Bring more data! – a good advice? Removing separation in logistic regression by increasing sample size

Hana Šinkovec, Angelika Geroldinger and Georg Heinze

Supplementary Materials:

Figure S1. Nested loop plot showing type I error rate ($\beta_1 = 0$) and power ($\beta_1 \neq 0$) for $\hat{\beta}_1$ by the expected value of *Y*, E(*Y*) \in {0.1, 0.25}, the number of covariates *K* \in {2, 5, 10}, the value of $\beta_1 \in$ {0, 0.35, 1.39, 2.77} and the sample size *N* \in {80, 200, 500} for all simulated scenarios. FC, Firth's correction; ML+ISS, maximum likelihood combined with the increasing sample size approach; FC+ISS, Firth's correction combined with the increasing sample size approach.

Method - FC - ML+ISS - FC+ISS

Figure S2. Nested loop plot of coverage of the 95% confidence intervals for $\hat{\beta}_1$ by the expected value of Y, $E(Y) \in \{0.1, 0.25\}$, the number of covariates $K \in \{2, 5, 10\}$, the value of $\beta_1 \in \{0, 0.35, 1.39, 2.77\}$ and the sample size $N \in \{80, 200, 500\}$ for all simulated scenarios. The grey shaded area marks the 'plausible' interval $0.95 \pm 2.57 \sqrt{\frac{0.95 \cdot 0.05}{1000}}$, into which the result of a method with perfect coverage falls with a probability of 0.99. FC, Firth's correction; ML+ISS, maximum likelihood combined with the increasing sample size approach; FC+ISS, Firth's correction combined with the increasing sample size approach.

Figure S3. Nested loop plot of width of the 95% confidence intervals for $\hat{\beta}_1$ by the expected value of *Y*, $E(Y) \in \{0.1, 0.25\}$, the number of covariates $K \in \{2, 5, 10\}$, the value of $\beta_1 \in \{0, 0.35, 1.39, 2.77\}$ and the sample size $N \in \{80, 200, 500\}$ for all simulated scenarios. The results for FC and ML+ISS for E(Y) = 0.1, K = 10 and N = 80 are outside of the plot range. FC, Firth's correction; ML+ISS, maximum likelihood combined with the increasing sample size approach; FC+ISS, Firth's correction combined with the increasing sample size approach.