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Abstract: Eliminating unnecessary healthcare waste in hospitals and providing better healthcare
quality are the core issues of green supply chain management (GSCM). Hence, this study used a
hospital’s emergency department crowding (EDC) problem to illustrate how to establish an emergency
medicine service (EMS) simulation system to obtain a robust parameters setting for solving hospitals’
EDC and waste problems, thereby increasing healthcare quality. Inappropriate resource allocation
results in more serious EDC; more serious EDC results in increasing operating costs. Therefore, in the
healthcare system, waste includes inappropriate costs and inappropriate resource allocation. The EMS
of a medical center in central Taiwan was the object of the study. In this study, the dynamic Taguchi
method was used to set the signal factor, noise factor, and control factors to simulate the EMS system
to obtain the optimal parameters setting. The performance was set to Emergency Department Work
Index (EDWINC) and system time (waiting time and service time) per patient. The signal factor was set
to the number of physicians; the noise factor was set to patient arrival rate; the control factors included
persuading Triage 4 and Triage 5 outpatients, checkup process, bed occupation rate in the emergency
department (ED), and medical checkup sequence for Triage 4 and Triage 5 patients. This study makes
two significant contributions. First, the study introduces the GSCM concept to the healthcare setting to
bring green innovation to hospitals. Hospital administrators may hence design better GSCM activities
to facilitate healthcare processes to provide better healthcare outcomes. Second, the study applied
the dynamic Taguchi method to the EMS and neural network (NN) to construct a computational
model revealing the cause (factors) and effect (performances) relationship. In addition, the genetic
algorithm (GA), a solution method, was used to obtain the optimal parameters setting of the EDC in
Taiwan. Hence, after obtaining the solutions, the unnecessary waste in EDC—inappropriate costs
and inappropriate resource allocation—is reduced.
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1. Introduction

In the environmental and public health field, many scholars in recent years have studied green
supply chain management (GSCM). GSCM emphasizes the reduction and control of environmental
impacts, such as pollution from production processes or products, waste of resources, and
overproduction [1]. Hence, decision-makers take this important problem into consideration when
designing and manufacturing products or providing services.

The healthcare systems’ GSCM can facilitate hospitals’ environmental management practices.
Thus, GSCM of a healthcare system will not increase process costs, disrupt the flow of existing processes,
or cause environmental problems [2,3]. Considering GSCM in the healthcare system, the protection
of patients’ health is the most important factor [4] because patient health is a hospital’s core value.
However, little research has been done on healthcare GSCM. de Oliveira et al. [5] reviewed 194 academic
journal articles from the last ten years on the implications and future directions of GSCM. Most papers
covered the industrial sectors of textiles/manufacturing, automotive, multiple industrial sectors, and
electronics. Only three papers [6–8] address the health (beauty and hygiene) and medical sectors.
Even after 2016, little research had been undertaken regarding healthcare GSCM. Sohjaie et al. [9] used
the fuzzy ELECTRE method to analyze and sort the green suppliers for a green health supply chain.
An Iranian pharmaceutical company was the research case. Given this dearth of research, there is a
great opportunity for future research in healthcare systems’ GSCM [5]. Hence, the researchers felt the
necessity to use GSCM to eliminate healthcare waste. Furthermore, to solve a hospital’s emergency
department crowding (EDC) problem, the researchers wonder about the possibility of using the concept
of GSCM to set up an emergency medicine service (EMS) system to optimize resource allocation to
solve hospitals’ EDC and waste problems.

2. Literature Review

Hospitals generally play a key role in hospital supply chain management (HSCM) because
hospitals directly face the customers (patients), as their main role is to provide healthcare services
to patients. However, unnecessary healthcare waste, including inappropriate costs and resource
allocation, may decrease healthcare quality. Therefore, in the study, the “green” in GSCM focuses
on resource utilization to reduce hospitals’ operation costs. Muduli et al. [10] think that capacity
constraints and resource utilization are the major barriers to the implementation of GSCM. To research
“improving capacity utilization” in GSCM and evaluate the best-performing organizations, Sari [11]
explored a novel multi-criteria decision framework, which includes GSCM’s performance and capacity
utilization. Wu et al. [12] considered how to manage financing risks when the capacity is restricted for
increasing the competitive strength of GSCM. Wang et al. [13] analyzed different price models for the
effect on GSCM when considering capacity constraint.

