beginning and end of the series. For the beginning of time
series xt, add local minimum Min(0) by mirror symmetry with respect to the local maximum Max(1);
for the end of the time series, add local maximum Max(n + 1) by mirror symmetry with respect to the
local minimum Min(n). The newly obtained Min(0) and Max(n + 1) are then taken for construction
of the lower and upper envelopes along with initial extrema.

Just as mentioned above, the Algorithm 1, which incorporated EEMD technique and mirror
method is depicted as follows.
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Algorithm 1 for data decomposition
1: procedure xt.
2: for 1 ≤ l ≤ NE do
3: yl

t ← xt + εl , yl
i=0,t ← yl

t
4: Max_local ← localmaxima yl

i,t, Min_local ← localminima yl
i,t

5: ȳl
i,t ← apply endpoint condition method to yl

i,t
6: h̄l

max,i,t ← upper envelop of ȳl
i,t; h̄l

max,i,t ← lower envelop of ȳl
i,t

7: m̄l
i,t ←

h̄l
max,i,t+h̄l

min,i,t
2 , r̄l

i,t ← ȳl
i,t − m̄l

i,t
8: while ȳl

i,t is a constant or trend do
9: if r̄l

i,t satisfies the two conditions of IMFs, do
10: r̄l

i,t is the i-th IMF∗i,t
11: i← i + 1
12: ȳl

i,t = ȳl
i−1,t − r̄l

i−1,t
13: else
14: ȳl

i,t = r̄l
i,t

15: end if
16: Max_local ← localmaxima yl

i,t, Min_local ← localminima yl
i,t

17: h̄l
max,i,t ← upper envelop of ȳl

i,t; h̄l
max,i,t ← lower envelop of ȳl

i,t

18: m̄l
i,t ←

h̄l
max,i,t+h̄l

min,i,t
2

19: end while
20: end for
21: end procedure IMF∗i,t and r̄i,t

3.3. Individual Forecasting Model

3.3.1. General Regression Neural Network Model

Specht [39] proposed a type of neural network model called a GRNN, which has strong
nonlinearity mapping capacity and a flexible network structure.

A GRNN comprises four layers, i.e., an input layer, pattern layer, summation layer and output layer.
The input and output vector can be described as: X = (x1, x2 · · · xn)T, Y = (y1, y2 · · · yk)

T respectively.

(1) Input layer

The number of input layer neurons is equal to the dimension of the input vector. Then, the pattern
layer is fed data from the input neurons of the input layer.

(2) Pattern layer

The number of neurons is equal to the number of training samples n. The pattern uses a nonlinear
function, i.e., the Gaussian function of pi is described as:

pi = e−
(X−Xi)

T (X−Xi)
2σ2 , (i = 1, 2, · · · , n). (2)

(3) Summation layer

The summation layer utilizes two kinds of summations, the simple summation Ss and the
weighted summation Swj. The transfer functions can be written as Equations (3) and (4):

Ss =
n

∑
t=1

pt, (3)

Swj =
n

∑
t=1

wt pt, j = 1, 2, · · · k, (4)
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where wt is the weight of pattern neuron t that is connected to the summation layer and pt is the
outputs that belong to the pattern layer.

(4) Output layer

In the output layer, the number of neurons is equal to the dimension k of the output vector Y,
and the forecasting results of neuron j can be computed as:

Ŷj =
Ss

Swj
, j = 1, 2, · · · , k. (5)

3.3.2. Nonlinear Autoregressive Neural Network Model

The NARNN model [40] is a kind of neural network with a memory function. The NARNN
consists of an input layer, hidden layers and an output layer. The outputs of the network depend on
the current input and the past output. The formula is expressed by:

y(t) = f [y(t− 1); · · · y(t− d)], (6)

where y(t) denotes the outputs, d is the delay lag and f represents the nonlinear function.
To avoid over-fitting, the original data are often divided into a training set and a testing

set. The number of delaying lags and hidden layer neurons is determined by repeated fitting.
Finally, the model with good performance is selected.

