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Abstract: This study examines the spatial structure of children with cleft lip and palate (CLP) and its
association with polluted areas in the Monterrey Metropolitan Area (MMA). The Nearest Neighbor
Index (NNI) and the Spatial Statistical Scan (SaTScan) determined that the CLP cases are agglomerated
in spatial clusters distributed in different areas of the city, some of them grouping up to 12 cases
of CLP in a radius of 1.2 km. The application of the interpolation by empirical Bayesian kriging
(EBK) and the inverse distance weighted (IDW) method showed that 95% of the cases have a spatial
interaction with values of particulate matter (PM10) of more than 50 points. The study also shows
that 83% of the cases interacted with around 2000 annual tons of greenhouse gases. This study may
contribute to other investigations applying techniques for the identification of environmental and
genetic factors possibly associated with congenital malformations and for determining the influence
of contaminating substances in the incidence of these diseases, particularly CLP.
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1. Introduction

Cleft lip and palate (CLP) is a congenital anomaly that affects the facial structure. CLP is the
more prevalent congenital craniofacial anomaly worldwide, affecting between 0.7–1.5/1000 newly live
births. The prevalence of CLP in Mexico has been estimated in 0.6 to 0.9/1000 births [1]. The CLP has
important implications for the patient and his family, including swallowing and language development.
This disorder causes psychological and social afflictions, such as discrimination, low self-esteem and
difficulty to interact in society [2], as well as economic implications in terms of health care, plastic
surgery, and rehabilitation. The Global Burden of Disease for CLP in 2016 was calculated at 3.4/100,000
disability-adjusted life years (DALYs) with 95% uncertainty intervals of 2.1 to 5.3 [3].

CLP is a common congenital anomaly with complex etiology, involving genetic and environmental
factors [4]. Studies have identified associations between different health problems and environmental
pollution [5–7]. On the other hand, some types of cancer, cardiovascular and respiratory
diseases, and congenital malformations have been associated with different pollutants, particularly
environmental particulate matter 10 micrometers or less in diameter (PM10), and particulate matter
2.5 micrometers or less in diameter (PM2.5) and the prevalence of CLP [8,9].
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The Monterrey Metropolitan Area (MMA) is one of the largest cities in Mexico and Latin America,
with nearly 5 million people agglomerated in 13 municipalities. This urban area is characterized by
strong industrial activity and high pollution due to production of rubber and cardboard, mining of
metals and stone, manufacturing of engines and industrial machinery, among others [10]. In addition
to these industrial activities, the MMA concentrates more than 2 million vehicles, which exacerbate
the air pollution affecting the health of the urban community. The local air-quality monitoring station
(SIMA) showed the following data for the period 2009–2014: the 24-h air quality standard of PM10

(75 µg/m3) was exceeded between 224 days/year to 275 days/year and the 24-h air quality standard
of PM2.5 (45 µg/m3) was exceeded between 21 days/year and 58 days/year. Finally, the one-hour air
quality of ozone (0.095 ppm) was exceeded between 36 days/year and 95 days/year [11].

The chronic exposure to pollutants represents an important health risk for the population. The air
quality data in the same period showed that the annual air quality standard of PM10 (40 µg/m3) was
exceeded between 1.5 times to 2.5 times, depending on the zone in the MMA; and the annual air quality
standard of PM2.5 (12 µg/m3) was exceeded two to three times. Because of this chronic population
exposure, the World Health Organization qualified the MMA as one of the most polluted cities in
Mexico and Latin America [12].

The population was exposed to different concentrations of pollutants across the MMA. The chemical
composition of PM2.5 showed 50% was composed by primary components (elemental carbon, crustal
material, salts, and trace metals) and secondary organic aerosols (SOA), and the other half was
represented by inorganic aerosols (ammonium sulfate, ammonium nitrate) produced by different
sources (refinery, industrial activity, vehicles, urban development, and wind erosion) [13]. Different
health effects may be expected for these chronic exposures. Proaire 2016–2025 published a list of
industrial sources of air pollutants in Monterrey and their geographical location [11].

This research aimed at answering the following research questions: do CLP cases present a random
distribution or tend to concentrate in certain areas of the city? If so, what degrees of concentrations of
cases are observed? Finally, what CLP cases concentrated in the space are associated with high pollution
values? By answering these questions, this study may contribute to understand the epidemiology of
congenital malformations in our environment. It will also identify spatial clusters over a continuous
space, providing more empirical evidence in the Latin American context, since most of the studies that
analyze the spatial distribution of congenital malformations are reported for discrete spaces; that is,
the analysis units are usually polygons with geopolitical delimitations.

