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Abstract: Alpha-cypermethrin is a synthetic pyrethroid that was extensively used for insect control,
since the early 1980s. However, it is known that its presence in the environment has toxic effects on
humans and aquatic life forms. For this reason, it is commendable for it to be removed completely
from the contaminated environment. In this study, we evaluated the adsorption capacity of a marine
alga for the removal of cypermethrin from water. The adsorption experiments were performed based
on the batch equilibrium technique. The samples containing the pesticide were analyzed using gas
chromatography with an electron capture detector, after liquid-liquid extraction in hexane. The results
obtained from the kinetic adsorption studies showed that the equilibrium time was attained after
40 min. The adsorption parameters at equilibrium concentrations, obtained through the Langmuir,
Freundlich, and Temkin models, showed that the used brown marine alga has a maximum amount of
adsorbed cypermethrin of 588.24 µg/g. The correlation coefficients obtained for each model prove
that the Langmuir model best fits the experimental data.
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1. Introduction

Nowadays, the most used pesticides are synthetic pyrethroids, as they are not only more
cost-effective but also less toxic to the vertebrate wildlife [1] compared to other pesticides
(organochlorines, carbamates, and organophosphates). Synthetic pyrethroids were developed after the
1970s to overcome the photo-liability of natural pyrethrins, which were extracted from the flower-heads
of Chrysanthemum cinerariaefolium.

The pyrethroids were physiochemically characterized in an extensive review [2], where it was
shown that these compounds are highly non-polar molecules, which means a low water solubility,
and therefore, they present a high bioaccumulation potential. Another characteristic refers to their
hydrolytic stability at acidic and neutral pHs, while in alkaline conditions, some pyrethroids suffer
rapid degradation because of the cleavage of the ester bridge of the molecule [2]. The lipophilicity of
these compounds was the subject of different-standard laboratory toxicity research to prove that once
the pyrethroids enter the aquatic environment, the exposure to the water phase is diminished by the
adsorption and degradation processes. However, for a better understanding of their impact on the
environment, several studies were performed in the field. The laboratory and the in-field research
led to an impressive database with results on the potential effects of the synthetic pyrethroids [3–5].
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Nowadays, these pesticides are extensively used in hospitals, agriculture, forestry, horticulture,
households, and in the textile industry.

Cypermethrin (CYP), (RS)-α-cyano-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-
dimethylcyclopropanecarboxylate, is a widely used pyrethroid, as it is known to have a high pesticide
activity [6]. It is also used for the preservation of wool and cotton in the textile industry. As a
consequence, cypermethrin is frequently detected in surface waters in concentrations ranging from 0.1
to 194 µg/L [7].

However, the presence of the cypermethrin in the environment is not desirable, as was proven by
recent studies [6,8–14]. Moreover, its presence in water represents a concern around the world, and
new methods for its removal from water have been proposed [9,15–19]. Among the reported methods
for the removal of pesticides, adsorption was found to be the most effective [20].

Different materials can be used as adsorbents, but in the last period, natural materials are
becoming more attractive, as these are renewable and low-cost [9,18,19,21,22]. Moreover, their
increasing attractiveness is also related to the demand to reduce waste, to capitalize the sub-products
from different industries, and to maximize the efficiency of the natural products [23].

The present paper focuses on the possibility to use a brown marine alga, Fucus spiralis, for the
removal of cypermethrin from water. The adsorption of the cypermethrin from the water on Fucus sp.
was kinetically characterized through focus on the pseudo-first-order and pseudo-second-order models.
Equilibrium studies were also carried out, and the data were fitted into Langmuir, Freundlich, and
Temkin isotherms.

2. Materials and Methods

The brown alga, Fucus spiralis, was used as a dried powder with a particle size ranging from 150
to 300 µm. Hexane and cypermethrin were of analytical grade.

An individual stock solution of 200 mg/L cypermethrin was prepared in hexane. For the
preparation of the aqueous solutions, a known volume of the cypermethrin solution prepared in hexane
was added to a flask, and the hexane was removed by exposure to nitrogen (purity 6.0). Thereafter, the
aqueous solutions of the desired concentration were obtained by the addition of distilled water.

The biosorption experiments were performed in the batch by adding 400 mg of alga to the
Erlenmeyer flasks containing the cypermethrin aqueous solution. The experiments were performed at
neutral pH. A series of Erlenmeyer flasks containing 300 mL of a 200 µg/L α-cypermethrin solution and
400 mg of alga was stirred (400 rpm) on a magnetic multi-stirrer (Velp Scientifica, Italy) at 25 ◦C. Samples
were withdrawn from the stirrer at certain moments and were filtered. The supernatant contained
the remaining cypermethrin in water after adsorption on the alga. The remaining cypermethrin was
extracted in hexane through the liquid-liquid extraction method.

