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Abstract: Accurate spatiotemporal air quality data are critical for use in assessment of regulatory
effectiveness and for exposure assessment in health studies. A number of data fusion methods
have been developed to combine observational data and chemical transport model (CTM) results.
Our approach focuses on preserving the temporal variation provided by observational data while
deriving the spatial variation from the community multiscale air quality (CMAQ) simulations, a type
of CTM. Here we show the results of fusing regulatory monitoring observational data with 12 km
resolution CTM simulation results for 12 pollutants (CO, NOx, NO2, SO2, O3, PM2.5, PM10, NO3

−,
NH4

+, EC, OC, SO4
2−) over the contiguous United States on a daily basis for a period of ten years

(2005–2014). An annual mean regression between the CTM simulations and observational data is
used to estimate the average spatial fields, and spatial interpolation of observations normalized by
predicted annual average is used to provide the daily variation. Results match the temporal variation
well (R2 values ranging from 0.84–0.98 across pollutants) and the spatial variation less well (R2 values
0.42–0.94). Ten-fold cross validation shows normalized root mean square error values of 60% or less
and spatiotemporal R2 values of 0.4 or more for all pollutants except SO2.

Keywords: spatiotemporal pollutant fields; data fusion; air pollution; CMAQ; particulate species;
gas species

1. Introduction

Fine scale air pollution fields with complete spatiotemporal coverage are of importance to public
health researchers who aim to understand the drivers of adverse health effects [1,2]. Health exposure
studies involve matching ground monitor air pollution measurements to individuals within the nearby
vicinity of an air pollution monitor [3–5]. These measured concentrations are then used to develop a
city-wide health effect estimate [6]. However, this method is restricted by the limited spatial monitoring
networks across the contiguous United States, the impacts of local emissions on a single monitor, and
the temporal completeness of the air monitor data [7–9].

One method to address the sparseness and temporal incompleteness of air monitoring data uses
chemical transport model (CTM) results. CTMs use the governing chemical and physical principals
with meteorology and emissions data to simulate pollutant concentrations [10–12]. One widely used
CTM is the community multiscale air quality (CMAQ) model. Although CTMs can create spatially and
temporally complete pollutant fields, there are biases in the model results [13–15]. Such biases differ
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based on the species simulated and the domain [10]. Examples of this bias include over-predictions of
particulate nitrate and ammonium and underpredictions of carbonaceous aerosols in the spring and
summer [11]. For the ozone these biases include an underestimation in North America of daytime
ozone in the spring and an overestimation of daytime concentrations during the summer [10,16].
Evaluation of CMAQ to the ozone monitoring instrument (OMI) found that CMAQ overestimates
summertime nitrogen dioxide (NO2) in urban locations and underestimates in rural locations [17]. As
CMAQ and CTMs improve and the biases are better understood, there is less of a need to modify CTM
results for use in exposure studies [18,19].

CTM simulations can be combined with air quality observations through data fusion (DF) methods
to other air quality data to correct for the biases associated with the model outputs [20,21]. Models
can be fused through mathematical methods such as statistical interpolation or machine learning
approaches [22–28]. The data fused with CTM outputs can range from satellite, observational, land use,
or meteorology data. Interpolation methods such as ordinary kriging and inverse distance weighting
(IDW) can interpolate a parameter over space, while machine learning methods such as neural network,
random forest, and decision trees create a model using a set of preselected variables [29]. The method
selected depends on the pollutant being studied and the type of data available [30,31]. For example,
speciated particulate matter may only have observational data available, while particulate matter
less than equal to 2.5 microns (PM2.5) has satellite data derived aerosol optical depth (AOD) and
observational data available [32–34]. Each method is associated varying performance depending on
the type of data and method being used [35].

