
International  Journal  of

Environmental Research

and Public Health

Article

Data-Driven Analysis of Antimicrobial Resistance in
Foodborne Pathogens from Six States within the US

Nina Zhang 1, Emily Liu 2, Alexander Tang 3, Martin Cheng Ye 2, Kevin Wang 4, Qian Jia 5 and
Zuyi Huang 6,*

1 Wissahickon High School, Ambler, PA 19002, USA; nzhang2010@aol.com
2 North Penn High School, Lansdale, PA 19446, USA; liuemily123@gmail.com (E.L.);

martinch.ye@gmail.com (M.C.Y.)
3 Germantown Academy, Fort Washington, PA 19034, USA; alextang1818@gmail.com
4 Lower Moreland High School, Huntingdon Valley, PA 19006, USA; Kevinwang5181@gmail.com
5 Department of Health, Nutrition & Exercise Sciences, Immaculata University, Immaculata, PA 19345, USA;

qjia@Immaculata.edu
6 Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA
* Correspondence: zuyi.huang@villanova.edu; Tel.: +1-610-519-4848

Received: 11 April 2019; Accepted: 18 May 2019; Published: 22 May 2019
����������
�������

Abstract: Foodborne pathogens cause thousands of illnesses across the US each year. However, these
pathogens gain resistance to the antimicrobials that are commonly used to treat them. Typically,
antimicrobial resistance is caused by mechanisms encoded by multiple antimicrobial-resistance
genes. These are carried through pathogens found in foods such as meats. It is, thus, important to
study the genes that are most related to antimicrobial resistance, the pathogens, and the meats
carrying antimicrobial-resistance genes. This information can be further used to correlate the
antimicrobial-resistance genes found in humans for improving human health. Therefore, we perform
the first multivariate statistical analysis of the antimicrobial-resistance gene data provided in the
NCBI Pathogen Detection Isolates Browser database, covering six states that are geographically either
in close proximity to one another (i.e., Pennsylvania (PA), Maryland (MD), and New York (NY)) or
far (i.e., New Mexico (NM), Minnesota (MN), and California (CA)). Hundreds of multidimensional
data points were projected onto a two-dimensional space that was specified by the first and second
principal components, which were then categorized with a hierarchical clustering approach. It turns
out that aadA, aph(3”), aph(3”)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, tet, tet(A), and sul2 constructed the
assembly of ten genes that were most commonly involved in antimicrobial resistance in these six states.
While geographically close states like PA, MD and NY share more similar antimicrobial-resistance
genes, geographically far states like NM, MN, and CA also contain most of these common
antimicrobial-resistance genes. One potential reason for this spread of antimicrobial-resistance
genes beyond the geographic limitation is that animal meats like chicken and turkey act as the carriers
for the nationwide spread of these genes.

Keywords: foodborne pathogens; antimicrobial-resistance genes; principal component analysis;
hierarchical clustering

1. Introduction

Across the US, foodborne pathogens cause illness in approximately 48 million people each year
and impose over a $15.5 billion economic burden annually [1]. In particular, there are 31 pathogens
known to cause foodborne illness [2]. Just with these 31 pathogens alone, there are an estimated
9.4 million illnesses annually, leading to estimated 55,961 hospitalizations and 1351 deaths a year
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(90% credible interval) in the US [3]. These pathogens obtain antimicrobial-resistance genes and
become resistant to existing antimicrobials, encoding proteins with antimicrobial-resistance functions.
Specifically, these proteins degrade antimicrobials, pump antimicrobials out of the cells, or change
the active binding sites for antimicrobials [4]. Each year in the US, at least 2 million people become
infected with antimicrobial-resistant bacteria and at least 23,000 people die as a direct result [5].
Bacteria have mobile elements that can be transferred between different bacteria (such as plasmids
that contain antimicrobial-resistance genes) and thus are released into the environment for another
bacterium to take. This is known as horizontal gene transfer [6]. Foodborne pathogens generally obtain
multiple antimicrobial-resistance genes, which equip the pathogens with multiple resistance functions
(e.g., antimicrobial degradation, antimicrobial binding site alteration, and antimicrobial efflux pump).
This enables foodborne pathogens to resist multi-antimicrobials [7]. Antimicrobial-resistance genes are
spread by pathogens that are carried in foods (e.g., meats). In particular, farm animals carry bacteria in
their intestines and are given antimicrobials frequently. Overdoses of oral prescription of antimicrobials
for animals will destroy or inhibit part of their intestinal bacteria, but the overuse of antimicrobials
may cause the mutation that enables bacteria to survive and multiply. These bacteria, which carry
antimicrobial-resistance genes, go forth to contaminate meats and other animal products during the
slaughtering and further processing of the meat. The bacteria may also contaminate animal feed and
drinking water through infected bodily fluids. These antimicrobial-resistant bacteria, along with the
genes they carry, are then passed to people through industrial animal food production. It is thus
important to study the genes that are most related to antimicrobial resistance and the pathogens/foods
that carry them.