The research was structured as follows: literature review, description of investigations that
identified the main risk factors for the CLP, emphasizing environmental contamination. Similarly, some
studies addressing the spatial distribution of congenital malformations were reviewed. The nature and
processing of the database and the spatial statistics techniques used are described below. The main
results and limitations are analyzed at the end.

2. Environmental Risk Factors and Some Sociodemographic Characteristics of Cleft Lip and
Palate (CLP)

Several reports have found a relationship between the risk of CLP and prematurity, alcohol and
tobacco consumption, and drug abuse in the early stages of pregnancy [14–19]. Recently, Angulo et al.
found that consumption of tobacco, the lack of vitamins and folic acid supplementation are significantly
associated with CLP [20]. Environmental pollution has also been associated to CLP.

Langlois et al. found an association between CLP and radon [21]. Gonzalez et al. conducted
an ecological study in Mexico and found correlations between urban environmental contamination,
solid waste, life expectancy, healthcare for pregnant women and the incidence of CLP [1]. Similarly,
a study by Benitez et al. [22] in Itapua, Paraguay, showed significant associations between congenital
malformations and exposure to pesticides. The authors also found that pregnant women were
exposed to this type of pollutants due to geographical proximity to agriculture areas where pesticides
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were dispersed. Garcia et al., also demonstrate an association between pesticides and congenital
malformations [23].

An environmental study has documented a relationship between heavy metals exposure such as
lead, nickel, mercury, cadmium, among other substances, and risk of congenital malformations such as
CLP [24]. Recent studies have found evidence of the influence of environmental pollution on CLP,
specifically ozone and PM2.5 [25]. Hwang and Jaakkola identified mothers who were exposed to air
pollution during the first two months of pregnancy as having increased risk of delivering children
with CLP [26]. Likewise, Desrosiers, et al. found that exposure of pregnant women to chlorinated
solvents during pregnancy was positively associated with CLP [9].

Bentov et al. found a relationship between geographic proximity of industrial parks and
congenital malformations [8,27]. Social exclusion could have some health implications, since groups
living in marginalized areas tend to have low educational levels and poor health habits, such as
smoking, drinking alcohol, being exposed to contaminants, or not taking vitamin supplements during
pregnancy [28,29]. Some sociodemographic factors, such as social exclusion, low economic and
educational level, and geographical marginalization have been related to increased incidence of CLP in
Mexico [30]. Alfwaress et al. reported a similar situation in Jordan: CLP children were born in families
with low income and low educational levels [31].

Patterns of Spatial Distribution of Congenital Malformations: Empirical Evidence

Agay et al. [32] completed an exploratory analysis using spatial data and found that congenital
malformations followed a pattern of agglomerated distribution, applying spatial autocorrelation and
scan statistics techniques. Several authors have replicated these findings with different malformation
in Latin America (Brazil, Argentina, Colombia) and Canada [33–36].

Efforts to detect spatial patterns of congenital malformations are well known in the literature.
However, many of these studies treat space as discrete [37–39]; that is, territorial geopolitical units,
which can be counties, municipalities and states, delimiting the analysis units, so the variable shape of
study in space, is conditioned by the size and form of the territorial unit of analysis, which would tend
to lead to the ecological fallacy.

3. Method

This was an exploratory, ecological and transversal research aimed at analyzing the spatial
distribution of CLP cases and its geographical association with environmental pollution in the
MMA. Although this does not establish casualty relationships, the study aims at finding spatial
associations between the study groups in order to know the degree of interactions between CLP and
environmental pollution.

3.1. Data

Clinical information was obtained from a database of patients attending Casa Azul A.C. in the
last 5 years. This non-profit medical organization is dedicated to assisting low-income patients with
CLP to afford integral therapy [40]. Inclusion criteria included all isolated CLP cases of 3 to 9 years,
of either sex. The final sample was constituted by 333 cases, excluding syndromatic forms of CLP
(Trisomies, van der Woude syndrome, Treacher Collins syndrome, etc.). Their geographical location
was obtained by means of latitude and longitude coordinates. All patient families reported no urban
mobility, living in the same house, at least during the patient gestational period, in order to know the
exposure of the mother during pregnancy to environmental pollution interpolated to their location.