The approach of this study is to use a statistical DF method to combine observational data to
the CMAQ model simulations to create accurate spatiotemporally resolved air pollution fields. We
modified an existing data fusion method (Friberg et al) and applied it regionally across the contiguous
United States at a 12 km resolution for 12 pollutants: seven particulate matter species and five gaseous
species over a span of ten years [20]. The pollutants chosen were those linked to adverse health
effects and that which are currently measured by the United States Environmental Protection Agency
(USEPA) [20,36]. These pollutants are PM2.5, particulate matter with an aerodynamic diameter less
than or equal to 10 microns (PM10), nitrate (NO3

−), ammonium (NH4
+), sulfate (SO4

2−), elemental
carbon (EC), organic carbon (OC), carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen oxides
(NOx), sulfur dioxide (SO2), and ozone (O3). Cross validation by data withholding is then used to
evaluate the DF method. This evaluation requires comparing the concentrations produced through the
DF method to the available measurement values.

2. Materials and Methods

2.1. CMAQ Source

The CMAQ runs were performed by the USEPA using version 5.0.2 of CMAQ at a 12 km resolution
across the contiguous United States for the years 2005–2014, for 12 pollutants of interest, to produce
an hourly simulation [37,38]. The pollutants modeled were 7 particulate species (PM10, PM2.5, EC,
OC, NH4

+, SO4
2−, NO3

−) and 5 gases (CO, NO, NOx, O3, SO2). CMAQ relies on process-based
principals to predict concentrations of species while taking into account emissions, meteorology, and
chemical/physical properties [10,11]. CMAQ was run with the bidirectional NH3 air–surface exchange
and the Carbon Bond version 2005 (CB05) chemical mechanism [37,38]. The simulations were run at a
12 km × 12 km resolution with 35 vertical layers that span till the top of the free troposphere, with layer
1 nominally 19 m tall [37]. Emission inputs were based on 2005, 2008, and 2011 National Emission
Inventory (NEI) using the Sparse Matrix Operator Kernel version 3.1 [37,39]. A year-specific continuous
emission monitoring system for large combustion and industrial process was also included [37,39].
A more detailed description of the input information is available through the USEPA (Section S1). The
surface level simulations were used in this DF method.
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At a 12 km resolution, the contiguous United States is represented by a 299 × 459 cell matrix,
with each cell centroid described through a latitude and longitude coordinate. The CMAQ simulation
outputs hourly concentrations which are then converted to 24 h averages for particulate matter species,
1-h max average for gaseous species, and 8-h max average for ozone. These averaging methods
were chosen based on the averaging methods of the current Environmental Protection Agency (EPA)
standards of these pollutants [40,41]. Hourly concentrations from CMAQ at Greenwich Mean Time
(GMT) were converted to the respective United States local time zone. The averaging was then
performed from midnight to midnight local time. The time zone of each grid cell was determined
through the latitude and longitude coordinates of the grid centroid.

2.2. Monitoring Data

The observational data was taken from the EPA’s Air Quality System (AQS) database for the
same 2005–2014 time span and 12 pollutants [42]. This database contains observational air quality
monitoring data from state, local, and tribal air pollution monitors across the contiguous United
States [42]. Species such as ozone and PM2.5 had the best spatial coverage, while speciated PM had
limited spatial coverage that was limited to metropolitan areas. Figure 1 shows a comparison between
the spatial coverage of PM2.5 and EC across the contiguous United States.
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Figure 1. Comparison of monitor coverage between particulate matter (PM2.5) and elemental carbon
(EC) for the year 2011. The different colored dots represent the different temporal sampling frequencies
present for particulate species.

The particulate matter species monitors sampled at three different frequencies: 1 in 6 days,
1 in 3 days, and daily. Monitors with daily measurements are only available for PM2.5 and PM10.
The speciated PM (EC, OC, SO4

2−, NO3
−, NH4

+) have monitors sampling 1 in 6 and 1 in 3 days.
Table 1 shows the summary statistics for each of the species. The AQS PM data were downloaded as
24-hr averaged concentrations, the gaseous species (excluding ozone) were downloaded as 1-h max
concentrations, and ozone was downloaded as 8-h max concentrations [42].
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Table 1. Summary statistics for the observational data from 2005–2014. A range is presented to show
the changes in observational data over the ten-year span. Completeness is defined as the percentage of
days during the year with measurement data available. Monitor total represents the total number of
active monitors during the year, while daily represents the number of active monitors that take daily
measurements during the year. Total observations (OBS) represents the total measurements taken
during the ten-year span.