The detection of cypermethrin was done by using an electron capture detector gas chromatograph
(GC-ECD), Shimadzu GC 2010 (Shimadzu Corporation, Kyoto, Japan) equipped with a Zebron column
(length—30 m, inner diameter—0.25 mm, film thickness—0.25 µm) (Phenomenex, USA) and an
HTA autosampler (HTA, Italy). Before injection into the GC-ECD, all the samples of cypermethrin
(prepared in hexane) were centrifuged for 10 min at 9000 rpm (Sigma 2-16 Centrifuge, United Kingdom).
The mobile phase consisted of helium (6.0 purity) and nitrogen as make-up gas. The flow rate of the
mobile phase was 30 mL/min. The gradient temperature program started from an initial temperature
of 60 ◦C, where it was held for 1 min, then the temperature was raised to 180 ◦C with 26 ◦C/min, where
it was held for 11 s and afterwards raised to 230 ◦C with 5 ◦C/min, where it was held for 18 s, and
finally the temperature was raised with 7 ◦C/min to the final temperature of 270 ◦C, where it was
maintained for 11 min. The detector temperature was 310 ◦C. The obtained chromatogram presented
the specific cypermethrin peaks with retention times at 23.6 ± 0.2 min.

For the external calibration curve (R2 = 0.9977), the cypermethrin solutions were prepared in hexane
by serial dilution from a 200 mg/L stock solution, obtaining working solutions with concentrations in
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the range of 50 µg/L to 1000 µg/L (50, 150, 250, 350, 450, 550, 650, 750, 850, 1000 µg/L). The calibration
curve was obtained with controls extracted in the same conditions as the samples.

For the adsorption equilibrium experiments, 40 mg of the powdered Fucus sp. were shaken for
120 min with 25 mL aqueous solutions of cypermethrin of 13 different concentrations in the range of 100
to 3500 µg/L (100, 150, 250, 450, 500, 650, 750, 1000, 1500, 2000, 2500, 3000, 3500 µg/L). The mixture was
filtered and the residual concentration of the cypermethrin in the filtrate was extracted in hexane and
analyzed by GC-ECD. The amount of cypermethrin adsorbed at time t, qt, was calculated as follows:

qt =
(C0 −Ct) ∗V

m
(1)

where C0 and Ct (µg/L) are the concentrations of cypermethrin in solution at initial and at time t, V is
the volume of solution (25 mL), and m is the mass of adsorbent (0.04 g). The obtained data were fitted
using the following isotherms: Langmuir [24], Freundlich [25], and Temkin [26].

The kinetic studies were performed based on the batch technique. For this purpose, 300 mL of
an aqueous solution of 200 µg/L of cypermethrin were stirred with 400 mg of alga. Samples were
withdrawn from the stirrer at certain moments, and the remaining cypermethrin in the supernatant
was extracted in hexane and used for the GC-ECD analysis. The adsorption capacity of the alga was
calculated for each considered contact time.

The obtained experimental data were tested with the pseudo-first-order kinetic model [27]
(Equation (2)) and the pseudo-second-order kinetic model [28] (Equation (3)).

qt = qe(1− e−k1t) (2)

qt =
qe(1− e−k1t)

1 + qek2t
(3)

where t is the contact time (in minutes) between the cypermethrin solution and the alga, qt (µg/mg) is
the amount of cypermethrin adsorbed by a mass unit of adsorbent at time t, qe (µg/mg) is the amount
of cypermethrin adsorbed when the equilibrium is attained and k1 (min−1), and k2 (mg·µg−1min−1) are
the pseudo-first and, respectively, pseudo-second-order rate constants.

3. Results and Discussion

3.1. Kinetic Modelling

The analysis of cypermethrin in GC-ECD was performed under the described temperature
gradient, and the elution time was 23.6 ± 0.2 min. The external calibration curve for cypermethrin was
obtained for ten different concentrations (50 µg/L to 1000 µg/L) and is described by a linear dependency.

For the evaluation of the capability of the alga to adsorb the cypermethrin from water, a kinetic
study was conducted. From this study, we could evaluate the time needed to reach an adsorption
equilibrium. In the present paper, we considered the pseudo-first-order (Lagergren model) [27] and
pseudo-second-order [28] kinetic reaction models.

Figure 1 presents the adsorption kinetics of the cypermethrin on the Fucus sp. Alga, and it can be
observed that the equilibrium is reached after 40 min, with no significant changes in the adsorbed
amount of cypermethrin after reaching the equilibrium.

