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Abstract: Gully erosion is a serious environmental problem worldwide, causing soil loss, land
degradation, silting up of reservoirs and even catastrophic flooding. Mapping gully features from
remote sensing imagery is crucial for assisting in understanding gully erosion mechanisms, predicting
its development processes and assessing its environmental and socio-economic effects over large areas,
especially under the increasing global climate extremes and intensive human activities. However,
the potential of using increasingly available high-resolution remote sensing imagery to detect and
delineate gullies has been less evaluated. Hence, 130 gullies occurred along a transect were selected
from a typical watershed in the hilly and gully region of the Chinese Loess Plateau, and visually
interpreted from a Pleiades-1B satellite image (panchromatic-sharpened image at 0.5 m resolution
fused with 2.0 m multi-spectral bands). The interpreted gullies were compared with their measured
data obtained in the field using a differential global positioning system (GPS). Results showed that
gullies could generally be accurately interpreted from the image, with an average relative error of
gully area and gully perimeter being 11.1% and 8.9%, respectively, and 74.2% and 82.3% of the relative
errors for gully area and gully perimeter were within 15%. But involving field measurements of
gullies in present imagery-based gully studies is still recommended. To judge whether gullies were
mapped accurately further, a standard adopting one-pixel tolerance along the mapped gully edges
was proposed and proved to be practical. Correlation analysis indicated that larger gullies could
be interpreted more accurately but increasing gully shape complexity would decrease interpreting
accuracy. Overall lower vegetation coverage in winter due to the withering and falling of vegetation
rarely affected gully interpreting. Furthermore, gully detectability on remote sensing imagery in this
region was lower than the other places of the world, due to the overall broken topography in the Loess
Plateau, thus images with higher resolution than normally perceived are needed when mapping
erosion features here. Taking these influencing factors (gully dimension and shape complexity,
vegetation coverage, topography) into account will be favorable to select appropriate imagery and
gullies (as study objects) in future imagery-based gully studies. Finally, two linear regression
models were built to correct gully area (Aip, m2) and gully perimeter (Pip, m) visually extracted, by
connecting them with the measured area (Ams, m2) and perimeter (Pms, m). The correction models
were Ams = 1.021Aip + 0.139 and Pms = 0.949Pip+ 0.722, respectively. These models could be
helpful for improving the accuracy of interpreting results, and further accurately estimating gully
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development and developing more effective automated gully extraction methods on the Loess Plateau
of China.

Keywords: valley bank gully; Pleiades imagery; visual interpretation; accuracy assessing standard;
gully detection limit; gully dimensions; vegetation cover; gully shape complexity; broken topography

1. Introduction

Gully erosion is one of the main manifestations of land degradation [1]. It is defined as the process
whereby runoff water accumulates and often recurs in narrow channels and, over short periods,
removes the soil from this narrow area to considerable depths [2]. Further, gully erosion is considered
as the most destructive form of erosion [3], which causes landform dissection and consequently
damages and reduces agricultural land [4], results in land degradation by reducing soil fertility [4] and
accelerates aridification [5]. It also affects flow regimes, sediment budgets and deposition rates [6], and
induces the silting up of downstream riverbeds and reservoirs [7,8] and thus may cause catastrophic
flooding episodes and pollution [9,10]. Moreover, gully erosion undermines infrastructures and alters
transportation corridors as well [4,11]. Data collected in different parts of the world show that soil
loss by gully erosion represents 10% to 94% of total sediment yield caused by water erosion [2], and
contributes 60% to 90% of total sediment production on agricultural land in the hilly and gully areas
of the Chinese Loess Plateau [12]. Mapping gullies is thus crucial, for assisting in understanding the
magnitude and mechanism of gully erosion, monitoring and predicting its development processes,
and assessing its current and future impacts.