The geographical coordinates were processed using the Crimestat 3.2 and ArcGIS 10.4 software
to calculate the degree of concentration and the spatial Clusters, using the Nearest Neighbor Index
technique (NNI) and the Nearest Neighbor Hierarchical Clustering (NNHC) technique. With the ArcGIS
software, spatial interpolation techniques were used to estimate values of environmental pollution
over a continuous space, these techniques are detailed in the section on spatial statistics techniques.



Int. J. Environ. Res. Public Health 2019, 16, 2488 4 of 22

For the catalog of polluting industries and their emissions, the Sistema Integral de Monitoreo
Ambiental del Estado de Nuevo León (SIMA) [41] was used. This system reports the polluting
substances emitted by more than 300 industries from 2010 to 2015 in Nuevo Leon. (See Table 1).

Table 1. Classification of the main industrial pollutants. Emission sources.

Cianides and Other Pollutants Economic Activity Contaminated Element Anual Mean (tons)

2-etoxyiethanol Automotive manufacturing Water 31.34
Polychlorinated Biphenyl Energy poduction Soil
Cyanide inorganic/organic Paints Air

dibutyl phthalate, Home appliances
Choride dioxide

Sulfur formaldehyde hexafluoride

Aromatics Pollutants Economic Activity Contaminated Element Anual Mean (tons)

Styrene Paints Water 56.80
Phenol Laminates Air

toluen diisocianate Wholesale business

Halogenated Organic Pollutants Economic Activity Contaminated Element Anual Mean (tons)

1,2-dichlorobenzene Food and beverages production Water 12.8
1,4-dichlorobenzene Chemical products productcion Air

chlorodifluoromethane Refrigaration equipment
Chloromethane

methylene chloride
hydrobromofluorocarbons

Metals Economic Activity Contaminated Element Anual Mean (tons)

Arsenic Detergents Water 794.4
Cadmium Paper and cardboard production Air
Mercury Car Motor production

Chromium,
Nickel
Lead

Greenhouse and Combustion Gases Economic Activity Contaminated Element Anual Mean (tons)

Carbon dioxide Refrigaration equipment Air 1,613,046.7
Nitrogen dioxide Electric Machinery

Methane Industrial baking
Nitrogen dioxide Hospitals

The PM10 data were obtained from 10 environmental monitoring stations. These data were
interpolated in their mean values (see Table 2).

Table 2. Distribution of particulate matter (PM10) concentration by monitoring station during 2016.

Station Obs Mean Std. Min Max

Southeast 52 42.5 10.4 27.3 76.6
Northeast 52 61.9 19.4 29.7 107.6

Downtown 52 55.5 15.6 33.1 99.2
Northwest 52 68.8 20.0 34.4 130.9
Southwest 52 64.6 19.1 33.0 119.7

Northwest (2) 52 78.6 21.7 32.0 127.2
North 52 53.2 11.0 34.5 78.7

Northeast (2) 52 57.4 11.8 37.1 85.8
Southeast (2) 52 61.6 14.7 38.8 102.1
Southwest (2) 52 62.0 14.0 38.1 102.1

Likewise, a cartographic data and basic geostatistical areas shapefiles were used for the
13 municipalities that integrate the MMA. These shapefiles included data on population, education
levels, health indicators, and other sociodemographic variables.
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3.2. Spatial Statistic Techniques

3.2.1. Nearest Neighbor Index (NNI) Analysis

The concentration degree, the space points, and the cluster identification were calculated for
industrial emissions and the CLP cases with the NNI [42,43]. This technique compares the mean distance
of the nearest points, and matches it with an expected mean distance from a random hypothetical
distribution. If the mean distance is shorter than the hypothetical mean distance, it can be assumed
that data follows an agglomeration pattern. On the other hand, if the difference is higher than the
hypothetical mean distance, then data follows a dispersion pattern [44].

The Neighbor Nearest Distance (NND) is denoted as follows:

NND = Do/Da (1)

where: Do = is the observed mean distance between each point and its nearest neighbor.
Denoted as:

Do =

n∑
i=i

di

n
(2)

where; Da = is the expected mean distance for the points in a random distribution pattern.

Da = 0.5 (A/N) (3)

where A is the minimum surface (square meters) that encloses a rectangle around all the points and
N is the number of points. In general terms, the NNI is the ratio of the nearest neighbors’ distance
observed between the random mean distances:

NNI = d(observed)/d(random) (4)

If the result is higher than 1, the pattern is dispersed, if the result is lower than 1, the pattern
denotes agglomeration. If the result is closer to 0, there will be a large concentration in the cloud of
points as seen in Figure 1.
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Figure 1. Type of spatial point distribution.