Fortunately, antimicrobial resistance data in the US are actively collected through the National
Database of Antibiotic Resistance Organisms (NDARO), the NCBI Pathogen Detection Isolates Browser
(NPDIB), and the National Antibiotic Resistance Monitoring System (NARMS). Among these databases,
only the NPDIB database shows the antimicrobial genes sampled from four types of meats (i.e.,
chicken, beef, pork, and turkey). While these databases are available, little research has been done to
systematically analyze the data, study how antimicrobial-resistance genes are carried by pathogens
and meats throughout the US, and identify the set of the most common antimicrobial-resistance genes.
The NPDIB lists antimicrobial-resistance genes carried by pathogens that were isolated from patients,
food, and environmental samples in state and federal laboratories over time. Founded in collaboration
with the Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC),
the United States Department of Agriculture (USDA), and other institutions, the NPDIB allows people
to search for pathogen isolates and identify pathogens with particular antimicrobial-resistance genes.
Since foodborne pathogens are sequenced and submitted to the NPDIB in real time, it allows for quick
diagnosis and detection of pathogens that cause foodborne disease outbreaks.

While the NPDIB database itself contains a significant amount of important information on
foodborne pathogens and antimicrobials, few studies have been conducted to extract meaningful
information from its gene data. The NPDIB database is typically used to detect pathogens by comparing
the genomic sequences in it with the pathogens isolated from particular foods. On the other hand,
there are papers that have analyzed data from the NARMS. For example, Sivapalasingam et al.
in 2006 [8] utilized data from NARMS to study Shigella isolates in the US from 1999 to 2002. Since 1999,
NARMS has tested every tenth Shigella isolate from 16 public health laboratories for susceptibility to
15 antimicrobials. That paper used the data from NARMS to confirm what percentage of Shigella was
resistant and in which geographic regions these antimicrobials were most prevalent. However, the
paper did not expound upon the meat industry. Another paper, Zhao et al. in 2009 [9] did focus on the
meat industry and analyzed data from NARMS. However, the paper only focused on Salmonella and
its resistance to antimicrobial agents from five beta-lactamase gene families. Although the findings
indicated a varied spectrum of resistance present in Salmonella strains in the meat supply chain of the
US, the paper did not analyze the geographical distribution of these meats and pathogens through the
food industry.



Int. J. Environ. Res. Public Health 2019, 16, 1811 3 of 14

As mentioned above, little data analysis has been conducted to use those existing databases
to extract useful information. In this work, we perform the first multivariate statistical analysis
of gene data from the NPDIB database for six states that are geographically either close (i.e., PA,
MD, and NY states) or far (i.e., NM, MN, and CA). The specific antimicrobial resistance found in
these six states may direct the choice of antimicrobials used in these geographic areas. We aim to
identify the antimicrobials to which pathogens show most resistance in these states, the genes that are
mostly involved in antimicrobial resistance, and the carrying of antimicrobial-resistance genes via the
pathogens and meats in these states.