3.3.3. Exponential Smoothing Method

ES is a simple and effective forecasting method, which was proposed by Charles in 1957 [41].
The ES formula can be expressed as follows:

x̂t+1 = αxt + (1− α)x̂t, (7)

where x̂t+1 is the forecast for the period t + 1, xt is the observed value of series in period t, x̂t is the
forecast for the period t and α is the smoothing parameter between zero and one. If the time
series is stable, then we select a small value of α. A large value of α is desired for non-stationary
time series.

3.4. Combined Forecasting Model

To improve accuracy and diversify the risk of forecasting effectively, combined foresting is utilized
to predict the IMFs and residue series.

Generally, the combining method can be expressed in the following form:

x̂t =
m

∑
i=1

wixit, t = 1, 2, · · ·N, (8)

where the weight wi, i = 1, 2, · · · , m meets the conditions that wi ∈ [0, 1],
m
∑

i=1
wi = 1.

In order to realize the combination forecasting, how to determine the weight wi is a key issue.
The simple arithmetic method assigns an equal weight wi = 1/m to each weight. In practice,
the weighted average (WA) method has been shown to be an efficient tool for improving the
accuracy of combination forecasting, which assigns different values to diverse weights according to
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the optimization method by minimizing the combination forecasting errors under the constraints that

wi ∈ [0, 1],
m
∑

i=1
wi = 1. It can be shown as follows:

min J =
N
∑

t=1
e2

t =
m
∑

i=1

m
∑

j=1
wiwj

N
∑

t=1
eitejt

s.t.


m
∑

i=1
wi = 1

wi ≥ 0, i = 1, 2, · · · , m

(9)

where eit represents the error of the i-th individual forecasting method, and it can be written as
eit = xt − xit; et is denoted as the error of combined forecasting, which can be written as:

et = xt − x̂t = xt −
m

∑
i=1

wixit =
m

∑
i=1

wi(xt − xit) =
m

∑
i=1

wieit.

By solving the above optimization model, we can obtain the optimal weight vector of each single
forecasting method.

In the traditional combined forecasting model, the weights are generally fixed in each individual
forecasting model. In fact, the forecasting accuracy varies with time points and methods; therefore,
the IOWA operator is introduced to construct the optimal combined forecasting model by minimizing
the sum of error squares.

The main ideas of the combined forecasting model based on the IOWA operator are as follows:
firstly, the forecasting results of different methods at the same point are rearranged by forecasting
accuracy; then, aggregate the rearrangement series by the WA method.

Let ait denote the forecasting accuracy of the i-th individual forecasting method at t moment;
it can be defined as:

ait =

{
1−

∣∣(xt − xit)
/

xt
∣∣ ,

∣∣(xt − xit)
/

xt
∣∣ < 1

0,
∣∣(xt − xit)

/
xt
∣∣ ≥ 1

. (10)

Then, the combination forecasting result can be described as:

x̂′t =
m

∑
i=1

w′ ixa−index(it), (11)

where xa−index(it) represents the rearrangement series based on forecasting accuracy.
The optimal CFMbased on the IOWA operator can be shown as follows:

min J′ =
N
∑

t=1
(e′t)

2 =
m
∑

i=1

m
∑

j=1

N
∑

t=1
w′ iw′ je′ ite′ jt

s.t.


m
∑

i=1
w′ i = 1

w′ i ≥ 0, i = 1, 2, · · · , m

(12)

The optimal CFM is used to forecast the IMFs and residue series.

4. Empirical Study and Discussion

To verify the effectiveness of the proposed hybrid forecasting model, the AQI series of Hefei is
utilized as the sample data. The other forecasting methods, including the GRNN model, NARNN model,
ES model, these models based on the EEMD technique with mirror method (i.e., EEMD-MM-GRNN,
EEMD-MM-NARNN, EEMD-MM-ES) and the simple weighted combined forecasting based on
the EEMD technique with mirror method (EEMD-MM-SAM), are also introduced for comparison.
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Section 4.1 introduces the performance metrics. The model test and model improvement are presented
in Section 4.2. Section 4.3 reports and discusses the corresponding results.

4.1. Statistical Measures for Forecasting Performance

To measure the forecasting accuracy and effectiveness of different models, many evaluation
metrics have been researched and employed [27], such as the sum of squared error (SSE), mean absolute
error (MAE), mean absolute percentage error (MAPE) and root mean squared error (RMSE). SSE is
used to show the total forecasting error of the proposed model. MAE and RMSE are employed to
evaluate the mean magnitude of error between the real value and forecasted value. MAPE is utilized
to reflect the validity of the forecasting model. For these four metrics, the smaller the index values,
the better the model performance.