3.2.2. Nearest Neighbor Hierarchical Clustering (NNHC)

Although NNI is a technique that helps determine if a distribution of points is dispersed or
agglomerated, it does not identify the location of the clusters. Therefore, the NNHC technique is the
second technique used to identify agglomerations of CLP points. This technique identifies groups of
points that are spatially close [44], as shown in Figure 2.
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This first spatial agglomeration generates the first-order clusters. Then another analysis is
performed on the unusually close agglomeration and produced the second order of clustering.
This analysis can be prolonged until there is no more associations. Usually, this analysis is limited to
third-order clusters. For the cluster identification, the selected setting was five CLP cases or more with
significant space agglomeration.

3.2.3. Interpolation by Inverse Distance Weighted (IDW), Empirical Bayesian Kriging (EBK) and
Kernel Density Approaches

The research addressed to analyze the spatial distribution of pollutants over a continuous space is
the inverse distance weighted (IDW) interpolation, which assumes that things that are close to others
are more similar than others that are far away. In order to predict a value in the space, IDW takes as
reference its closest neighbors in a certain radius because neighbors who are closer to the point to be
predicted will have more influence than the remote ones [44].

According to Cañada [45], spatial interpolation by IDW is denoted as follows:

Z(s0) =
∑n

j=i
λ × Z(si) (5)

where Z(s0) is the value that predict the location (s0), n is the total sample points (emitting industry
locations) near the point to be predicted, λ is the weighted value assigned to each point and it will be
used for the prediction of values. The point values diminish with the distance, were Z(si) is the value
observed in the location si. In other words, the sample points that are further away from the point to
be predicted within a given radius will have less weight with respect to those that are closer.

In addition, software sets as default a maximum of 15 nearest neighbor points and a minimum of
10. The weighted point values might have other coexisting weights. For PM10 values, the interpolation
technique used was empirical Bayesian kriging (EBK), by means of the Geostatistical Analyst of ArcGIS
10.4.1, because this technique allows a better adjustment of air pollution data over a continuous space.
With similar notation to Formula (5), the results were generalized by calculating the mean square error
(MSE) denoted as follows:

MSE =

√√ n∑
i=i

Ẑ (Si ) − Z (Si)
2

n
(6)

where Ẑ (Si ) is the value after the interpolation and Z (Si) is the value measured at the point Si .
Similarly, Kernel Density was used to identify the areas of the MMA where CLP cases are intensified,
which according to Kelsall & Diggle (1995) [46] is denoted as follows:

g(x j) =
∑N

i=1

KWiIi
1

h22π
e−

d2
i j

2h2

 (7)

where g(xj) is the density of cell j, d2
i j is the distance between cell j and a location of a CLP case i, h is the

standard deviation of the normal distribution, K is a constant, Wi is a weight in the location of a CLP
case and Ii is an intensity of the location of a CLP case.
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3.2.4. Spatial Scan Statistics (SaTScan)

Another form to detecting spatial clusters is the spatial analysis of Kulldorf. In this analysis
the reference is not the distance between points (NNI analysis), but the population at risk in a
particular area [47]. In this technique, we used the AGEBS with it population and CLP points. Finally,
we compared the results of NNI and spatial scan statistics.

The SaTScan software has been used for health monitoring and to explore Clusters of disease in
space, in time and space-time for congenital malformations [48–50]. The SaTScan use a Poisson model
for discrete sample. This method permits to identify high risk groups in AGEBs associated with CLP.
The expected number of cases in each AGEB is calculated as:

E[c] = p×C/P (8)

where c is the observed number of CLP, p is the population of the census section of interest (AGEBS),
and C and P are the total number of CLP and population, respectively. A relative risk of CLP for
each AGEB is calculated by dividing the observed number of CLP by the expected number of CLP.
The alternative hypothesis is that there is a high risk of CLP within the exploration window compared
to the outside. Under the Poisson assumption, the likelihood function for a specific window is
proportional to: (

c
E[c]

)e( C− c
C− E[c]

)c−e

I(∗) (9)

where C is the total number of CLPs, c is the observed number of CLPs within the window, and E [c] is
the expected number of CLPs within the window under the null hypothesis that there is no difference.
Because the analysis is conditioned to the fact that the total number of cases observed, C − E [c], is the
expected number of cases outside the window. I(∗) is an indicator function, with I(∗) = 1, it is when
the window has more cases than expected under the null hypothesis and 0 otherwise. The hypothesis
test was carried out using 999 Monte Carlo simulations and of which a test statistic is calculated for
each random repetition, as well as for the set of real data.