In the development of GSCM in service industries, Liu and Chen [14] created a dyadic model of
GSCM that considers the profit of a news vendor retailer. The retailer’s behavior is based on Kirshner
and Shao’s [15] GSCM mathematical model, which is used to solve problems in service industries.
Coskun et al. [16] considered the gap between service life cycles and consumers’ expectations to
establish mathematical models that measure the relationship between GSCM and consumer behaviors.
Based on the development of GSCM in service industries, this paper extends the concept of GSCM
to hospital departments and focuses on the utilization of healthcare resources to avoid unnecessary
healthcare waste and increase healthcare quality. When hospital administrators consider GSCM, they
may design better GSCM activities between the input and output healthcare services that facilitate
smoother healthcare processes and better healthcare quality.

In considering facilitating smoother healthcare processes and better healthcare quality, scholars
over the last two decades have regarded overcrowding and inadequate capacity of Emergency
Departments (EDs) as an urgent public health problem [17]. An Emergency Room (ER) provides
a specialized medical service that is open year-round; it provides critical medical care for patients
urgently in need. Therefore, ERs should always be ready to handle emergency and non-emergency
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situations to provide comprehensive critical care. However, ER medical professionals must handle
high volume and unpredictable patient flow and workloads, which leads to an excessive need in the
internal control of an ER [18]. Studies have shown that most patients are dissatisfied with their ER’s
care [19,20]. Overcrowding can result in an extended stay for a patient. The risk of mortality—for
example, increased complications for myocardial infarction—is increased by an extended length of
stay (LOS) [21,22]. Therefore, shortening a patient’s stay in an ER will improve the quality of ER
care [23]. One of the problems with ER congestion is that it may endanger a patient’s safety if the
patient leaves the hospital without obtaining a physician’s diagnosis and treatment. When congestion
occurs, patients’ lengths of stay become longer. When LOS becomes longer, the probability of a patient
leaving without a diagnosis or treatment is higher [24].

In an ED, the length of hospital stay is an important criterion for measuring the quality of
care [25]. Asaro et al. [26] discovered that the congestion factor in the ED elongates waiting time and
hospitalization time. Rathlev et al. [27] found that the time spent in the ER is positively correlated with
the hospitalization admission rate. A major limitation in the studies conducted thus far is the use of
static methods to measure ER congestion, either discussing the ER congestion at a point in time (e.g., a
patient’s arrival time) or during a specific time interval (e.g., transferring). However, many studies
have indicated that ER congestion belongs to dynamic congestion. There is substantial fluctuation in
the period (LOS) a patient remains in the ED [28–30].

Many strategies have been proposed to solve the ER congestion problem [31]. Providing timely
patient care to reduce LOS may ease the overcrowding in the ER and hence, increase patient safety
and improve healthcare quality [32]. Scholars have also considered ambulance diversion to reduce ER
congestion. Ambulances are usually called to divert patients to nearby hospitals to avoid congestion.
When an ED expects that it has insufficient capacity to accept new patients, ambulance diversion
becomes a common phenomenon to avoid delays in patient transfer and the loss of critical time for
treatment [33]. Many institutions, such as the Emergency Nurses Association and the American
College of Emergency Physicians, have suggested how to improve patient flow control to reduce ER
congestion [34]. The operational efficiencies in the management of ED patient flow can be used to
alleviate ED congestion. However, some studies have revealed that hospital mangers may resort to the
control of patient flow to reduce ED congestion, not intending to invest in the relatively higher cost in
ED facilities, equipment, and professionals to improve healthcare quality [35,36]. To eliminate EDC,
hospital administrators should consider wait times, layouts of facilities, lengths of hospitalization, etc.,
to increase the quality of patient care.

Many studies have used different mathematical methods to solve the problem of EDC. Grekousis
and Liu [37] modeled emergency events and used a neural network (NN) to forecast the demand
on EDs. They also applied a new evolutionary algorithm to improve location plan and decision
making. Goto et al. [38] created an artificial intelligence model to select patients who require urgent
revascularization within forty-eight hours of medical treatment. Xia et al. [39] used big data from
global position systems to evaluate medical accessibility in EMS to evaluate the effectiveness of public
health services. de Oliveira et al. [40] developed emergency care delivery models that may apply a
routing algorithm to select the optimal EMS for highly complex patients.

Based on the above-mentioned literature review, this study aimed to attempt the following: (1) to
construct a system for the EMS, (2) to reduce EDC based on the constructed EMS system, (3) to
obtain better service quality. The attempts were all involved in the research issue of GSCM in the
healthcare system.