The SSE, MAE, MAPE and RMSE are respectively defined as:

SSE =
N

∑
t=1

(xt − x̂t)
2, (13)

MAE =
1
N

N

∑
t=1
|xt − x̂t|, (14)

MAPE =
1
N

N

∑
t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣, (15)

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2, (16)

where xt and x̂t(t = 1, 2, ..., N) are the real value and forecasting value at time t, respectively. N is the
data size of the testing set.

Besides, the mean mode accuracy (MMA) is introduced in this study, which can reflect the
forecasting accuracy of classes. It can be described as:

MMA=
1
N

N

∑
t=1

C

∑
c=1

bct, (17)

where:

bct =

{
1, x̂t ∈ c
0, x̂t /∈ c

, (18)

C = {1, 2, · · · , 6}, c ∈ C represents the class of time series value based on Table 1.

4.2. Testing Method and Improvements of the Proposed Model

The Diebold–Mariano (DM) test is employed to prove the superiority of the proposed hybrid
forecasting approaches statistically [42]. The DM test investigates the null hypothesis that the expected
forecast accuracy in the target model A is equal to that in the benchmark model B. The loss function is
set to the mean squared error, and the DM statistic can be defined as follows:

SDM =
ḡ√

(
_

V ḡ/N)
, (19)

where:

ḡ =
1
N

N

∑
t=1

gt, gt = (xt − xA,t)
2 − (xt − xB,t)

2,
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and:
_

Vg = γ0 + 2
∞

∑
t=1

γt (γt = cov(gt+1, gt))

where γ0 is the variance of gt and xA,t, xB,t represent the forecast values of model A and model B in
period t, respectively. N is the number of observations in the test set. Here, a unilateral test is used to
test the SDM statistic. Thus, the null hypothesis can be used to verify the superiority of model A over
model B under the condition of accepting confidence level p.

In this study, an improvement rate is adopted to measure whether the model A is superior to
model B in terms of forecasting accuracy. It can be defined as:

IRRMSE =

∣∣∣∣RMSEA − RMSEB
RMSEA

∣∣∣∣ , (20)

where RMSEA and RMSEB represent RMSEvalues of the proposed model and competing model,
respectively. According to (20), the bigger the value of IRRMSE, the more superior the proposed model
in forecasting.

The effectiveness of the forecasting model could be measured not only through the above statistical
measures, but also could be described by the correlation coefficient; the correlation coefficient of the
i-th method can be calculated by:

Ri =

N
∑

t=1
(xt − x̄t)(x̂t −¯̂xt)√

N
∑

t=1
(xt − x̄t)

2

√
N
∑

t=1
(x̂t −¯̂xt)

2

, (21)

where xt and x̂t (t = 1, 2, · · · , N) are the real value and forecasting value at time t, respectively. N is the
data size of the testing set, and x̄t and¯̂xt are the mean of xt and x̂t, respectively.

4.3. Empirical Results

4.3.1. Data Decomposition

The first step of the proposed hybrid forecasting model is to decompose the data of AQI in Hefei
via the EEMD with MM. In the EEMD model, the ensemble member is set to 100, and the standard
deviation of the added white noise is set to 0.05. Through the decomposition process, the time series of
AQI in Hefei can be decomposed into a total of nine modes, i.e., eight IMFs and one residue.

As shown in Figure 3, IMFs are listed in the order from the highest frequency to the
lowest frequency, and the last one is the residue, which presents the trend of the AQI time series,
and in reality, the AQI is closely related to seasonal factors such as temperature, radiation levels,
humidity, precipitation, etc.
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Figure 3. Data decomposition results of AQI in Hefei.

4.3.2. Forecasting Results

After decomposition, the GRNN model, NARNN model and ES model are employed to forecast
the IMFs and the residue as the individual model, and then, the optimal combined forecasting model
based on the IOWA operator is applied to obtain the combined results of IMFs and the residue.
At last, the simple addition approach is used to combine the forecasting results of all modes into an
ensemble result. The result is named EEMD-MM-CFM. For comparison, we just use the simple addition
approach to combine individual forecasting and the simple arithmetic combined results of all modes.
The results are named EEMD-MM-GRNN, EEMD-MM-NARNN, EEMD-MM-ES and EEMD-MM-SAM,
respectively. Figures 4–8 illustrate the different results according to the different models.