We study the impact of geographic location on the distribution of antimicrobial-resistance genes.
Since each of the six states contains hundreds of samples of antimicrobial-resistant pathogens and
over 100 antimicrobial-resistance genes, we implement principal component analysis (PCA) [10,11] to
reduce the data dimensions so that we can visualize each dataset in a two-dimensional space. On the
basis of the reduced data space characterized by PCA, hierarchical clustering is used to identify the
antimicrobials, genes, pathogens, and meats that are mostly involved in the antimicrobial resistance.
Hierarchical clustering is one of the most commonly used approaches for separating data points while
providing similarity analysis between data points [12–14].

2. Materials and Methods

2.1. Data from the NCBI Pathogen Detection Isolates Browser (NPDIB)

Data from the NPDIB database for six states (including PA, MD, NY, NM, MN, and CA)
from January 1970 to December 2018 were analyzed were analyzed in this project. The following
six-dimensional information was obtained for each data sample: (1) the location (i.e., from which
state the data were obtained); (2) the time (i.e., which year the data were sampled); (3) the food the
data were sampled from (e.g., beef, chicken, turkey, and pork); (4) the foodborne pathogens detected
in the sample; (5) the antimicrobial-resistance genes detected in the foodborne pathogens; and (6)
the antimicrobials to which the detected foodborne pathogens are resistant. The data were generally
obtained in the period between 1980 and December 2018 in the selected six states. While foodborne
pathogens were also detected in foods other than in meats, such as fruits and vegetables, this project
focused on four types of animals, including chicken, turkey, pork, and beef. This decision was based
on findings that antimicrobial resistance is highly correlated to the abuse of antimicrobials in raising
farm animals [15,16]. Over-crowded animals are raised on farms to improve the productivity of the
meats [17]. Pathogens are thus easily passed from one animal to another. The stress from the overused
antimicrobials is one potential force driving the evolution of pathogens [18]. Those pathogens surviving
from the antimicrobial treatment contain antimicrobial-resistance genes and pass those genes to other
pathogens. The pathogens are then delivered to soils and to other foods like fruits and vegetables.
Therefore, analysis of the data sampled from meats may provide useful information for regulating
the use of antimicrobials. Data for turkey, chicken, beef, and pork were selected as they were most
the commonly sampled foods in all six states. The data were downloaded from the NPDIB webpage
separately and saved in Excel as *.cvs documents for statistical analysis. The following were then
identified from the data: foodborne pathogens, antimicrobial-resistance genes, the antimicrobials to
which foodborne pathogens are resistant, and meats carrying antimicrobial-resistance genes.

2.2. Multivariate Statistical Analysis: Principal Component Analysis and Hierarchical Clustering

Each of the above-mentioned data points contained six dimensions: sampling location, sampling
time, food source, foodborne pathogen, detected microbial-resistance gene, and antimicrobials to which
foodborne pathogens become resistant. Hundreds of samples were obtained for each of the six states.
In order to visualize the six-dimensional dataset, PCA was implemented to reduce the dimensions of the
dataset and present it in a two-dimensional space. The basic idea of PCA is to identify new orthogonal
coordinate directions upon which the projection of the original data has the largest variance (Figure 1).
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A larger variance means more information is retained in that projected coordinate direction. Compared
to the original coordinate directions x and y, the first principal component (recorded as PC1) offers a
better direction to distinguish the data points. Specifically, the overlaps of the projected data points
onto PC1 is less than those onto either the direction x or y. In other words, PCA aims to identify new
directions that can retain the most information from the original dataset. Typically, PC1 is the direction
containing the largest variance in the data projections, followed by PC2. Both of these directions are
the linear combinations of the original coordinate variables. The data projections onto PC1 and PC2 are
generally used to reduce the original high-dimensional dataset in a two-dimensional space. Extensive
studies have been conducted applying PCA so as to reduce a high-dimension dataset [19–21]. In this
project, PCA was used to project the antimicrobial-resistance genes and the foodborne pathogens
and meats that carry them onto a two-dimensional space specified by PC1 and PC2. For example,
in order to analyze antimicrobial-resistance genes using PCA, the data containing the genes and the
antimicrobials to which pathogens show resistance were constructed in a matrix in such a way that
each row represents one gene while each column corresponds to one antimicrobial. The data matrix
shows the total number of cases in which the gene (row) was detected in the microorganisms that
resisted the antimicrobial (column) over all the years in the dataset. Each antimicrobial in the dataset
thus represents one dimension to characterize the antimicrobial genes. Typically, there are more than
ten antimicrobials to which pathogens show most resistance in a dataset.
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Figure 1. A schematic representation of principal component analysis. The data points contained
in the dataset characterized by the original coordinate variables x and y are more distinguishable
by their projections onto the PC1 direction than either x or y directions. The projections onto PC1
contain the largest variance, which suggests that the two-dimensional x–y space may be reduced to the
one-dimensional PC1 space.