3. Research Objectives

Eliminating unnecessary healthcare waste in hospitals and providing better quality healthcare are
the core issues of green supply chain management (GSCM). To eliminate unnecessary healthcare waste
and solve the EDC problem to provide better quality healthcare, this study set up an EMS simulation
system to obtain a robust parameters setting; internal medical patients at the ED of a medical center
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in central Taiwan were the objects of the study. A statistical calculation of the healthcare resource
allocation of each procedure using each patient’s actual time spent during each medical procedure
was performed. A simulation system of the emergency procedures for the ED patients was also
created, including the number of people at each triage, the ED procedures, and the time spent for each
procedure. Different improvement strategies were introduced and applied to the simulation system to
derive an appropriate allocation of the healthcare resources, to find the optimal combination of the
improvement strategies, to shorten the time spent by patients in the ED, to alleviate the level of EDC,
and to enhance the operational efficiency of the emergency department.

The study used the dynamic Taguchi method to build a simulation system for the EMS, in which
NN was used to construct a computational model revealing the cause (factors) and effect (performances)
relationship. Finally, a solution method, the genetic algorithm (GA), sets the optimal parameters (the
optimal combination of improvement strategies) for the optimal performances in the EMS system. The
purpose of this study was to help hospital administrators apply the concept of GSCM to eliminate
unnecessary healthcare waste using EDC as an example and hence, provide better quality healthcare.

4. Setting Factors Levels in the EDC

To use GSCM to eliminate unnecessary healthcare waste, the author used the dynamic Taguchi
method to set the signal factor, noise factor, and control factors, to simulate the EMS system to obtain
the optimal parameters setting. The signal factor was set to the number of physicians, the noise factor
was set to patient arrival rate, and the control factors included persuading Triage 4 and Triage 5
outpatients, checkup process, ED bed occupation rate, and medical checkup sequence for Triage 4 and
Triage 5 outpatients. The research scope was the internal medicine patients of the EMS system.

The signal factor was the number of physicians. Here, the number of physicians could be set
to 1 or 2 persons, depending on the EDC situation. The patient arrival rate was divided into two
situations: one was the regular day situation, and the other was the holiday situation. The Poisson
distribution was P(x) = λx

x! e−λ, in which λ was the patient arrival rate pateints
day , and x was the number

of patients each day. Exponential distribution was applied here for transfer Poisson distribution to
obtain x. Exponential distribution was defined as f (x) = λe−λx. F(x) was the cumulative distribution
function of f (x). This study used F(x) = θ (θ was simulated using the Monte Carlo method; the value
was between 0 to 1 to obtain the xt, in which xt was the number of patients in period t). Because
outpatient services are closed on holidays, a patient must go to the ED. So the researchers set different
patient arrival rates for regular days and holidays. Hence, the noise factor was the patient arrival rate.
Here, Level 1 was set to 350, and Level 2 was set to 425.

There were three levels set for control factor A, persuading Triage 4 and Triage 5 outpatients. Level
1 was in the situation when 1.5 ≤ EDWINC of the previous day < 2 (EDWIN: Emergency Department
Work Index). Level 2 was the situation when 2 ≤ EDWINC of the previous day < 2.5. Level 3 was
the situation when 2.5 ≤ EDWINC of the previous day. EDWINC is described as follows: EDWINC

was from EDWIN. An EDWIN was created to represent patient triage units per available bed for each
physician on duty. Research [28,29,41,42] has shown that a medical staff’s perception of busyness
is significantly related to the EDWIN score, and that EDWIN demonstrates a good validity on the
prediction of EDC.

In this study, surveys were distributed to the ER medical staff to obtain the busy hours and periods
in the ER. The results derived from the surveys were combined with EDWIN for statistical analysis.
Equation (1) shows EDWIN.

EDWIN =

∑
niti

Na(Bt − BA)
(1)

ni: number of patients at each triage;
ti: level of triage (i = 5 refers to the most urgent patient);
Na: number of physicians on duty at the ED;
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Bt: treatment beds that are registered at ED (excluding all kinds of beds in the lobby and in the
corridors);

BA: number of patients admitted.
An EDWIN value lower than 1.5 indicates that the ER is in good condition; a value between 1.5

and 2 indicates that it is in a busy condition; a value over 2 indicates EDC.
However, according to Equation (1), i = 5 shows the highest emergency situation, while in Taiwan,

according to Taiwan Triage and Acuity Scale (TTAS), i = 1 shows the highest emergency situation.
Hence, in this study, the EDWIN should be transformed into EDWINC, as in Equation (2).