Numerous studies have adopted different techniques and methods to map and monitor gully
erosion features. In the beginning, conventional field methods mainly including ruler, pole, tape,
microtopographic profilers and pins [13–16] were used, whereas they are time consuming and labor
intensive for achieving high accuracy in field surveys and consequently are always confined at
smaller spatial scales [1]. Afterwards, with the development of technology, total stations [16,17],
differential global positioning system (GPS) [18,19], airborne and ground-based Light Detection
and Ranging (LiDAR) systems [11,20], three-dimensional laser scanners [21,22] and remote sensing
imagery [1,3,21,23] have been applied to map gullies. These emerging methods obviously improve
work efficiency and guarantee the measurement accuracy simultaneously. However, except for that
based on remote sensing imagery, they still to some extent face the challenges in time, labor and study
spatial scales. And, airborne and ground-based LiDAR systems and three-dimensional laser scanners
are also sensitive to vegetation [20] and weakened by limited scanning coverage and side-looking
orientation especially when dealing with deeply incised gullies [11]. In recent years, unmanned aerial
vehicles (UAV) [24–26] have been widely explored for their feasibility in monitoring and quantifying
gully erosion, but they also exist similar shortages to the above, despite their advantage of acquiring
imagery with a very high level of details [24–26]. By contrast, remote sensing imagery has been proved
to be a more practical tool, permitting the coverage of large areas with a minimum time and effort [27]
and providing satisfactory surface details with the increased availability of high-resolution satellites
such as Ikonos (with 1.00 and 4.00 m spatial resolution in panchromatic and multi-spectral mode,
respectively), QuickBird (with 0.61 and 2.44 m spatial resolution in panchromatic and multi-spectral
mode, respectively) and Pleiades [26,28]. Therefore, so far, remote sensing-based mapping has become
the most practical approach for delineating gully features over large areas, given the variability in gully
size, shape and occurrence [29]. Meanwhile, remote sensing-based gully mapping is also supposed to
be promising in future, with the further improvement to gain imagery with higher spatial-temporal
resolution and more other useful information like spectral, stereopair.

Mapping and monitoring gully erosion features from remote sensing imagery have been
performed mainly through techniques ranging from visual aerial photograph or satellite image
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interpretation [1,21,30] to pixel-based image classification analysis (PBICA) [23,31,32] and to
object-oriented analysis (OOA) [29,33–35]. Among them, pixel-based image classification methods
usually base only on the surface reflectance values, causing their performances to strongly depend on
the selection of training pixels and the separability of spectral signatures [33,36]. However, spectral
heterogeneity exists not only among the gullies themselves but also among their surroundings [37],
and which varies easily with the variability in moisture, organic matter and mineral content, and
also shadow and atmospheric activities. Hence, the methods changing analysis unit from pixels
to objects are superior to the traditional pixel-based methods and also necessary. Object-oriented
methods segment pixels into relatively homogeneous regions, i.e., gullies in this case, by integrating
spectral, topographic, shape and textural information based on the homogeneous criteria [38,39],
which fundamentally resemble the cognitive-based visual interpretation, but in a controlled and
reproducible quantitative manner [33,38,39]. Nevertheless, multi-type auxiliary information and
complex workflows are essential for the object-recognition. On the one hand, topographical variables
(such as slope, specific catchment area, flow direction and roughness; [33,39]), vegetation condition
(such as Normalized Difference Vegetation Index—NDVI; [33,34]) and geometric properties of gullies
(such as shape, dimension, orientation; [33]) are used as input datasets and segmentation criteria
to extract gullies. On the other hand, the main procedures building the workflow, contain data
preparation, segmentation, metrics calculation and gully mapping and validation, and so on, in which
even more sub-steps are involved [29,33,34]. In addition, these procedures may either strongly interlink
with each other or be clearly independent [38]. Accordingly, the object-oriented methods tend to be
restricted to the areas with sufficient basic data and knowledge about the gully characteristics, and
their accuracy may also be susceptible due to the manifold working procedures and influencing factors
that possibly occur in any of the procedures. In general, although the pixel-based and object-oriented
methods can semi- or all-automatically detect and delineate gullies from multispectral imagery, the
quality of them is generally moderate [30] (e.g., the underestimation of gully area acquired based on
PBICA in the Brazilian Cerrados was 25.2% [23], the average area misestimation of the gully system for
three sub-watersheds in Morocco based on OOA was 16.2 ± 23.1% [35] and error assessment of gully
extent extracted by OOA in Australia’s Tropical Rivers presented an overall accuracy of approximately
50% [29]), and their applicability is limited to the area used for calibration and validation [30]. Moreover,
some DEM-based topographic methods, considering the relationship between topographic attributes
and gully distribution, have also been designed for gully feature extraction [40,41]. However, they are
also accuracy-limited due to be sensitive to terrain characteristics of study area (e.g., the misestimation
of gully area in four study areas in Spain ranged from 13.6% to 24% [40] and gully width was
overestimated by up to 30% in the Bleaklow Plateau of the UK [41]), consequently which need to be
improved further when applied in different regions [42]. As a result, gully detection and delineation
on images is still done visually and manually in most studies because of the convincing accuracy of
this way. Visual interpretation of remote sensing imagery is an old and common method for feature
extraction [43]. Commonly, the development of automated feature extraction schemes is preceded by
visual examination of scene characteristics [43], which provides training and validation datasets for
them [23,29,30,33,35,39].