Figures 4–6 report the forecasting results of three different individual models, respectively.
As shown in Figures 4–6, the forecasting performance of EEMD-MM-NARNN is the best;
EEMD-MM-GRNN is inferior to the EEMD-MM-NARNN method; and EEMD-MM-ES has poor
performance. However, the forecasting values of different methods at the same point are different
according to the error. Therefore, we introduce the combined forecasting model by aggregating the
effective information provided by different models.

Figure 4. The forecasts and error based on EEMD-MM-GRNN.
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Figure 5. The forecasts and error based on EEMD-MM-NARNN.

Figure 6. The forecasts and error based on EEMD-MM-ES.

Figure 7. The forecasts and error based on EEMD-MM-SAM.
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Figure 8. The forecasts and error based on EEMD-MM-CFM.

Figures 7 and 8 indicate the forecasting results of EEMD-MM-SAM and EEMD-MM-CFM.
As shown in Figure 7, the EEMD-MM-SAM model performance is better than most of the individual
models, but it is not exactly feasible in the domain of all the points. Hence, we introduce the
IOWA operator and construct the optimal model for AQI forecasting. Figure 8 shows that the
EEMD-MM-CFM model is superior to individual models and the EEMD-MM-SAM model for AQI
forecasting in Hefei.

4.3.3. Forecasting Performance Comparisons

The proposed hybrid forecasting model, i.e., EEMD-MM-CFM, and their seven benchmark
models, including EEMD-MM-GRNN, EEMD-MM-NARNN, EEMD-MM-ES, GRNN, NARNN,
ES and EEMD-MM-SAM, were used to forecast the AQI in Hefei. The performance comparison
results are given in Figures 9 and 10. From the results, we can obtain that the proposed model can
be statistically proven to outperform all considered benchmark models in AQI forecasting in Hefei.
In particular, the proposed model does not only get the lowest error, but also achieves high mode
accuracy. Furthermore, the DM test statistically verifies the superiority of the proposed model over all
benchmark models under the confidence level of 95%.

Figure 9. Performance comparison of different models in terms of different evaluation metrics.
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Figure 10. Performance comparison of different models in terms of MMA and IR.

As for forecasting accuracy, the parts a, b, c and d in Figure 9 are represent the MAPE, RMSE,
SSE and MAE criteria across different models for AQI data in Hefei, respectively. From Figure 9,
we can obtain four important conclusions. First, the proposed model (EEMD-MM-CFM) performs
significantly better than all considered benchmark models in AQI forecasting in Hefei, and the values
of MAPE, RMSE, SSE and MAE are 0.1035, 10.93, 3702.8 and 7.52, respectively. Hence, the proposed
technique can be applied as an effective method for AQI data analysis and forecasting in Hefei. Second,
when comparing the proposed model with individual models (i.e., GRNN, NARNN and ES), the values
of MAPE, RMSE, SSE and MAE are far smaller the individual models. Third, when comparing the
proposed model with decomposition ensemble models (i.e., EEMD-MM-GRNN, EEMD-MM-NARNN
and EEMD-MM-ES), the proposed model achieves the highest forecasting accuracy. The results prove
that the proposed combined model is effective. Fourth, when comparing the proposed model with the
simple arithmetic combined model (i.e., EEMD-MM-SAM), the weights of the individual forecasting
models of which are equal, the proposed model is superior to the EEMD-MM-SAM model. The main
reason is that the proposed model considers the forecasting accuracy of different models varying with
time. Accordingly, the proposed model is an effective tool for AQI forecasting.