Pollutant Monitor Total Daily Total OBS Completeness (%)

Particulate
Species

PM10 691–999 248–320 1,416,226 37–55
PM2.5 768–1071 114–183 1,231,795 35–39

EC 95–172 0 87,776 13–22
OC 95–172 0 85,734 13–22

SO4
2− 103–172 0 102,311 20–23

NO3
− 103–172 0 90,176 20–23

NH4
+ 102–172 0 94,332 19–22

Gases

NOx 308–419 268–371 1,164,912 85–90
NO2 300–400 270–389 1,373,569 87–90
CO 303–418 278–393 1,257,734 87–90
O3 1182–1265 556–740 3,439,169 75–80

SO2 429–507 396–481 1,572,601 90–93

2.3. Data Fusion

To compensate for the monitoring data that are spatially and temporally incomplete, we fused the
monitoring data to the CMAQ simulations. These simulations are independent of the monitoring data,
based on emission estimates, meteorological data, and physical/chemical process modeling [10,11]. The
first step is estimating two regression parameters α and β to correct the CMAQ simulation (Equation (1)).

CMAQcorrected = αCMAQβ (1)

To estimate these parameters, we fit the above power regression model using annual averaged
CMAQ (CMAQ) as predictors of annual averaged observational

(
OBS

)
data. The annual averaged

CMAQ values were taken at the cell locations corresponding to the observational data and only when
observational data points were available at each location (Equations (2) and (3)). This is of importance
for non-daily or seasonal monitors that only take measurements for certain portions of the year.

OBS =
1
n

∑
i ∈m

OBSi (2)

CMAQ =
1
n

∑
i ∈m

CMAQi (3)

Here, n denotes the total number of observations taken at a point, m represents the days in the year in
which the monitor takes a measurement, the overbar represents the annual average, and the subscript i
represents the particular day. The β coefficient is limited between 0 and 1 to prevent any exponential
increasing functions. The α and β coefficients are calculated for each year of each species to account for
yearly changes between the CMAQ and observational data. The regression parameters are then used
to adjust all CMAQ values within the matrix. Some scatter is expected in this model because of the
spatial misalignment of the point source monitor and the gridded CMAQ field. The next step is to
convert the measurements to a normalized dimensionless ratio (Equation (4)); this is the term that is
spatially interpolated.

OBS

OBS
·
αCMAQ

β

αCMAQβ
(4)

The α and β terms represent the regression parameters found through the power regression
(Equation (1)), OBS is the daily observational value, OBS is the annual averaged observational
data, CMAQ is the value at a cell with an observation, and CMAQ is the annual averaged simulated
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value at that cell. Rather than only normalizing by the average of the observations, the inclusion
of the normalized CMAQ term accounts for monitors with only a partial year set of measurements.
The CMAQ values are averaged only when observations are available. If multiple observations are
included in one CMAQ grid cell, the average of the observations is used. For species such as elemental
and organic carbon which only record observational values every 1 in 3 or 1 in 6 days, we used linear
interpolation temporally to calculate the normalized dimensionless ratio on days with no observational
data. This allows us to use the existing observational data to estimate the concentrations on days
without any data available. Table 2 shows the range of α and β values calculated for each species over
the ten-year period.

Table 2. The calculated parameter range for the α and β parameters and the range of the R2 for the fit
between the community multiscale air quality (CMAQ) and observations. Each range encompasses the
values used during the ten-year period.