Although the results extracted by visual interpretation have been widely used in the development
of newly automated methods, the accuracy of them seems to be rarely assessed first (see, e.g., [23,33,34]),
as the same case in gully evolution studies where the gullies of different time periods visually
interpreted from images were directly compared (see, e.g., [44,45]). It appears that the impressions,
that the gullies delineated visually and manually from images could straight be evaluated without
judging the accuracy themselves first and that the images with higher resolution would extract gullies
more accurately, have been gradually created by the present studies. It is undeniable that remote
sensing images having finer resolution generally generate more precise consequences [30,35], but to
what extent could gullies be accurately delineated and what is the minimum dimensions of gullies that
could be accurately delineated both from remote sensing imagery with high resolution? And how do
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the potential factors affect delineating accuracy and is that possible to further improve the accuracy of
delineated gullies by connecting them with the actual gullies? Attempting to figure out these questions
is helpful, for better utilizing the high-resolution satellite images with increasing availability; and
for contributing to the gully erosion studies at larger spatial scales, especially under the imperative
that the soil erosion and land degradation affected by the global climate change and human activities
at regional and global scales should be assessed, by providing more accurate validation datasets to
develop more effective automated gully extraction methods.

In this study, an image from the Pleiades that is a follow-up satellite of the SPOT (Système Pour
l’Observation de la Terre) was selected and assessed, because it is a good consideration with both
very high spatial resolution and acceptable price for most of the scientific community. The objectives
of this study are to (1) evaluate the potential of Pleiades image to delineate gully erosion features
through visual interpretation, (2) explore the influence of potential factors on visually gully interpreting
accuracy and (3) establish the correction models between visually interpreted and field-measured gully
morphology parameters for a given typical area in the Chinese Loess Plateau.

2. Materials and Methods

2.1. Study Area and Gully Types

The study area, the Fangta watershed (109◦14′42′ ′–109◦16′59′ ′ E, 36◦46′21′ ′–36◦49′30′ ′ N), is
located in Ansai County, northern Shaanxi Province, and belongs to the hilly and gully region of the
Loess Plateau (Figure 1a,b). The watershed covers an area of 10.54 km2 with elevations ranging from
1048 to 1363 m with an average of 1206.53± 58.55 m (mean± standard deviation, hereinafter the same).
Average slope gradient is 26.44 ± 13.21◦, and the area of slopes with slope gradient >25◦ comprises
53.34% of the entire watershed. This watershed is characterized by a warm, temperate-continental
monsoon climate with an annual average temperature of about 8.80 ◦C [46]. The average annual
rainfall is 528.48 mm from 1971 to 2014, more than 70% of the annual total rainfalls fall between
June and September and are often associated with storms, which are typically characterized by short
duration and high intensity [47].

The study area belongs to the forest steppe ecotone [48]. Due to the implementation of the
Returning Farmland to Forest and Grassland Program since 1999 with the major measures of
reforestation and abandonment of farmlands with slope above 25◦, vegetation has been efficiently
recovered with the total area of woodlands and grasslands beyond 70% of the watershed area in 2014.
The dominant species include Robinia pseudoacacia, Caragana intermedia, Hippophae rhamnoides, Sophora
viciifolia, Artemisia gmelinii, Artemisia giraldii, Lespedeza davurica and Bothriochloa ischaemun. Loessial
soil is the main soil type in the watershed and is mainly composed of 65% sand, 24% silt and 11% clay
by weight [49]. Because of the loose soil particles and the poor erosion resistance, the soil is prone to
erosion [8].