It is impossible to visualize antimicrobial-resistance genes in a ten-dimensional space
without applying dimension-reduction approaches like PCA. The projection of the data onto the
reduced-dimension space allows for the identification of outliers in the group of antimicrobial-resistance
genes, which may contain important biological value. While PCA is effective in reducing the
high-dimensional space to the PC1–PC2 space, each point of PC1 and PC2 is a linear combination of
the original coordinate variables (i.e., the number of times of an antimicrobial getting resistance in this
case) and loses a specific physical meaning. This may limit the application of PCA in mathematical
modeling when people are interested in the physical meaning of model variables. However, it does
not hinder the benefit of PCA to facilitate visualization of high-dimensional datasets.

In this project, PCA was performed in the software R, which is one of the most popular
free programs in statistical data analysis [22]. While PCA provides an avenue for visualizing the
high-dimensional dataset, it does not directly quantify the relationship between the data points. For
example, although PCA can project the antimicrobial-resistance genes onto the PC1–PC2 space that is
rotated from the space characterized by antimicrobials, it does not show how similar each of the two
antimicrobial-resistance genes look. In particular, the data points shown in the PC1–PC2 space were
difficult to separate on the plotted PCAs, especially when there were many overlapped data points
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(as was the case with genes). In order to address this issue, the hierarchical clustering approach was
further applied here to study the similarity of the data points shown in the two-dimensional PC1–PC2
space. Figure 2 shows an illustrative example of hierarchical clustering. Certain antimicrobial-resistance
genes were plotted in the PC1–PC2 space (Figure 2A). Gene 2 and Gene 4 are the closest to each other
in Figure 2A, and they show most similar resistance patterns to the tested antimicrobials. These two
genes then form one group, which then substitutes Genes 2 and 4 as new members for further
clustering with other genes. The essential idea of hierarchical clustering was adding one item/group
at a time to the closest points until all items in the dataset were included. For the dataset shown
in Figure 2A, the result of hierarchical clustering is shown in Figure 2B. The lower the two genes
are connected on the hierarchical tree (i.e., Figure 2B), the more similarly they are involved in the
resistance to the selected antimicrobials (shown in the columns of the data matrix). For example,
Genes 3, 5, and 9 are located quite far away from the other genes in Figure 2A, and they are connected
around the top of the hierarchical tree (i.e., around the magnitude of 0.4). This indicates that these
genes distinguish themselves from the other genes in the resistance to the selected antimicrobials.
In this project, the hierarchical clustering was used to identify these antimicrobial-resistance genes
that are most involved in multiple-antimicrobial resistance in the NPDIP data for the selected six
states. The hierarchical clustering was also used to identify the foodborne pathogens/meats that are
mainly responsible for carrying the antimicrobial-resistance genes in each of the six states. In addition,
the clustering was used to study the similarity of the selected six states from the perspective of
antimicrobial-resistance genes, antimicrobial resistance of foodborne pathogens, and the meats that
carry antimicrobial-resistance genes.
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MN, and CA  

Figure 2. An illustrative example of hierarchical clustering: (A) nine genes are projected onto
the PC1–PC2 space based on their resistance to antimicrobials azithromycin, cefoxitin, ceftiofur,
ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin,
sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole; (B) clustering the genes on the basis of
their projections in (A).

