Chlorine dioxide degradation issues on metal and plastic water pipes tested in parallel in a semi-closed system

Alberto Vertova¹, Giordano Lesma^{1,2}, Sandra Rondinini¹, Alessandro Minguzzi¹, Luigi Falciola^{1,4}, Alessandro Miani^{3,4}, Marco Aldo Ortenzi,^{1,2*}

- ¹ Department of Chemistry, Università degli Studi di Milano, Via Golgi 19 20133 Milan
- ² CRC Materiali Polimerici (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19 20133 Milan, Italy
- ³ Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 2 20133 Milan
- ⁴ Italian Society of Environmental Medicine (SIMA), Via Monte Leone 2 20149 Milan
- * Correspondence: marco.ortenzi@unimi.it; Tel.: +39-0250314135 (F.L.)

Supporting Information

Electrochemical Impedance Measurements

Figure S1: Experimental setup for 4 wires Impedance Measurements on PERT with Al shield.

EDS Analyses

rame nuovo-01						
Cu		RAME nuovo				
	,Cu					
Cu	Cu					
Cu	Cu Cu					
10. 20. 30. Cursor=30.455 keV 0 cnt ID = Vert=3000 Window 0.005 - 40.955= 101163 cnt 30.						

Figure S2b: Copper pipe Aged 8 weeks

ferro zincato nuovo-01							
Zn							
	FERRO ZINCA	TO nuovo - 01					
Zn	7-						
	Zh						
F	Zn Zn						
F Zn	Fe Fe Zn						
10 20							
Cursor=20.205 keV 0 cnt ID = Rh ka1							
Vert=1552 Window 0.005 - 40.955= 44292 cnt							

Figure S3a: Galvanized Steel – New pipe

Figure S3b: Galvanized Steel pipe aged 8 weeks

Figure 4Sa: PPR – New pipe

Figure 4Sb: PPR pipe aged 8 weeks

Figure 5Sa: PERT – New pipe (multilayer)

Figure 5Sb: PERT multilayer pipe aged 8 weeks

FT-IR analyses (bulk)

Figure S6: FT-IR of PERT bulk: new (black), 4 weeks (red), 8 weeks (blue)

Figure S7: FT-IR of PPR bulk: new (black), 4 weeks (red), 8 weeks (blue)

Figure S8: FT-IR spectra of PPR bulk: new (black), 4 weeks (red), 8 weeks (blue) – Magnification of 1800-1500 cm⁻¹ region

DSC Analyses

Lab: Hermes

STAR^e SW 10.00

Figure S10: DSC analyses (First heating - cooling) on PERT pipe aged 4 weeks: bulk (black), surface (red)

Figure S11: DSC analyses (First heating - cooling) on PERT pipe aged 8 weeks: bulk (black), surface (red)

Figure S12: DSC analyses (First heating - cooling) on PPR new pipe

Figure S13: DSC analyses (First heating - cooling) on PPR pipe aged 4 weeks: bulk (black), surface (red),

surface powder (blue)

Figure S14: DSC analyses (First heating - cooling) on PPR pipe aged 8 weeks: bulk (black), surface (red),

surface powder (blue)