α β R2

Particulate Species

PM10 11.67–15.64 0.10–0.23 0.03–0.14
PM2.5 3.68–4.62 0.32–0.50 0.28–0.50

EC 0.58–0.84 0.34–0.54 0.26–0.49
OC 1.45–1.80 0.18–0.45 0.10–0.35

SO4
2− 1.11–1.31 0.82–1.01 0.77–0.93

NO3
− 0.88–1.29 0.53–0.89 0.43–0.60

NH4
+ 0.74–1.45 0.46–0.76 0.24–0.78

Gases

NOx 2.04–4.20 0.62–0.94 0.48–0.65
NO2 1.66–2.21 0.68–0.76 0.63–0.71
CO 0.82–1.09 0.43–0.67 0.16–0.36
O3 0.32–0.73 0.64–0.91 0.50–0.65

SO2 1.36–3.55 0.69–0.95 0.37–0.54

The α and β were calculated for each year to allow for variations in the relationship between the
yearly CMAQ results and observational data, rather than finding one set of parameters to describe all
ten years.

This normalized ratio is calculated at each monitoring location. These point values are then
spatially interpolated using IDW to create a smooth spatial field of normalized dimensionless ratios to
accommodate for areas with no observational data. The ratio of the IDW value was limited between
0.1 to 10 to prevent the spatial interpolation of any outlier CMAQ value that was over one order of
magnitude larger or smaller than the measured value. This field is then multiplied with the adjusted
field of CMAQ values to create the final fused field C* (Equation (5)).

C∗ =

OBS

OBS
·
αCMAQ

β

αCMAQβ


IDW

× αCMAQβ (5)

This method has fewer steps than previous data fusion methods that allows for easier
implementation and less computational demands [20,21]. Equation (5) is applied daily to create
a new fused field every day.

2.4. Model Performance Methods

Pearson squared (R2) was calculated temporally and spatially against the observational data to
characterize method performance. The data for the temporal analysis is found by comparing the
daily observational data at a monitor to the corresponding fused and CMAQ data values at the same
location as the monitor. This is repeated for every monitor available for a particular pollutant in a
given year. The spatial R2 is found by taking the correlation every day between the given observations
on a particular day and the corresponding fused and CMAQ values (Equations (6) and (7)).

temporal R2 = (corr(OBSm(t), modeledm(t))
2 (6)
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spatial R2 = (corr(OBSt, modeledt))
2 (7)

Here m represents the monitor and t represents the day.

2.5. Spatial Plots

To visualize the concentrations spatially, each pollutant is plotted geospatially using the CMAQ
cell centroid coordinate information (latitude/longitude). Each grid cell is averaged over the ten-year
time span and normalized to the maximum average concentration during the ten-year time frame
(Equations (8) and (9)).

C∗norm =
C∗

C∗max

(8)

C∗ =
1
n

n∑
i=1

C∗ (9)

Here C* represents the fused concentration, the overbar represents the average over the ten-year
time period, and n represents the total number of days in the domain.

2.6. Model Evaluation Methods

Random data withholding is used to evaluate the performance of the DF method. Ten groups of
observational data are created, each with a unique 10% of the total monitoring data. The monitor data
withheld in each set was chosen at random to eliminate spatial biases. The above data fusion method
is performed with the remaining 90% of data for each of the ten groups, resulting in ten new fused
fields. We then did our model performance measures on the new field at the removed measurement
locations of that particulate group. All reported withholding results are the average of each of the
ten runs. Ten runs were chosen to ensure the stability of the evaluation. The spatiotemporal R2 and
normalized root mean squared error (NRMSE) were calculated at withheld data points to evaluate the
model (Equations (10) and (11)).

R2 = (corr(OBS, C∗))2 (10)

NRMSE =

√
1
N

∑N
i=1

(
C∗i − OBSi

)2

OBS
(11)

The OBS term represents all withheld observation points, C* represents the fused field at those
corresponding observation points, N represents the total number of withheld points, and the overbar
represents the averaging of all observation points.

2.7. Population Weighted Average Exposure

Population weighted average exposure was calculated using the results from the fused fields
over the ten-year domain for all species to understand long-term trends in air pollution. A fractional
gridded population was calculated by determining the population in each 12 km CMAQ grid cell
(Equation (12)).