3. Results

Data from the NPDIB mentioned in the Materials and Methods section were analyzed by PCA
and hierarchical clustering in this section to identify: (1) the antimicrobials to which pathogens show
most resistance in the six states; (2) the genes mostly involved in antimicrobial resistance; (3) the major
pathogens carrying antimicrobial-resistance genes in the six states; and (4) the major meats carrying
antimicrobial-resistance genes in the six states.
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3.1. Identification of Antimicrobials to Which Pathogens Show Most Resistance in States PA, MD, NY, NM,
MN, and CA

The major antimicrobials to which foodborne pathogens isolated from meats in the six states were
resistant were identified from PCA and from the hierarchical clustering as described in the section of
Materials and Methods. As an example, Figure 3 shows the analysis results for the data from the state
of Pennsylvania: Figure 3A projects the antimicrobials onto the PC1–PC2 space, and Figure 3B shows
the results from hierarchical clustering. As seen in Figure 3A, streptomycin, gentamicin, ampicillin,
kanamycin, and cefoxitin stand out from other antimicrobials as the ones getting most resistance
by foodborne pathogens, including the species of Campylobacter, Escherichia, Klebsiella, Legionella,
Listeria, Providencia, Salmonella, Serratia, Shigella, and Vibrio. While other antimicrobials are lumped
together in Figure 3A due to their similarity in pathogen resistance, they can be identified in Figure 3B
through a detailed hierarchical illustration of the similarity of those antimicrobials having resistance
by pathogens. The blue lines in Figure 3B indicate the clusters of antimicrobials lumped together in
Figure 3A. In particular, chloramphenicol, nalidixic acid, azithromycin, and ciprofloxacin are lumped
together in Figure 3A. They are in the same branch of the hierarchical tree in Figure 3B. Similarly,
amoxicillin-clavulanic acid, ceftiofur, and ceftriaxone are lumped together in Figure 3A.

The antimicrobials that stand out as the most resistant from the analysis of PCA and hierarchical
clustering for all the six states are listed in Table 1. It can be seen that: (1) PA, NY, and MD have
similarly resisted antimicrobials, including ampicillin, streptomycin, gentamicin, and kanamycin; (2)
PA is the only state that does not show strong resistance to sulfisoxazole and tetracycline; (3) CA is the
only state showing strong resistance to ciprofloxacin; (4) MN has the least number of the most resisted
antimicrobials, and is the only one state that does not show strong resistance to gentamicin; and (5)
ampicillin and streptomycin are the two common antimicrobials to which all six states show resistance.
The eight antimicrobials shown in Table 1 contain five protein-synthesis inhibitors (i.e., streptomycin,
tetracycline, chloramphenicol, gentamicin, and kanamycin), two cell-wall-synthesis inhibitors (i.e.,
ampicillin and cefoxitin), one competitive enzyme inhibitor (i.e., sulfisoxazole), one broad-spectrum
antimicrobial (i.e., ciprofloxacin) that blocks cell division by inhibiting DNA gyrase, and a type II
topoisomerase, topoisomerase IV.
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Figure 3. An illustrative example of hierarchical clustering: (A) projections of antimicrobials
amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol,
ciprofloxacin, gentamicin, kanamycin, nalidixic acid, and streptomycin onto the PC1–PC2 space on the
basis of the resistance of these antimicrobials in foodborne pathogens; (B) clustering the antimicrobials
on the basis of their projections in (A).

Table 1. Antimicrobials to which pathogens are most resistant (indicated by PCA and hierarchical
clustering for states PA, NY, MD, NM, MN, and CA).

Antimicrobials
States

PA NY MD NM MN CA

Ampicillin
Streptomycin
Gentamicin
Kanamycin
Cefoxitin

Sulfisoxazole
Tetracycline

Ciprofloxacin
Note: the shaded areas indicate the resistance of antimicrobials in the corresponding states.

3.2. Identification of Antimicrobial-Resistance Genes Most Common in States PA, MD, NY, NM, MN, and CA

In order to identify the genes that are most involved in antimicrobial resistance in each of the six
states, the data matrix was organized in such a way that each row represents one gene, while each
column corresponds to an antimicrobial. As in Section 3.1, the data for PA were used as an example to
illustrate the results obtained for a single state. The projection of the genes onto the PC1–PC2 space was
shown in Figure 4A, while the hierarchical clustering of the genes was shown in Figure 4B. Genes aadA,
aph(3”), aph(3”)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, sul2, tet, and tet(A) stand out from other genes as
they are involved in resistance to a larger spectrum of antimicrobials than other genes. These genes are
located separately in a single branch in Figure 4B.