EDWINC =

∑
ni(6 − i)

Na(Bt − BA)
(2)

The control factor B was the checkup process. There were three levels. Level 1 was in the situation
in which emergency patients had the priority to use the exam rooms; the enforced procedure was
urine→ CT →X-ray for the exam. Level 2 was the situation in which emergency patients had the
priority to use the exam rooms, but the above procedure was not enforced; if the exam room was
occupied, the patient could move on to the next exam room for the exam. Level 3 was the situation in
which the patient had the choice to randomly select the exam room. The control factor C was the ED
bed occupation rate. There were three levels. Level 1 was the situation in which more than 15% (>15%)
of ED patients were waiting for sickbeds, and a maximum quota of five empty beds in the internal
medicine department could be made available for emergency patients. Level 2 was the situation in
which more than 20% (>20%) of ED patients were waiting for sickbeds, and a maximum quota of
ten empty beds in the internal medicine department could be made available for emergency patients.
Level 3 was the situation in which more than 25% (>25%) of ED patients were waiting for sickbeds, and
a maximum quota of fifteen empty beds in the internal medicine department could be made available
for emergency patients.

The control factor D was the checkup sequence for Triage 4 and Triage 5 outpatients. There
were 3 levels. Level 1 was the priority treatment given to Triage 4 and Triage 5 outpatients, who
required shorter examinations. Level 2 was the routine checkup sequence for Triage 4 and Triage 5
outpatients; that is, the Triage 4 and Triage 5 outpatients were examined according to the sequence of
registration. Level 3 was the checkup sequence, with Triage 4 outpatients diagnosed first and then
Triage 5 outpatients.

The system performances were considered based on the concept of the Taguchi loss function. The
Taguchi loss function is a landmark in improving service quality [43]. Inappropriate services will
result in patients’ dissatisfaction. Thus, patients’ dissatisfaction will be spread and result in some loss
to hospitals, patients, or the wider community. These losses are defined as social loss. To avoid the
loss, hospitals seek to enhance their reputation. A way to eliminate such social costs is to improve
service quality, as in the study, to improve the service index in the system. The system time for each
patient, which included the waiting time and service time, and EDWINC was considered because
these two service indexes directly bring impacts on the service quality. In addition, many researchers
have attempted to solve the EDC problem, emphasizing decreasing patients’ stay in the systems and
EDWINC [44–46]. Equation (3) shows the formulation of the system time (ST). Equation (2) shows the
other performance, EDWINC.

ST=
m∑

i=1

Wi +
n∑

j=1

S j (3)

Wi: the waiting time for the ith waiting room;
S j: the service time for the jth service station.
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5. The Dynamic Taguchi Method and Neural Network for the Optimal Factors Levels Setting

To obtain the optimal parameters setting, four steps, including dynamic method and neural
network, were used to achieve the research objectives.

5.1. STEP 1. Use the Orthogonal Array of the Taguchi Method to Derive the Simulation Data

This study used the orthogonal array of the Taguchi method to obtain the simulation data.
Ahalt et al. [44] used a discrete-event simulation approach to compare different EDC’s scores in a large
academic hospital in North Carolina to provide some strategies to bring better patient care outcomes.
Hurwitz et al. [47] created a flexible simulation platform to quantify the EDC’s information, which
can be used in the management of EDC. Hoot et al. [48] developed a simulation approach for EDC
to forecast the near future situation. The forecasting results showed that the actual outcomes are
near to the forecasting results. Using simulation data to solve EDC problems has been used by an
increasing number of researchers. However, these simulation scenarios are case by case. Hence, the
selected parameters for constructing the simulation scenario must be considered based on the selected
hospitals [49].

Furthermore, to evaluate robustness and variation in the EMS system, a signal-to-noise (SN) ratio
was used in the system. A higher SN value corresponds to better performance and less response
variation [43].