Log likelihood ratio (LLR) was calculated based on the difference of the incidences inside and
outside the windows, and a Monte Carlo test helped to determine the statistical significance of the
identified groups. A scan window with maximum LLR was considered the cluster with the highest
probability, indicating that it was less likely to have happened by chance.

4. Results

4.1. Identification of Hierarchical Clusters for CLP and Emitting Industry

The spatial distribution of CLP cases, using a Kernel density analysis, showed a marked
concentration in the periphery of the urban territory and the resulting clusters (Figure 3a,b), especially
in the north and east of the MMA territory. Density and clustering analysis showed similar results.

The NNHC analysis produced 20 first-order clusters that agglomerated at least 5 CLP cases and 4
s order Clusters. This distribution is not a random distribution, but agglomerated in clusters. Figure 4
shows the spatial association between CLP cases grouped in clusters and the emitting industry Clusters.
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In Figure 4, the first and second-order clusters can be observed. The second-order clusters
are identified by numbers. The NNHC analysis formed 23 first-order clusters for industry and
4 second-order clusters. The second-order clusters for industry overlapped with second-order clusters
for CLP in all, but the first. This last one is not overlaid with the second-order clusters of CLP, but it
overlaps with 3 first-order clusters of industry. These methods showed the association between spatial
concentration of cases with CLP and emitting industries, as shown in Table 3.

Table 3. Pollutant by cleft lip and palate (CLP) clusters.

Second-Order Cluster 1 Second-Order Cluster 2 Second-Order Cluster 3 Second-Order Cluster 4

Total population 204,404 Total population 728,000 Total population 599,333 Total population 355,150

CLP cases 22 CLP cases 61 CLP cases 41 CLP cases 35

Total accumulation 8734 Total
accumulation 1641 Total acumulado 6765 Total

accumulation 3154

Pollutant Cummulative
amount (ton) Pollutant Cummulative

amount (ton) Pollutant Cummulative
amount (ton) Pollutant Cummulative

amount (ton)

Carbon dioxide 8204.22 Carbon dioxide 1638.88 Carbon dioxide 4507.55 Carbon dioxide 3153.75

Nitrogen dioxide 472.49 Nitrogen
dioxide 2.49308 Nickel (conpounds) 2203.93 Nickel

(conpounds) 0.002527

Methyl Chloride 48 Lead
(compound) 0.08229 Lead (compound) 29.0575

Cadmium
(Compounds) 2.7047 Nickel

(conpounds) 0.02595 Cadmium 12.5141

Lead (compound)) 2.03935 Cyanide
Inorganic/organic 5.56455

Niquel (conpounds) 1.92753 Cromium
(compounds) 4.35304

Cromium
(Compounds) 1.28269 Chlorodifluorometane

(HCFC-22) 0.844

Metane 0.748 Arsenic 0.50355

Nitrous oxide 0.716 Mercury 0.243564

1,4-DIChlorobencene 0.086368 Mercury
(compounds) 0.0908

Disosciated Toluene 0.0012

Cadmium 0.00119

1,2-Diclorobencene 0.00066
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Table 3 shows the distribution of CLP cases, the total accumulation of substances and the amount
of each one. In the second-order cluster 1 there are 22 cases of CLP that coexist with many substances
including cadmium, methyl chloride and carbon dioxide. These substances had been linked to
several adverse health effects [51]. In Cluster 3, there were 41 CLP cases that coexist with several
pollutants: cyanides, cadmium, arsenate, mercury, lead, and carbon dioxide. The second-order cluster
number 2 concentrate 61 cases of CLP, corresponding to the cluster with higher population and less
pollutant concentration.

4.2. Nearest Neighbor Analysis

The agglomerations seen in Table 4 showed that both CLP cases and emitting industries tend
to concentrate.

Table 4. Nearest Neighbor Index (NNI) for CLP cases and emitting industry by type of pollutant.