Antimicrobial resistance is typically caused by a group of synergistic genes. The group of genes
that stand out from others in the hierarchical clustering diagram (Figure 4B) provides a potential set of
synergistic genes that cause resistance to various antimicrobials in PA. A similar approach was applied
to the data for the other five states, and the corresponding groups of genes were shown in Table S1



Int. J. Environ. Res. Public Health 2019, 16, 1811 8 of 14

in the Supplementary Data section. The metabolic functions of these genes are listed in Table S2 in
the Supplementary Data section: seven of them are involved in aminoglycoside resistance (including
aadA, aph(3′), aph(3’)-Ia, aph(3”), aph(3”)-Ib, aph(6)-I, and aph(6)-Id); five of them are beta-lactamases
(including bla, blaCMY, blaCMY-2, blaTEM, and blaTEM-1); three of them are tetracycline-resistance
proteins (including tet, tet(A), and tet(B)); and others are related to fosfomycin resistance (fos and fos(A)),
efflux pump membrane transport (oqxB), and sulfate transmembrane transport (sul2). It is interesting
to see that certain antimicrobial-resistance genes are shared among all six states (shown in Table 2).
Among the six states, PA and NY have the same common antimicrobial-resistance genes, along with
being very similar to MD, another nearby state. CA and MN notably lack sul2, NM is the only one to
lack tet, and CA is the only one to lack blaCMY.
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Figure 4. The representation of antimicrobial-resistance genes in the space of principal components
one and two (A) and in the hierarchical clusters (B) for Pennsylvania. The genes shown in Green in (A)
are listed in the Green branch in (B).

Table 2. The most common antimicrobial-resistance genes shared by the six states.

States aadA aph(3”) aph(3”)-Ibaph(6)-I aph(6)-Id bla blaCMY tet tet(A) sul2
PA
NY
MD
NM
MN
CA

Note: the shaded areas indicate involvement of the genes in the corresponding states.
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3.3. Identification of Foodborne Pathogens Mostly Carrying Antimicrobial-Resistance Genes in PA, MD, NY,
NM, MN, and CA

It is important to identify the foodborne pathogens that carry the most common
antimicrobial-resistance genes in each state. PCA and clustering approaches similar to those shown
in the previous two sections were used to analyze foodborne pathogen and antimicrobial-resistance
gene data. The data for PA were used here to illustrate results obtained for each state. Figure 5A
shows the projection of the foodborne pathogens identified in PA onto the PC1–PC2 space, while
Figure 5B illustrates the similar hierarchy of those pathogens carrying antimicrobial-resistance genes.
Figure 5A shows that Salmonella stands out as the pathogen carrying more antimicrobial-resistance
genes than the other 9 pathogens (which are lumped together in Figure 5A). Salmonella was found as
the major carrier of antimicrobial-resistance genes in all the other five states. There are several different
strains of Salmonella that may have different resistant genes. This can be further examined in future
studies. MN has the smallest number of cases of Salmonella. This may be correlated with the smallest
number of pathogen-resistant antimicrobials found in MN (as shown in Table 1). Slightly different from
the other five states, California also has Klebsiella as another major antimicrobial-resistant foodborne
pathogen (results not shown but similar to those in Figure 5B).
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Figure 5. The representation of the major foodborne pathogens that carry antimicrobial-resistance
genes in the PC1–PC2 space (A) and in the hierarchical clusters (B) for Pennsylvania.
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3.4. Identification of Meats Mostly Carrying Antimicrobial-Resistance Genes in States PA, MD, NY, NM, MN,
and CA