Fpop =
Pgrid

PT
(12)

Here Fpop represents the fractional value of population in a grid cell, Pgrid represents the population
in the grid cell, and PT represents the total population in the contiguous United States. The population
data are taken from the publicly available US Census Bureau. The 2010 census data was used for
each year [43]. The tract data contains each tract’s population, the tract area, and coordinates for the
population centroid [43]. Population in each cell was estimated by assigning cells to tracts and dividing
the population of the tract equally among all of its assigned CMAQ grid cells. A cell was assigned to a
tract if the centroid of a given cell fell within that tract. The fractional grid level population is then
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multiplied to the fused concentration and summed over the contiguous United States to determine the
population weighted averaged exposure (Equation (13)).

Population Weighted Exposure =
n∑

i=1

(
Fpop, i ∗C∗i

)
(13)

The subscript i references the individual grid cell, n represents the total number of grid cells over
the contiguous United States, and C* represents the calculated fused concentration.

3. Results

Four sets of results are presented. The first are normalized dimensionless plots of the resulting
fused fields. Second, is the comparison of the performance metrics and the improvements made to
the fused fields from the initial CMAQ fields. Third, the model evaluation results from the 10% data
withholding and finally the results from the population weighted exposure.

Figure 2 The normalized fused fields averaged over the ten-year time span, normalized according
to Equation (8).
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Figure 2. Normalized concentrations for the 12 species averaged over the ten-year time span. The
concentrations are normalized against the maximum value over the contiguous United States (CONUS),
excluding Mexico and Canada. The values plotted are dimensionless.

The fused normalized fields varied across the 12 pollutants, which is expected because of the
different nature of each species. Mobile source pollutants such as NOx, NO2, and CO were found
to highlight metropolitan areas. Ozone was found to have the highest normalized values with high
simulated concentrations over the Atlantic Ocean and Gulf of Mexico. SO2, a primary pollutant,
was found to have a less homogeneous spatial distribution with high concentrations in the eastern
contiguous United States area. Particulate species were found to have higher values in the eastern
contiguous United States compared to the western side.
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Model performance (Figure 3) was found to vary between species (Equations (6) and (7)). Pollutant
estimates show an improved temporal and spatial R2 over the initial CMAQ fields to varying degrees.
The NRMSE was highest in species that produced the most scatter in the initial CMAQ and observational
data regression, such as PM10 and SO2 (Table S2). The scatter is quantified in Table S1 where the R2 of
the annual average CMAQ and observational regression is calculated.

All species showed an increase in performance for all metrics compared to the initial CMAQ
results. O3, PM10, and SO2 were found to have the greatest increase in performance temporally,
with SO2 having the lowest CMAQ and fused R2. These species (PM10 and SO2) had an increase in
temporal R2 of 0.70. Temporal performance metrics were found to be higher than spatial metrics for
all 12 species. The highest temporal R2 was seen for ozone at 0.98, with the lowest for SO2 at 0.84.
Spatially, SO4

2− performed the best at 0.91, with SO2 as the lowest with 0.42. The greatest increase in
spatial performance occurred for OC with an improved spatial R2 of 0.48.
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represents the fused field metric, while the black line for each species represents the CMAQ metric.

Temporal performance was further examined by comparing the fused field to the observations on
the different types of monitor sampling days. This is an additional way to quantify the effects of the
different number of temporal observations available throughout the year. This data fusion method does
not change based on the sampling frequency of the monitor, and accounts for monitors with both high
and low sampling frequencies. Three pollutants are highlighted for this analysis: EC, SO4

2−, and PM2.5.
EC was chosen to highlight the effects of a sparsely populated monitoring network, SO4

2− was chosen
to show a secondary pollutant, and PM2.5 was shown to highlight a highly populated monitoring
network. Speciated PM monitors have two sampling frequencies: 1 in 3 days and 1 in 6 days. PM2.5

had the same two sampling frequencies, with additional daily sampling monitors. Table 3 compares
the R2 and NRMSE on the different sampling frequencies. Day A represents the one in three sampling
frequency, Day B represents the 1 in 6 sampling frequency, and Day C represents the daily sampling
frequency for PM2.5. For speciated PM, Day A would have the fewest observational points because
only the 1 in 3 day monitors are reporting a value. Day B would have the most observational points
because both the 1 in 3 day monitors and 1 in 6 day monitors are reporting a value. For PM2.5 Day C
would have the fewest observational points because only the daily monitors are reporting a value.