Chemical Type Sample First-Order
Clusters

Mean Nearest
Neighbor

Distance (m)

Expected Nearest
Neighbor

Distance (m)

Nearest
Neighbor

Index (NNI)
p

Total CLP cases 333 20 634.0 1611.9 0.4 0.001
Total Polluting Firms 301 23 438.8 1125.2 0.4 0.001

Firms emitting
Greenhouse Gases 228 7 537.1 1292.8 0.4 0.001

Firms emitting Aromatics 5 0 3760.8 2379.2 1.6 0.965
Firms emitting

Organic-Halogenated 13 0 3111.0 2861.5 1.1 0.857

Firms emitting Metals
and metalloids 53 2 1434.9 2316.6 0.6 0.054

Firms emitting Cyanides
and other pollutants 2 0 20,026.6 3505.8 5.7 0.988

p: Significance levels.

Table 4 shows the two main analysis units, CLP cases and polluting firms. The companies are
disaggregated by types of polluting substances. Greenhouse gases are the main emission of industry,
represented by 228 firms, while the cyanide industry is represented by only two firms. The NNI
(column 6) shows that CLP cases and emitting companies have significant values of agglomeration
with coefficients of 0.4 while aromatic, cyanide, and organic halogenated industries show random
distributions (values > 1.0). It can be observed that companies have fewer points in space (301) than
CLP cases (333); but companies have more Clusters than CLP. These is due to the neighboring of
industries in the urban space.

4.3. Spatial Interpolation by Pollutant

Figure 5 shows the spatial location of emission industries with intensity gradients that can be
associated with CLP cases.

Medium and high levels of pollutant concentration can be seen in the peripheric areas, as well as
the CLP cases. Only aromatic pollutants tend to locate more on the center of the urban area. Table 4
shows the specific pollutant ranges.

In Table 5, CLP cases seem to be associated to different range of pollutant concentrations.
For example, 84% of the CLP cases are located within areas of median and high concentration of gases
(ranges 5 to 10). Most of the CLP cases are in range 5, representing 48.65% of the cases. About 96% of
CLP cases are exposed to median and high values of aromatic pollutants and the pollutant range 5
accumulates 107 CLP cases (32.13%).
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Table 5. CLP cases by pollutant.

(a) Gases.

Range Values CLP Cases Percentage

1 0.4–498.4 0 0.00
2 498.4–681.7 1 0.30
3 681.7–1,179.7 13 3.90
4 1179.7–2532.5 41 12.31
5 2532.5–6207.7 162 48.65
6 6207.7–16,191.7 67 20.12
7 16,191.7–43,314.4 31 9.31
8 43,314.4−116,996.3 14 4.20
9 116,996.3–317,161.3 4 1.20
10 317,161.3–860,932.3 0 0.00

(b) Gases.

Range Values CLP Cases Percentage

1 0.00–0.01 0 0.00
2 0.01–0.03 0 0.00
3 0.03–0.09 1 0.30
4 0.1–0.3 10 3.00
5 0.3–1.0 107 32.13
6 1.0–3.1 58 17.42
7 3.1–9.8 38 11.41
8 9.8–31.1 49 14.71
9 31.1–99.2 52 15.62
10 99.2–316.1 18 5.41
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Table 5. Cont.

(c) Aromatic pollutants.

Range Values CLP Cases Percentage

1 0.00–0.02 0 0.00
2 0.02–0.05 0 0.00
3 0.05–0.11 1 0.30
4 0.11–0.23 2 0.60
5 0.2–0.5 9 2.70
6 0.5–1.0 48 14.41
7 1.0–1.9 107 32.13
8 1.9–3.9 122 36.64
9 3.9–7.9 41 12.31
10 7.9–16.0 3 0.90

(d) Organic-halogenated pollutants.

Range Values CLP Cases Percentage

1 0.00–0.01 82 24.62
2 0.01–0.04 88 26.43
3 0.04–0.16 40 12.01
4 0.16–0.6 20 6.01
5 0.6–1.9 33 9.91
6 1.9–6.4 13 3.90
7 6.4–21.5 19 5.71
8 21.5–72.9 27 8.11
9 72.9–246.6 4 1.20
10 246.6–834.6 7 2.10

(e) Metals and metalloids.

Range Values CLP Cases Percentage

1 0.001–0.003 0 0.00
2 0.003–0.01 0 0.00
3 0.01–0.04 0 0.00
4 0.04–0.12 0 0.00
5 0.12–0.39 8 2.40
6 0.39–1.3 93 27.93
7 1.3–4.1 19 5.71
8 4.1–13.5 67 20.12
9 13.5–43.8 81 24.32
10 43.8–142.4 65 19.52

Source: own elaboration.