Regarding mode accuracy, the MMA results are presented in the part a in Figure 10, and similar
conclusions can be found. The MMA of the proposed model is better than the EEMD-MM-GRNN,
EEMD-MM-NARNN, EEMD-MM-ES, GRNN and ES models and is equal to the NARNN and
EEMD-MM-SAM models. From the part b in Figure 10, we can see that the proposed model is
an improvement over the other benchmark models. For instance, the maximum improvement
percentage is for the ES model (78.72%), and the minimum improvement percentage is for the
EEMD-MM-NARNN model (36.64%). Meanwhile, the correlation coefficient results are presented
in Table 2. From Table 2, we can obtain three important conclusions. First, the proposed model
(EEMD-MM-CFM) performs significantly better than all considered benchmark models. Second,
when comparing the individual models (i.e., ES, NARNN and GRNN) with the according
decomposition-ensemble models (i.e., EEMD-MM-ES, EEMD-MM-NARNN and EEMD-MM-GRNN),
the values of the correlation coefficient corresponding to decomposition-ensemble models are larger
than the individual models. Third, when comparing the proposed model with the simple arithmetic
combined model (i.e., EEMD-MM-SAM), the proposed model is superior to the EEMD-MM-SAM
model. Accordingly, the proposed model is an effective tool for AQI forecasting.
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Table 2. The correlation coefficient of the proposed model.

Model ES NARNN GRNN EEMD-MM-SAM
Correlation Coefficient 0.4553 0.4663 0.4163 0.5988

Model EEMD-MM-ES EEMD-MM-NARNN EEMD-MM-GRNN EEMD-MM-CFM
Correlation Coefficient 0.4563 0.6754 0.5335 0.8404

Furthermore, DM tests were employed for statistical demonstration, as the SDM statistics
were listed with a p-value, shown in Table 3. Through the DM test, generally speaking, the proposed
hybrid forecasting model outperforms the EEMD-MM-GRNN and EEMD-MM-NARNN models at
a 5% level of statistical significance; and outperforms the EEMD-MM-ES, GRNN, NARNN and ES
models at a 1% level of statistical significance. The results indicate that the proposed model can be
statistically verified as significantly better than the other benchmark models, and it is proven again
that the proposed model is an effective model for AQI forecasting.

Table 3. DM test results across different models.

Target Model Benchmark
EEMD-MM-GRNN EEMD-MM-NARNN EEMD-MM-ES GRNN NARNN ES

EEMD-MM-CFM −2.059 −1.972 −3.027 −4.057 −2.972 −3.027
(0.039) (0.046) (0.002) (0.000) (0.003) (0.002)

EEMD-MM-GRNN 2.788 −1.455 −0.886 −0.681 −1.479
(0.005) (0.148) (0.376) (0.496) (0.139)

EEMD-MM-NARNN −1.617 −1.325 −0.979 −1.641
(0.106) (0.185) (0.328) (0.100)

EEMD-MM-ES 1.042 1.238 −1.884
(0.297) (0.216) (0.050)

GRNN −0.052 −1.064
(0.958) (0.287)

NARNN −1.246
(0.213)

5. Conclusions

This study proposed a hybrid forecasting approach by integrating EEMD based on the mirror
method and the variable weighted combined forecasting model based on the IOWA operator for
sub-series forecasting. The main steps of the proposed model are as follows: applying EEMD with
the mirror method to sift the original AQI time series; then, the combined forecasting model was
applied to forecast the IMFs and residue; finally, the outputs were obtained by summing the forecasts.
In order to verify the effectiveness of the proposed model, four statistical measures including SSE,
MAE MAPE and RMSE, as well as mode accuracy and the DM test were utilized. An example of
the AQI forecasting in Hefei was illustrated to show that the effectiveness of the proposed method
is guaranteed.

There are many individual forecasting models for AQI data. I this study, we only selected three
individual models and combined them for the final output. We could introduce the optimal sub-models’
selection algorithm for a combined individual model in the future [43]. Furthermore, besides the AQI
data, the proposed model should be extended to other forecasting tasks to test its generalization.
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Abbreviations

AQI Air quality
EEMD Ensemble empirical mode decomposition
IMF Intrinsic mode function
ANN Artificial neural networks
MLR Multiple linear regression
PCR Principal component regression
SVR Support vector regression
GRNN General regression neural network
IOWA Induced ordered weighted averaging
NARNN Nonlinear autoregressive neural network
ES Exponential smoothing
MM Mirror method
CFM Combined forecasting model
MMA Mean mode accuracy
DM test Diebold–Mariano test
IR Improvements of the proposed model
SSE Sum of squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
RMSE Root mean squared error
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