For the ten years, EC on average had an increased R2 of 0.02 and a decreased NRMSE of 0.02 on
Day B compared to Day A. SO4

2− on average was not found to have a difference between Day A and
Day B for R2 and NRMSE. PM2.5 was found to have decreased R2 and increased NRMSE for Day C
compared to A and B. For PM2.5 and EC we see that performance is enhanced on days with more
observational data.
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Table 3. Comparison of the R2 and normalized root mean squared error (NRMSE) between C* and
observations on the different sampling days. Speciated PM monitors, EC and SO4

2− have two sampling
frequencies, and PM2.5 has three sampling frequencies. Day A represents 1 in 3 days, Day B represents
1 in 6 days, and Day C represents daily measurements (only for PM2.5). The metrics shown are the
averages of all days included in each of the three categories.

2005 2006 2007 2008 2009

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

EC
1 in 3 0.57 0.52 0.61 0.44 0.61 0.48 0.64 0.45 0.76 0.31
1 in 6 0.59 0.49 0.62 0.42 0.64 0.44 0.68 0.38 0.76 0.31

SO4
2− 1 in 3 0.90 0.24 0.91 0.52 0.92 0.18 0.87 0.23 0.92 0.20

1 in 6 0.90 0.25 0.90 0.54 0.93 0.18 0.89 0.23 0.91 0.21

PM2.5

1 in 3 0.81 0.23 0.80 0.23 0.82 0.23 0.81 0.22 0.81 0.22
1 in 6 0.81 0.24 0.80 0.24 0.81 0.23 0.81 0.22 0.80 0.22
daily 0.77 0.26 0.76 0.25 0.80 0.25 0.80 0.27 0.80 0.30

2010 2011 2012 2013 2014

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

EC
1 in 3 0.70 0.38 0.71 0.34 0.69 0.37 0.76 0.34 0.69 0.36
1 in 6 0.68 0.41 0.72 0.32 0.72 0.31 0.76 0.33 0.71 0.33

SO4
2− 1 in 3 0.85 0.31 0.91 0.19 0.90 0.21 0.89 0.20 0.87 0.24

1 in 6 0.84 0.30 0.91 0.18 0.89 0.21 0.90 0.20 0.88 0.24

PM2.5

1 in 3 0.79 0.23 0.81 0.22 0.74 0.25 0.77 0.26 0.73 0.27
1 in 6 0.78 0.23 0.81 0.22 0.74 0.26 0.76 0.26 0.74 0.28
daily 0.78 0.24 0.78 0.24 0.74 0.26 0.75 0.26 0.72 0.27

A model evaluation was done by performing a 10% data withholding and rerunning the model to
predict the fused concentration at the missing data points. The R2 and NRMSE for the data withholding
are shown in Figure 4.
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Figure 4. R2 and NRMSE used to evaluate model performance on the withheld dataset. The plots
represent the average over each of the 10 withholding runs that were performed. The black line for each
species represents the metric for the raw CMAQ model, while the blue bar represents the calculated
withheld metric of the fused field.

Ozone had the best evaluation metrics with the highest R2 of 0.86 and NRMSE of 0.14. All species
had R2 and NRMSE with an improved withholding value compared to the original CMAQ model
results. SO2 performed the worst with the lowest R2 of 0.21 and an NRMSE of 1.03. The R2 was found
to increase for all species compared to the original modeled results on average of 0.22, with PM2.5

having the greatest increase of 0.35. The NRMSE was found to decrease for the withheld fields on an
average of 0.14. NO2 was found to have the largest decrease of 0.36.

The evaluation metrics were split up between the western and eastern contiguous United States to
further evaluate model spatial performance. Table 4 gives the specific eastern and western evaluation
R2 and NRMSE for PM2.5, SO4

2−, and EC. The western contiguous United States is defined as a monitor
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which falls west of the longitude line −94.6046. The metrics shown are the average of all the monitors
within the respective domain for each particular year.