Using the dynamic Taguchi method to resolve the EMS problem, the EMS formed a dynamic
multi-response system including two responses, two signal levels, four control factors, and two noise
factor levels. Regarding the two responses, the response Y was determined by a set of signal settings
M = (M1, M2), a set of control factor vectors X = (X1, . . . , X4), and a set of noise factor settings
Z = (Z1, Z2). The response model of the EMS system could be indicated as Y = f (M, X, Z) + ε, in
which ε was the error term. Hence, in the formed dynamic EMS system,yi j denoted the ith response
corresponding to the jth signal factors level. Assuming there was no intercept in the linear ideal
function, there came to yi j = βM j, where M j denoted the jth signal factors level and β was the slope.
To evaluate the performance in the dynamic EMS systems using the Taguchi method, the equation
SN = 10 log10(β/MSE) was applied, in which MSE was the mean square error of the distance from the
measured response to the best-fitted line [50,51].

The orthogonal array, L9, was simulated to obtain the performance data. Thirty-six, 2*2*9 (2 levels
for noise factor, 2 levels for signal factors, and control factors for L9), combinations of parameter
levels were simulated. Each combination was simulated 1000 times. The results showed that based
on the performance of EDWINC, the linear ideal function was Y = 1.87 − 0.5M + error, the optimal
parameters setting for factors (A, B, C, D) was (Level 1, Level 1, Level 1, Level 1) and the expected
result at optimum condition was 11.04 dB (dB is a unit of measurement for SN). In addition, the result
showed that based on the performance of ST, the optimal parameters setting for factors (A, B, C, D)
was (Level 3, Level 3, Level 2, Level 2) and the expected result at optimum condition was 1.01 dB.

5.2. STEP 2. Build the Relationship between Parameters and Performances

Because the time variables were a probability distribution, this study used the NN to construct a
mathematical model to obtain the optimal parameters setting for the EMS. The input nodes for the NN
were the signal factor levels, noise factor levels, and control factors levels, and the output nodes for
the NN were desirability values d1 from normalized ST and d2 from normalized EDWINC. The NN’s
procedure is as follows:

A soft computing algorithm, NN, has been used as a computational model in different research
fields, such as medical diagnoses, financial analysis, signal processing, and pattern recognition. Inspired
by animals’ central nervous systems, an NN was created to mimic a human biological, neurological
network. The network is formed by parallel processing units, that is, neurons or nodes. The nodes
are linked together to form a network, in which knowledge is derived through the interconnection or
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relationship between input and output nodes. The weighted and transformed function is used for the
weighted sum of the previous input neuronal layers, except the first layer. Different weighted and
transformed functions used in the NN meant that NNs could be used in wide-ranging applications.
Therefore, NNs create a black-box mathematical model, with a form of nonlinear mathematical network
structure. That is, if an NN’s architecture and parameters can be adequately selected, an NN can
effectively address complex nonlinear problems [52,53].

The normalized ST and EDWINC were used as desirability functions. This study initially evaluated
the performance of each dynamic response by using the modified desirability functions [54]. The
desirability functions were normalized by an estimated response ŷi according to ST and EDWINC. The
exponential functions were then used to transform the normalized value to a scale-free value di, called
desirability. This normalized value was between 0 and 1, which increased as the desirability of the
corresponding response increased. In the responses of the EMS system, ST was STB (smaller-the-better),
while y2(EDWINC) was LTB (larger-the-better). Equations (4) and (5) define the desirability values d1

and d2.

d1 =


0,

(
EDWINC

−EDWINc
min

EDWINC
max−EDWINC

min
)

1,

,
EDWINC

≤ EDWINC
min

EDWINC
min ≤ EDWINC

≤ EDWINC
max

EDWINC
≥ EDWINC

max

(4)

d2 =


1,

( ST−STmax
STmin−STmax

)

0,
,

ST1 ≤ STmin

STmin ≤ ST ≤ STmax

ST ≥ STmax

(5)

For Equations (4) and (5), the bounds STmax and EDWINC
max represented the upper specification limits;

the bounds STmin and EDWINC
min represented the lower specification limits.

Table 1 lists several results for NN architecture options. To consider better performance with
minimized training/testing RMSE (root of mean-square error), this study selected the structure
6-5-2 (input nodes–hidden nodes–output nodes). The structure 6-5-2 was well-trained by showing
the function between factors levels and performances. This 6-5-2 was applied to forecast the two
performances by inputting any combination of factor levels.

Table 1. The neural network (NN) architecture options.