Organic halogenated pollutants followed a similar trend, where CLP cases are associated with
higher pollutant concentrations. For metals and metalloids, most of the CLP cases are associated
with low or median concentration ranges (ranges 1 to 5). For cyanides, most of the CLP cases were
associated with the high-range levels (ranges 5 to 10) and 81 cases were observed in range 9 (24%).
It is well known that cyanides are linked to congenital malformations [52]. PM10 exposure has also
been linked to cardiovascular malformations [5,28,53]. In Figure 6, the CLP clusters of first and second
order coexists with high PM10 concentrations.
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Figure 6. Spatial association of CLP cases and PM10.

The second-order clusters for CLP are identified by numbers; the higher PM10 values are in red
and low values are in blue. This figure shows that second-order clusters of CLP 1 and 2 have clear
interaction with high values of PM10; that is, significant grouping of CLP are associated with high
values of environmental pollution, an association that could have implications in the detonation of
certain health problems and particularly of congenital illnesses.

In Table 6, the CLP cases are distributed along their corresponding PM10 concentrations.

Table 6. CLP cases and PM10 concentration.

Range PM10 Concentration (mg/dL) CLP Cases Percentage

1 42.47–47.18 2 0.60
2 47.18–51.05 13 3.90
3 51.05–54.21 52 15.62
4 54.21–56.80 39 11.71
5 56.80–58.92 40 12.01
6 58.92–60.65 54 16.22
7 60.65–62.08 51 15.32
8 62.08–63.81 58 17.42
9 63.81–65.93 20 6.01
10 65.93–68.52 44 1.20

It can be seen that 68% of the cases are located in median and high values of PM10, with rank
8 being the highest number of cases concentrated with 58 cases (17.42%). It can be determined that
most of the CLP cases present spatial interactions with high levels of pollution by PM10. Similarly,
CLP spatial clusters are located in areas of the city with high levels of this type of environmental
contamination. The concentration of the CLP cases is shown in Figure 7.
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Figure 8. Clustering of cases by pollutant categories.

The principal components analysis (Figure 8) shows that greenhouse gases, aromatics, and PM10

in ranges between 4 and 7 coincide with the highest concentration of CLP cases, with an explanation of
the variance of 53%. That means that the CLP cases present a greater interaction with this group of
contaminants, a situation that could suggest that this group of pollutants could have greater influence
on the incidence of this congenital disease.

4.4. Cluster Identification by Spatial Statistical Scan

Figure 9 shows the CLP clusters produced by two techniques: NNHC first and second-order
clusters and SaTScan clusters based on AGEBS as the analysis unit. Secondary clusters 2, 3 and 5
(red circles) showed associations with second-order clusters 1, 2 and 4 (black circles). The most likely
cluster (red circle) associates with the first-order clusters of CLP (filled in orange).
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Figure 9. Cluster localization by SaTScan.

Particular attention generates the most likely Cluster, that is, the Cluster with the highest risk
and probability of containing CLP based on the underlying population of the AGEBS. This cluster is
located in the municipality of Apodaca (north of the city), a municipality that has a large number of
industrial parks with highly polluting economic activities. These environmental agents have spatial
interaction with clusters of CLP, a condition that could be intervening with some health problems.

The information of the five Clusters detected by the spatial statistical scan can be analyzed in
Table 7, which shows that the most likely cluster concentrates 7 cases of CLP in a radius of 550 m,
agglomerating 5 AGEBS with a population of 10,326 inhabitants. It can also be observed that this is the
cluster with the highest relative risk, at 8.41; meaning that this Cluster has 8 times higher rate of CLP
than observed outside. This is generated by a randomization process with levels of high significance.

Table 7. Detected clusters by SaTScan.

Cluster Latitude Longitude Radio
(km)

Number
of AGEBS Population Observed Expected RR LLR p-Value

Most likely cluster 25.79678583 −100.2428446 0.55 5 10,326 7 1.85 8.41 8.68 0.005

Secondary cluster 2 25.77927943 −100.3725095 1.90 26 102,750 21 8.44 2.59 6.82 0.001

Secondary cluster 3 25.65391682 −100.4269285 3.05 24 60,032 14 4.93 2.92 5.66 0.050

Secondary cluster 4 25.76653482 −100.2557045 0.42 2 10,015 5 1.82 6.15 4.87 0.098

Secondary cluster 5 25.66025114 −100.2111653 1.19 11 44,792 11 3.68 3.06 4.81 0.595

AGEBS: Geostatistical basic area; RR: Relative Risk; LLR: Likelihood ratio.