On average the eastern contiguous United States was found to have an increased R2 compared to
the western contiguous United States of 0.14 and 0.18 for PM2.5 and SO4

2−, respectively. This difference
is found to be less pronounced in more recent years (2014) compared to earlier years. EC on average
had a smaller difference in R2 of 0.02. PM2.5 and SO4

2− had an average decrease in NRMSE of 0.15 and
0.10, respectively, with EC having an average decrease in NRMSE of 0.08.

The fused results were then used to calculate a population weighted concentration across
the contiguous United States (Equation (13)) and shown in Figure 5. This population weighted
concentration was calculated for each CONUS covering grid cell and averaged nationally to determine
an averaged contiguous United States population weighted exposure.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 11 of 15 
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Figure 5. Nationwide averaged population weighted ambient concentrations plotted over the ten-year
domain of 2005–2014 for the twelve pollutants. The y-axis shows the population weighted concentration
with the units shown in the title, and the x-axis sows the dates ranging from 1 January 2005–31
December 2014.

Pollutants such as SO2 and NOx were found to have the largest decrease rates in concentration
with a slope of −4.8 × 10−3 and −1.8 × 10−3, respectively (Table S4). The slopes were calculated using
linear regression for each species. All pollutants show a decrease in concentration for the time period
as seen with the negative slopes (Table S4). The oscillating peaks and valleys represent seasonal
trends, which are more pronounced for species like O3 that have known seasonal patterns, and less
pronounced for species like OC and NH4

+ [10].



Int. J. Environ. Res. Public Health 2019, 16, 3314 11 of 15

Table 4. Model evaluation metrics, R2 and NRMSE divided spatially into the eastern and western
contiguous United States for PM2.5, SO4

2−, and EC. The metrics are shown for each year and are the
average of the monitors in the domain.

2005 2006 2007 2008 2009

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

EC
Eastern 0.51 0.42 0.56 0.40 0.38 0.52 0.45 0.47 0.67 0.36
Western 0.47 0.54 0.48 0.51 0.43 0.59 0.37 0.58 0.62 0.43

SO4
2− Eastern 0.81 0.32 0.76 0.32 0.79 0.31 0.74 0.33 0.71 0.31

Western 0.52 0.45 0.57 0.41 0.54 0.44 0.48 0.43 0.56 0.41

PM2.5
Eastern 0.75 0.24 0.76 0.23 0.82 0.23 0.80 0.23 0.79 0.23
Western 0.77 0.36 0.56 0.48 0.65 0.37 0.64 0.36 0.63 0.36

2010 2011 2012 2013 2014

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

EC
Eastern 0.64 0.40 0.59 0.37 0.57 0.39 0.59 0.39 0.53 0.40
Western 0.59 0.45 0.56 0.48 0.58 0.45 0.63 0.44 0.61 0.44

SO4
2− Eastern 0.68 0.35 0.73 0.33 0.65 0.32 0.72 0.32 0.65 0.34

Western 0.42 0.51 0.58 0.40 0.58 0.37 0.61 0.39 0.54 0.46

PM2.5
Eastern 0.80 0.23 0.78 0.24 0.75 0.23 0.79 0.23 0.76 0.24
Western 0.60 0.38 0.65 0.37 0.63 0.37 0.64 0.38 0.60 0.41

4. Discussion

The results from this data fusion method have the advantage of keeping the original spatial
patterns and completeness of the CMAQ results, while also matching the temporal variability and
correlation to the monitoring data. Yearly linear regression between the annual averaged CMAQ and
observations (Equation (1)) was found to increase the variability regression parameters each year, in
comparison to power regression. IDW was chosen over other spatial interpolation methods, such as
ordinary kriging, because it provided greater stability with our daily spatial interpolations and was
computationally less demanding.