Structures
(Input Nodes–Hidden Nodes–Output Nodes)

RMSE

Training Testing

6-2-2 0.012169 0.019189
6-3-2 0.012117 0.018689
6-4-2 0.011963 0.018547
6-5-2 0.011895 0.018524
6-6-2 0.011970 0.018534
6-7-2 0.019823 0.019154
6-8-2 0.019983 0.019199

Note: The learning rate was set as auto-adjusting between 0.01 and 0.5; the momentum coefficient was 0.65;
the number of iterations was 10,000; the bold numbers were the optimal structure.

5.3. STEP 3. Use the GA to Obtain the Optimal Parameters Setting

The GA, a solution method, was used here to derive the optimal parameters setting in the NN.
The GA procedure is as follows:

The GA principle adopted the concept of “survival of the fittest,” which initially derived from
“natural selection and genetics” developed by Darwin [55,56]. A GA is one of the soft computing
techniques used as an optimization methodology to solve nonlinear programming problems. Unlike
traditional selection techniques, setting the range of the feasible space and using a point-to-point
search route to derive a solution, GA can be used to generate an optimal solution in the solution
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population through a series of iterative computations. Hence, GA can be used to deal with complicated
problems in a pool of large search spaces to efficiently derive the optimal parameters solution. In GA,
chromosomes are regarded as a set of alternative solutions to the problem, which consists of several
genes, and are applied to derive an optimal solution; GA does not need to test all solutions. The main
genetic operators, selection, crossover, and mutation, are used to converge the optimal solution by
enhancing the fitness of a population of guesses.

TP was set as TP = 2√d1 ∗ d2 and as the total performance, which was also a GA fitness function.
The control factor A was a continuous variable, and control factors B, C, and D were discrete variables.
In addition, the operational conditions of the GA were set as follows: The number of generations was
set to 1000. The population size was set to 80. The crossover rate was set to 0.5. The mutation rate was
set to 0.08. The result showed that the optimal parameters setting for factors (A, B, C, D) was (Level 2.8,
Level 1, Level 2, Level 2), and the total performance TP was 0.593.

5.4. STEP 4. Conduct Sensitivity Analysis for the EMS Adjustable Strategies

After the GA procedure, a sensitivity analysis for the parameters setting of the most robust levels,
based on the results of the TP, was discussed. The sensitivity analysis was explored in the situation in
which when one factors level changed, resulting in the change of other factor levels. The following
results can be considered EMS adjustable strategies.

1. In Table 2, when factor A’s level changed from 2.8 to 1, the TP decreased from 0.529 to 0.593, and
there was a 10.79% decrease in the adjusted TP%.

2. In Table 3, when factor B’s level was 2 or 3, the TP decreased to 0.558 or 0.516, and there was a
5.92% decrease or a 12.98% decrease in the adjusted TP%.

3. In Table 4, when factor C’s level was 1 or 3, the TP decreased to 0.559 or 0.562, and there was a
5.73% decrease or a 5.23% decrease in the adjusted TP%.

4. In Table 5, when factor D’s level was 1 or 3, the TP decreased to 0.576 or 0.590, and there was a
2.87% decrease or a 0.51% decrease in the adjusted TP%.

Table 2. The values for the TP and the adjusted TP% resulting from a 0.2 level change in factor A.

Factor A 1 1.2 1.4 1.6 1.8 2

TP 0.529 0.536 0.546 0.550 0.557 0.567
Adjusted TP% −10.79% −9.61% −7.92% −7.25% −6.07% −4.38%

Factor A 2.2 2.4 2.6 2.8 3
TP 0.573 0.581 0.589 0.593 0.591

Adjusted TP% −3.37% −2.02% −0.67% −0.33%

Adjusted TP% =
TPLevel−0.593

0.593 where TPLevel is the TP in factor A’s Level; the bold numbers were the optimal
total performance.

Table 3. The values for the TP and the adjusted TP% resulting from a change in factor B.

Factor B 1 2 3

TP 0.593 0.558 0.516
Adjusted TP% −5.92% −12.98%

Adjusted TP% =
TPLevel−0.593

0.593 where TPLevel is the TP in factor B’s Level; the bold number was the optimal
total performance.
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Table 4. The values for the TP and the adjusted TP% resulting from a change in factor C.

Factor C 1 2 3

TP 0.559 0.593 0.562
Adjusted TP% −5.73% −5.23%

Adjusted TP% =
TPLevel−0.593

0.593 where TPLevel is the TP in factor C’s Level; the bold number was the optimal
total performance.

Table 5. The values for the TP and the adjusted TP% resulting from a change in factor D.