As in previous sections, the data for PA were used to illustrate the result of identifying the meats
that carry antimicrobial-resistance genes in the six states. The four types of meats were projected onto
the PC1–PC2 space in Figure 6A and the similarity of these meats carrying antimicrobial-resistance
genes is shown in Figure 6B. As shown in Figure 6A, chicken and turkey are the two major meats
that carry antimicrobial-resistance genes in PA. Similar results were obtained for the other five states.
This is interesting, as CA, MN, and NM are not geographically close to each other or to the three
eastern states PA, NY and MD. This may imply that meats with antimicrobial-resistance genes are
distributed nationwide. In particular, poultry farms are mainly located in the eastern half of the US,
but meats which carry antimicrobial-resistance genes may be being delivered to other regions in the
US [17]. This mobility may explain why chicken and turkey were found to be the major carriers of
antimicrobial-resistance genes in different regions of the US.
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space (A) and in the hierarchical clusters (B) for Pennsylvania.
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4. Discussion

4.1. Overuse of Antimicrobials and Antimicrobial-Resistance Genes

Antimicrobial-resistance may be caused by the overuse of antimicrobials which drives the
evolution of resistance [23]. This is also implied by the most commonly resisted antimicrobials
that were identified in our results (i.e., ampicillin, streptomycin, gentamicin, kanamycin, cefoxitin,
sulfisoxazole, tetracycline, and ciprofloxacin in Table 1) [24]. For example, the overuse of gentamicin
triggers the resistance of Enterococci, which are isolated from pork in Michigan and chicken from
Oregon [25]. While overuse of antimicrobials was found to be related to antimicrobial resistance, the
use of antimicrobials in US food animal production has not been documented. There are no data
indicating the dosages, duration, conditions, and locations for which antimicrobials are being used
to raise different animals. The sales data of antimicrobials are typically used to indicate the trends in
antimicrobial consumption in food animal production. Approximately 21.4 million pounds of medically
important antimicrobials were sold for use in animal agriculture in 2015, a 26 percent total increase
over 2009 sales [26]. The upward trend of sales of antimicrobials in animal agriculture correlates with
increased antimicrobial resistance.

Our results indicate that chicken and turkey are the two major meats that carry
antimicrobial-resistance genes. These results are consistent with the foodborne pathogen infection
diseases reported in the US. For example, Consumer Reports tests of chicken in both 2006 and
2010 revealed widespread presence of antimicrobial-resistant pathogens in retail poultry products.
More than two-thirds of chicken samples were contaminated with Salmonella and/or Campylobacter, and
more than 60 percent of those bacteria were resistant to one or more antibiotics [27]. In 2011, ground
turkey was linked to 136 illnesses and one death, all caused by a strain of Salmonella that was resistant to
four different antimicrobials: ampicillin, streptomycin, tetracycline, and gentamicin. Some 36 million
pounds of ground turkey were recalled [28]. The antimicrobial resistance found in chicken and turkey
was associated with the overuse of antimicrobials in their production. For example, the FDA’s rough
estimate, using 1999 data, is that use of fluoroquinolones in chickens resulted in over 11,000 people
that year contracting a strain of the campylobacter illness that was resistant to fluoroquinolones, and
which contributed to an unnecessarily severe disease [29].