Although the annual mean model results in Figure S1 show scatter between the original CMAQ and
observational data, a perfect 1:1 relationship is also not encouraged. Simulation CTM concentrations
are an average concentration over a 12 km × 12 km grid, while the observational data represents a point
measurement. Due to the wide nature of what falls within the CMAQ grid cell (highways, buildings)
we should not expect the CMAQ to identically match the point source observational data. The goal
of the annual mean model is not to match the CMAQ to the observational data identically, rather to
capture the overarching trend of the observational data.

This method increased the temporal and spatial performance for all 12 species compared to the
initial CMAQ field in both the performance and the evaluation. For the purposes of epidemiology
and health studies temporal accuracy is important, making these results useful for these purposes.
In comparison to solely using observational data, this method provides information in locations where
observational data are sparse. This is particularly an issue for speciated particulate matter such as EC,
OC, NO3, NH4

+, and SO4
2− and for all species in rural areas.

A second advantage of this data fusion method is the scalability over a large domain (contiguous
United States) and a wide range of species, without the need for calculating additional spatial and
seasonal correction parameters. The ability to apply this method over the contiguous United States
makes it computationally efficient, and easy to apply to other study domains, CTM field resolutions,
and species. Current fusion methods with satellite data are limited primarily to gases and PM2.5 and
do not deal with speciated PM on such a large domain. Observational data are available for a wider
range of species compared to satellite data, allowing this method to improve model predictions for a
wider range of species.

Furthermore, performing this fusion method over a ten-year domain allows us to visualize and
quantify the rate of change in a species concentration over time (Figure 5). Decreases seen in mobile
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source pollutants such as CO, NO2, and NOX reflect the improved car engine performance, control
strategies, and increased regulation (Table S4). The decrease seen in SO2 reflects the control strategies
used at coal fired power plants (Table S4). However, this method of data visualization is limited by the
assumption of equally-distributed population weighted exposure within a grid cell.

This method can be limited by CMAQ’s performance in modeling certain species. Table 2
demonstrates that CMAQ has varying levels of performance in predicting different species, as indicated
by the differing levels of R2 in the annual mean regression between the CMAQ and observations. For
species such as PM10 with a lower R2 of 0.03–0.14, this can be due to limitations in understanding
certain atmospheric and physical properties related to PM10. When CMAQ has limitations in modeling
a species, the fusion method will also be limited in the improvements it can make. This can be seen in
PM10 by the fused R2 being lower than other species like SO4

2−, which CMAQ originally predicts well
(R2 of 0.77–0.93).

A second potential limitation comes from the availability of monitoring data [10–12,15]. Although
monitoring data are accurate, the spatial availability for speciated PM is lower compared to gases.
In Table 1 we see than the monitors available for the speciated PM is an order of magnitude less than
those available for gases such as ozone. This is evident in the spatial R2 performance. Every species
showed an improvement of at least 50% from the original CMAQ data, however those with fewer
monitors, EC and OC, showed a lesser improvement compared to species with a higher number of
monitors (PM10, PM2.5, O3).

A monitoring network not included in this study was the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network which includes speciated PM2.5 concentrations in class 1
visibility areas throughout the contiguous United States [44]. The greatest improvement in including
this dataset would likely occur in rural locations which previously had sparse observational data.
Specifically, improvements would be greatest for species such as EC and OC in the western contiguous
United States, where the Chemical Speciation Network reports few measurements and CMAQ does
not predict the species as well as others (Table 2). There will also be an improvement to a lesser degree
in the ion species as well (NO3

−, NH4
+, SO4

2−). The ion species are more homogenous across the
contiguous United States and are better predicted by CMAQ, compared to EC and OC. The IMPROVE
network was not included in this study as an oversight, however the methodology to incorporate
IMPROVE and any future observational datasets would not change.

5. Conclusions

The method described in this paper led to improved spatiotemporal exposure fields for
12 pollutants. This method is more readily implemented than previous data fusion methods. We have
shown that this method is able to improve the temporal and spatial correlations compared to the initial
CMAQ fields. Furthermore, this method has the potential to be applied to a wider range of species and
a different domain, provided observational data are available.
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