The pseudo-first-order model considers that the adsorption rate is proportional to the number of
unoccupied sites, as presented by Equation (2).

The pseudo-second-order-model can be used to predict if the adsorption is the rate-controlling
step (Equation (3)).

The values of the pseudo-first-order rate constant (k1) and the amount adsorbed at equilibrium
(qe) were calculated (Table S1).
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Figure 1. Adsorption (a), pseudo-first (b), and pseudo-second-order (c) kinetics of cypermethrin on 
Fucus spiralis. 

The values obtained for the maximum uptake capacity, 61.41 µg/mg for the pseudo-first-order 
model, and, respectively, 63.36 µg/mg for the pseudo-second-order model, are similar, a fact that is 
also described by the correlation coefficients (0.94 and 0.98) (Table S1). It can be concluded that the 
pseudo-first-order and the pseudo-second-order models well describe the kinetics of the 
cypermethrin adsorption on the dried and powdered Fucus spiralis.  

3.2. Isotherm of Biosorption

The isotherms of biosorption are useful for the evaluation of the surface properties and affinity 
of the alga for cypermethrin and might be used to understand the relationship between the mass of 
cypermethrin per biosorbent mass and its concentration in the solution. In our studies, three 
biosorption isotherms for the fitting of the experimental data obtained for the adsorption of
cypermethrin on Fucus spiralis were considered. 

The first considered adsorption isotherm was the one proposed by Langmuir [24]. This model 
considers the formation of a monolayer of the adsorbate on the surface of the adsorbent. Therefore, 
this model assumes that the adsorption is stopped after the formation of the monolayer. Considering 
these assumptions, the Langmuir isotherm is represented by the following equation: 𝑞௘ = ொ೚∗௄ಽ∗஼೐ଵା௄ಽ∗஼೐ . (4)
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Figure 1. Adsorption (a), pseudo-first (b), and pseudo-second-order (c) kinetics of cypermethrin on
Fucus spiralis.

The values obtained for the maximum uptake capacity, 61.41 µg/mg for the pseudo-first-order
model, and, respectively, 63.36 µg/mg for the pseudo-second-order model, are similar, a fact that is
also described by the correlation coefficients (0.94 and 0.98) (Table S1). It can be concluded that the
pseudo-first-order and the pseudo-second-order models well describe the kinetics of the cypermethrin
adsorption on the dried and powdered Fucus spiralis.

3.2. Isotherm of Biosorption

The isotherms of biosorption are useful for the evaluation of the surface properties and affinity
of the alga for cypermethrin and might be used to understand the relationship between the mass of
cypermethrin per biosorbent mass and its concentration in the solution. In our studies, three biosorption
isotherms for the fitting of the experimental data obtained for the adsorption of cypermethrin on
Fucus spiralis were considered.

The first considered adsorption isotherm was the one proposed by Langmuir [24]. This model
considers the formation of a monolayer of the adsorbate on the surface of the adsorbent. Therefore,
this model assumes that the adsorption is stopped after the formation of the monolayer. Considering
these assumptions, the Langmuir isotherm is represented by the following equation:

qe =
Qo ∗KL ∗Ce

1 + KL ∗Ce
. (4)

After linearization of Equation (4), the following equation is obtained:

1
qe

=
1

Qo
+

1
Qo ∗KL ∗Ce

(5)

where qe is the amount of adsorbed cypermethrin on the dried powdered alga (µg/g), Q0 is the
maximum monolayer capacity (µg/g), Ce is the equilibrium concentration of cypermethrin (µg/L), and
KL is the Langmuir constant (L/µg).
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Another characteristic of the Langmuir isotherm is the fact that from Equation (5) we can define
RL as an equilibrium parameter that is dimensionless and is described by Equation (6):

RL =
1

1 + (1 + KL ∗C0)
(6)

where C0 is the equilibrium concentration of cypermethrin (µg/L) and KL is the Langmuir constant (L/µg).
In the case that RL > 1, then the adsorption is not possible, if RL = 1, then the adsorption is linear,

if 0 < RL < 1, the adsorption is favorable, while for RL = 0 the adsorption process is irreversible [29].
The experimental results fitted with the Langmuir isotherm are presented in Figure 2.
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Figure 2. Langmuir adsorption isotherm.

The straight line obtained with a good correlation coefficient proves that this model is reliable.
Based on the data calculated (Table S2), the value of 0.79 obtained for RL is between 0 and 1, which

indicates that the adsorption of cypermethrin onto the alga is favorable and the maximum monolayer
coverage is 588.24 µg/g.