Factor D 1 2 3

TP 0.576 0.593 0.590
Adjusted TP% −2.87% −0.51%

Adjusted TP% =
TPLevel−0.593

0.593 where TPLevel is the TP in factor D’s Level; the bold number was the optimal
total performance.

6. Conclusions

The development of GSCM in different industries has different motivations. For hospitals, the
crucial motivation is to meet patients’ healthcare needs. Hence, the study used the concept of green
innovation to design a better healthcare service flow to eliminate unnecessary healthcare waste and
hence, increase healthcare quality. As Khan et al. [57] explained, an enterprise’s GSCM creates a
positive impression for customers, leading to trust and satisfaction.

This study used EDC as an example because EDC occurs when the demand for EMS is greater
than the supply of EMS. The reasons behind this mismatch are complicated, including the general
public’s incorrect view of emergency treatment, a shortage of manpower at EDs, limited space at EDs,
a shortage of sickbeds, etc. These interlocking factors further increase the level of busyness at an ED
and the workload of ED professionals, which affects patient wait time. Moreover, insufficient time or
space to attend to patients leads to medical errors, worsening EDC.

The study used the dynamic Taguchi method to establish the EMS simulation system and to
obtain the Taguchi’s parameters setting. The result of Taguchi parameters setting shows that based on
EDWINC, the setting for the factors combination (A, B, C, D) was (Level 1, Level 1, Level 1, Level 1),
and based on ST, the setting for the factors combination (A, B, C, D) was (Level 3, Level 3, Level 2,
Level 2). Further, using the NN and GA to obtain the optimal parameters setting based on the TP, the
setting for the factors combination (A, B, C, D) was (Level 2.8, Level 1, Level 2, Level 2). The sensitivity
analysis shows the adjustable strategies. If factor A’s level moved from 2.8 to Level 1, Level 2, or
Level 3, there was a 10.79%, 4.38%, or −0.33% decrease in the adjusted TP%. If factor B’s level moved
from 1 to Level 2 or Level 3, there was a 5.92% or 12.98% decrease in the adjusted TP%. If factor C’s
level moved from 2 to Level 1 or Level 3, there was a 5.73% or 5.23% decrease in the adjusted TP%. If
factor D’s level moved from 2 to Level 1 or Level 3, there was a 2.87% or 0.51% decrease in the adjusted
TP%.

The study makes two significant contributions. First, the study extended the significant influence
of GSCM to hospitals to bring green innovation to hospitals. The core value of green innovation in the
study aims to eliminate unnecessary healthcare waste to provide better quality healthcare. Eliminating
waste improves the utilization of healthcare resources. Hospital administrators may hence design
better GSCM activities to facilitate the healthcare process to provide better healthcare outcomes.

The study’s second contribution was that it considered the adjustable number of physicians and
EMS characteristics in the ED crowding problem. When the patients suddenly increase, the signal
factor (the number of physicians) and the setting of control factors levels help stabilize the EMS
treatment process. The dynamic Taguchi method can also be used in the GSCM to solve complex
multi-performance problems. Nonetheless, most researchers have used the Taguchi method in other
industries to improve products and processes through quality engineering. Future studies may use
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the Taguchi method combined with GA and NN to solve different departments’ multi-response
optimization problems in the GSCM of healthcare systems.

GSCM emphasized the concept of reducing environmental impacts. The environmental
impacts should include inter-organizational sharing responsibility [1,58]. Furthermore, GSCM is an
interdisciplinary field which has a cross-function approach, involving internal activities and external
activities [59]. Hence, GSCM should integrate internal activities and external activities to reduce
environmental impacts. For most companies, to reduce environmental impacts is to reduce social
loss (Taguchi loss function). Therefore, GSCM connected to the Taguchi loss function will be worth
further discussion. As in this study, GSCM was applied in the EMS, which emphasizes the healthcare
service quality for patients. Based on the Taguchi design, while selecting the service performances, the
administrators should take the patients’ stay time in the systems and EDWINC into consideration. For
future study, GSCM connected to the Taguchi loss function (social loss) may be extended and applied
to the service industries.

As for the limitation of this study, the study used a medical center in central Taiwan as the object
to set up the EMS simulation system to obtain a robust parameters setting. Hence, the results may
not be extended to other hospitals with different sizes or different characteristics. To solve hospitals’
waste problems, those hospitals attempting to use the proposed mathematical model should select the
parameters based on the characteristics of their hospitals to construct their own simulation scenario.
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