4.2. The Impact of Geographic Location on the Distribution of Antimicrobial-Resistance Genes

Genes aadA, aph(3”), aph(3”)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, tet, tet(A), sul2 were identified
from the historical data of the six states as the most common genes involved in the reported
antimicrobial-resisted cases (Table 2). All of these genes are commonly found with antimicrobial
resistance in Pennsylvania and New York, while certain genes are not commonly found with
antimicrobial resistance in Maryland (bla), New Mexico (bla and tet), Minnesota (sul2), and California
(blaCMY and sul2). It is interesting to see that Pennsylvania, New York, and Maryland, which are
geographically close, share similar antimicrobial-resistance genes. This implies that the geographic
location may affect the distribution of antimicrobial-resistance genes. On the other hand, Minnesota
shares quite similar resistant genes with Pennsylvania and New York, even as it is geographically
far from these two states. Similarly, California and New Mexico share eight of the common
antimicrobial-resistance genes with Pennsylvania and New York. These findings indicate that
geographic distance cannot limit the distribution of antimicrobial-resistance genes. One potential reason
is that chicken and turkey, the two major meats identified by our results to carry antimicrobial-resistance
genes, can be shipped nationwide. As mentioned in Section 3.4, poultry farms are mainly located in the
eastern half of the US, but they deliver their products to other regions in the US. In this work, we focused
on data reporting the antimicrobial-resistance genes carried by the four types of meats (i.e., chicken,
turkey, pork, and beef). It is, thus, not surprising to find that these common antimicrobial-resistance
genes can be spread from Pennsylvania, New York, and Maryland to other states. Another potential
reason to explain why the six states share similar common antimicrobial-resistance genes is that similar
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antimicrobials are used in these states. Our results show that ampicillin, streptomycin, gentamicin,
kanamycin, cefoxitin, sulfisoxazole, tetracycline, and ciprofloxacin are the major antimicrobials to
which pathogens in the six states are resistant. The overuse of these antimicrobials in the animal
production process imposes evaluation stress on pathogens, especially the major pathogen identified
in our results, Salmonella. Antimicrobial-resistance genes from the pathogens surviving from the
antimicrobial treatment are then spread to other microorganism species via horizontal gene transfer,
and are then carried with the animal (meats) to other locations.

4.3. Limitations and Future Work

Pathogens surviving from the treatment of antimicrobials generally carry multiple
antimicrobial-resistance genes. It is, thus, important to find the set of antimicrobial-resistance genes
that facilitate the survival of common foodborne pathogens despite treatment of various antimicrobials.
We have identified this set of antimicrobial-resistance genes, including aadA, aph(3”), aph(3”)-Ib, aph(6)-I,
aph(6)-Id, bla, blaCMY, tet, tet(A), and sul2 from data from six target states. The six states were selected to
represent the northern, western, southern, and eastern regions of the US. Another reason for selecting
these six states is that the NPDIB database contains significant data for them. While the findings of
this work are limited to the six states, we will confirm our findings by analyzing data from additional
states. One hurdle is the lack of NPDIB data for all US states; only a handful of states have more than
1000 data samples.

5. Conclusions

The NPDIB database collects antimicrobial-resistant data sampled from foodborne pathogens
in animal meats across the US. In this work, we presented the first multivariate statistical analysis to
project antimicrobial-resistance gene data sampled from four types of meats (i.e., chicken, turkey, pork,
and beef) for six states (i.e., PA, NY, MD, NM, MN, and CA) onto a two-dimensional space, thereby
identifying the major antimicrobials, foodborne pathogens, genes, and meats involved in antimicrobial
resistance. The results indicate that: 1) aadA, aph(3”), aph(3”)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, tet,
tet(A), and sul2 are the ten genes most found in antimicrobial-resistant foodborne pathogens; 2)
these genes were mainly carried by Salmonella species in chicken and turkey; and 3) ampicillin,
streptomycin, gentamicin, kanamycin, cefoxitin, sulfisoxazole, tetracycline, and ciprofloxacin are the
major antimicrobials to which foodborne pathogens are resistant. While geographically adjacent states
PA, NY, and MD share more similar antimicrobial-resistance genes than the others (i.e., MN, NM, and
CA), all six states share common antimicrobial-resistance genes. This is likely explained by the finding
that chicken and turkey, the two major meats that carry antimicrobial-resistance genes, are delivered
nationwide. Overuse of antimicrobials in chicken and turkey were reported. This may explain why
most antimicrobial-resistance genes were found in these two meats. Antimicrobial resistance is typically
caused by the synergistic cooperation of multiple genes. The ten genes identified in this work (i.e.,
aadA, aph(3”), aph(3”)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, tet, tet(A), and sul2) provide valuable insight
on this issue that may be used for future investigation. While the findings presented in this work are
mainly based upon the antimicrobial-resistant data of foodborne pathogens for six states, they will be
further validated and updated when the data for other states are more complete in the NPDIB database.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/10/1811/s1,
Table S1. Genes with most resistance to antimicrobials and hierarchical clustering, Table S2. Metabolic functions
of the most common antimicrobial-resistance genes.
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