As a second model was considered the Freundlich adsorption isotherm described by the equation:

qe = KFC
1
n
e (7)

with its linearized form presented by Equation (8):

logqe = logKF +
1
n

logCe (8)

where qe is the amount of adsorbed cypermethrin on the dried powdered alga (µg/g), Ce is the
equilibrium concentration of cypermethrin (µg/L), n is the adsorption intensity, and KF is the Freundlich
constant (µg/L).

The obtained experimental results were fitted with the linearized equation of the Freundlich
adsorption isotherm. The obtained curve is presented in Figure 3.
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Figure 3. Freundlich adsorption isotherm.

Considering this model, in the case that n has a value between 1 and 10, then the adsorption of
cypermethrin on the alga is favorable.

The calculated parameters for the Freundlich isotherm (Table S3) show that n has a value of 1.53,
which indicates a favorable adsorption of the cypermethrin on the used alga. The value obtained for
the Freundlich constant, 5.56 µg/L, refers to the adsorption capacity.

The third model used in this study is based on the Temkin adsorption isotherm that considers the
adsorbent–adsorbate interactions [26]. The equation that describes this model is below:

qe =
RT
bT

ln(At ∗Ce) (9)

qe =
RT
bT

lnAt +
RT
bT

lnCe (10)

and if it is considered that
B =

RT
bT

(11)

then,
qe = B ∗ lnAt + B ∗ lnCe (12)

where AT is the Temkin isotherm equilibrium binding constant (L/µg), bT is the Temkin isotherm
constant, R is the universal gas constant (J/mol/K), T is the temperature in K, and B is the constant
related to heat of the sorption process (J/mol).

From the Temkin isotherm plot presented in Figure 4, the values from Table 1 were calculated.
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Table 1. Temkin isotherm constants obtained for the cypermethrin adsorption.

AT (L/µg) bT B (J/mol) R2

75.85 23.92 103.56 0.84

The values presented in Table 1 are an indication of physical adsorption. The value obtained for B,
103.56 J/mol indicates a strong interaction between the cypermethrin and the alga. The value of R2 for
the experimental data fitted with the Temkin isotherm shows that this model is not as good as the
other two isotherm models.

After examining the results obtained by applying the Langmuir, Freundlich, and Temkin isotherms,
it can be concluded that the most appropriate to be used is the Langmuir isotherm, as it shows the
highest correlation coefficient of all three. As the Langmuir model is considered the most appropriate
model to be used in our studies, the maximum biosorption capacity of other adsorbents used for the
retention of cypermethrin are presented in Table 2.

Table 2. Maximum biosorption capacity based on the Langmuir isotherm by different adsorbents
for cypermethrin.

Adsorbent Q0 (µg/g) Reference

Fucus spiralis 588.24 Present study
Cork (1–2 mm) 303.00 [30]

Activated carbon 186.00 [30]
Cork (3–4 mm) 136.00 [30]
Carbon aerogel 66.22 [31]
Carbon xerogel 61.73 [31]

The literature that reports values for the biosorption of cypermethrin from water by different
adsorbents shows that the maximum biosorption capacity of Fucus spiralis is one of the highest values
(Table 2), which makes the chosen alga a promising candidate for the removal of cypermethrin from
water. Further studies will be performed to prove its adequacy for polluted water remediation.

4. Conclusions

In this study, the kinetic and equilibrium data for the batch biosorption process of cypermethrin
were obtained using dried and powdered Fucus spiralis.
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The necessary time to reach the adsorption equilibrium was 40 min, with no significant changes
in the amount of adsorbed cypermethrin after reaching the equilibrium. Moreover, the results
show that both considered kinetic models, pseudo-first-order (correlation coefficient, R2, 0.94) and
pseudo-second-order (correlation coefficient, R2, 0.98), well describe the kinetics of the cypermethrin
adsorption process on the alga. The maximum uptake capacities calculated by applying the models
show values that are in good agreement (61.41 µg/mg for the pseudo-first-order model, respectively,
63.36 µg/mg for the pseudo-second-order model).

The experimental data were also fitted using three different biosorption models, and it was found
that the Langmuir model best fitted the biosorption data. The maximum coverage calculated from
this model is 588.24 µg/g. Although the use of the dried and powdered Fucus spiralis for the removal
of cypermethrin from water needs further studies, this alga shows potential for the treatment of
pyrethroid polluted water.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/19/3663/
s1, Table S1: Pseudo-first-order and pseudo-second-order model parameters, Table S2: Langmuir isotherm
constants obtained for the cypermethrin adsorption, Table S3: Freundlich isotherm constants obtained for the
cypermethrin adsorption.
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