Figure 9 shows that the most likely Cluster presents a strong spatial association with a first-order
cluster generated by the NNHC technique. In this sense, if the CLP cases located within that cluster of
the first order are added with the 7 located within the most likely cluster; these will group 12 cases
in a radius of 1.2 km, a relatively short distance for a considerable number of cases of a congenital
malformation. Similar reading can be given to the secondary cluster 4 located in the same municipality,
which presents the greatest relative risk after the most likely cluster. This cluster has 5 cases of CLP in
a radius of 420 m; however, it is not significant.
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5. Discussion

We conducted an ecological exploratory research in order to identify distribution patterns and
spatial associations of CLP cases with environmental pollutants. We found that CLP cases do not
present a random distribution, measured with NNI and NNHC techniques. The results of these
techniques showed several spatial coincidences, confirming the findings. The geographical or spatial
identification of health conditions may be very useful in the understanding of the disease and for the
creation of public policy.

CLP etiology probably does not come from a single factor, as a particular polluted ambient,
but more likely from a multi-causality model. The ability to find particular geographical areas of
health events may be useful to understand the ultimate cause or causes of disease and to use public
policy to modulate or prevent it. CLP spatial distribution followed specific patters in the urban space.
This coincides with the spatial agglomeration theory in the sense that everything is related to each other
in space [54]. The present results do not establish a direct causality, but they indicate geographical
proximity between CLP cases and ambient pollutants, as mentioned by other authors [55,56].

Several clusters of CLP cases were associated with carbon dioxide in first- and second-order
clusters detected with NNHC. In addition, Clusters 1 and 2 showed an association with modest
amounts of nickel, lead, cadmium, mercury, arsenic and cyanides. All these pollutants are linked to
congenital malformations.

Even given that there is a lot of knowledge of genetic mechanisms in congenital malformations
like CLP, many genetic interactions with ambient pollutions are not well understood, probably because
multifactorial effects produce them [57]. Although more than 300 genes had been associated with
CLP, recent research associate CLP cases with two candidate chromosomes, 17q and 11 [58,59], but the
gene–environment interaction is still ambiguous [60,61]. More research is needed to understand this
association. In order to study the influence of the ambient pollutants on CLP, personal exposure
measures and characterization of pollutant point emissions are required. There are many variables
that need to be adjusted, like tobacco or alcohol habits, socioeconomic level, medical access, vitamin
consumption, and season of the year, among others [28].

There is a spatial association of CLP cases with PM10 concentrations. The CLP second-order
clusters showed a clear interaction with high PM10 levels, so the significant grouping of CLP was
associated with high values of environmental pollution. This association might explain the detonation
of certain health problems, especially congenital malformations. The PM10 concentration varies along
the year, showing high pics (over 100 µg/dL) several times.

Limitations

For the identifications of points in the continuous space, it is necessary to have a precise location
and this is not always easy to achieve. The environmental pollutants exposition were approximated to
the addresses of the cases, but do not reflect the mobility of pregnant women to other locations.

In particular, this research faced the difficulty of the availability of information, because in Mexico
there are no open data available on health problems of the population, particularly of congenital
malformations, at a disaggregated level. The difficulty in conducting studies on a continuous space is
increased by the confidentiality criteria that characterize this type of data, since performing a pattern
analysis of points involves accurately identifying the location of the same. In this sense, it is clear that
the data used to carry out this investigation constitutes a limitation, since data were not provided by a
government agency, but by a civil association that deals with this type of congenital malformation.

6. Conclusions

Our study reviewed the spatial distribution of children with CLP and its association to
environmental pollutants in MMA, which is one of the most polluted regions in Latin America.
Although this study did not establish causal relationships, it showed the spatial interaction between
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CLP and environmental pollutants. With spatial statistical techniques, the space was treated as a
continuous space and the CLP cases were individual points.

We acknowledge that the methods used for the present analysis have some limitation due to
the quality of the data sources. We used a non-profit organization (Casa Azul A.C) data instead of
public health data. Although we identify clusters of CLP, more precise data and statistics are needed to
establish causality. This study provides a baseline description of air pollutions and CLP associations
that will be important for future studies.

This research constitutes the first step to analyze the relationship between the CLP incidence from
the spatial perspective with the use of open space applications. We have showed CLP agglomerations
that interacted in space with different pollutants. More studies are needed to prove the interaction
between the environment and the molecular biology of this disease. Our findings add important
information to very few studies that have been published in Latin America.
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