The study area shows a landscape of high-density and deep-cut gullies with a gully density of
3.8 km/km2 [50], and consequently an extremely broken and undulating topography. Three main gully
types exist on the Chinese Loess Plateau: hillslope gully, valley floor gully and valley bank gully [19]
(Figure 2). Hillslope gullies mainly develop in the cropland portion of the interfluves. They generally
have cross-sections of ‘U’ shape in the early formation stage and which gradually evolve as ‘V’ shape.
Valley floor gullies develop on the bottom of the valley. Their cross-sections also present ‘U’ shape
at first but grow into trapezoid shape later [51]. This two gully forms are both characterized by a
long-narrow planar morphology (with width usually less than ten meters) [51]. Valley bank gullies
occur continuously at the boundaries between interfluves and valleys [19] (Figure 1c, Figure 2a).
They exhibit a short-deep morphology, which is significantly deeper than the above two gully types.
Furthermore, valley bank gullies are the most important sources of sediment yield to river and the
main threat to inter-valley land quantity and quality [21]. Therefore, this study focused on valley bank
gullies, which were selected based on the following steps. First, on the basis of the satellite image
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(more details see Section 2.2), a transect was placed randomly in and throughout the study watershed,
and seven valleys were selected along the transect (Figure 1b). Then, in the field, a total of 130 valley
bank gullies, which occurred on the boundaries of the seven valleys, were selected as the study objects
according to their dimensions and morphology that were representative in the study watershed.Int. J. Environ. Res. Public Health 2018, 15, x 5 of 19 
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blue, respectively.
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2.2. Pleiades Image

Pleiades-1B image contains one panchromatic band with 0.5 m resolution and four multi-spectral
bands with 2.0 m resolution. Its extensive image swath width (20 km) allows gully mapping over
large regions. The image was specially acquired in the early winter (21 November 2013), because the
vegetation cover was lower at that time compared with the other seasons of the year, resulting from
the withering and falling of vegetation, and without snow cover yet as well, under which the edges of
gullies could be distinguished and traced well [52]. After the geometric, radiometric and atmospheric
corrections strictly performed by the data provider (Airbus Defence and Space, Toulouse, France), the
panchromatic and multi-spectral images were fused to generate a 0.5 m pan-sharpened image using
the software ENVI 5.3 (Exelis Visual Information Solutions, Inc., Broomfield, CO, USA). Subsequently,
the gully edge lines (Figure 1c) would be extracted by visual interpretation from the processed image.

2.3. Field-Measured Data

Field-measured gully edge lines were obtained using a SOUTH S86 RTK (South Surveying &
Mapping Technology CO., LTD, Guangzhou, China) differential GPS system: with planimetric and
altimetric precision of 1 cm ± 1 ppm and 2 cm ± 1 ppm, respectively. Turning points of gully edges
were successively measured and numbered using the GPS in the field, which was conducted in July
2014. The measurement intervals between two contiguous points were mainly within 0.2–1.4 m
(comprising 80% of all the intervals), for some parts of gully edge with intricate morphology, more
intensive measurements were taken. After the field measurements, the collected point data were
transformed into gully edge lines by connecting the points in order with line in the software ArcMap
10.3 (Esri, Redlands, CA, USA).

It is noteworthy that the period between the image and field data acquisition periods (December
2013–June 2014) is regarded as insignificant for the purposes of this study, because gully erosion mainly
occurs during the rainy season, i.e., June to September, due to the driving force by rainfall to trigger
and accelerate soil erosion [4,53]. Moreover, the land uses in upslope drainage area of the study valleys
were woodlands or grasslands (except that one of them was terrace abandoned before November 2013)
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in 2013 and did not change so far, and grazing was banned in the area from March 2008, which both
greatly reduced the possibility of gully formation and expansion caused by human disturbances and
grazing during the above period.

2.4. Gully Interpreting from Image

Visually interpreting the gullies from the processed image was carried out in ArcMap by a trained
PhD-level operator based on the spectral signatures and the spatial characteristics of valley bank
gully, i.e., shape, size, patterns and contextual information. The operator has been being involved
in projects dealing with gully erosion in the Loess Plateau region for more than 4 years and has
participated in field investigation and indoor interpretation of gullies many times, having an in-depth
knowledge of geomorphology and gully erosion in the study area, and possessing the necessary
background and ability to conduct the mapping. In addition, because of the gullies studied here are
valley bank gully, which specially occur at the boundaries between interfluve and valley and have
relatively homogeneous dimensions and forms, not like those in the similar studies having significant
variation in scale [26,52] and being easily confused with other surface features such as furrows,
wheel tracks and irrigation channels, because those studies usually focused on gullies occurring on
agricultural land zones [3,30]. Therefore, the interpretation signs and decision tree like such in previous
studies [26,30,52], did not need to be established first in this study, but the gullies be interpreted directly
relying on the expertise of the operator. In this study, the gullies were repeatedly interpreted three
times by the operator, and in each time every gully was mapped, in this way, the mapped replication 1,
2, 3 of each gully were obtained. Doing this was to improve the interpreting accuracy by using the
average of the three replications as the interpreted parameters eventually compared with measured
values, and to evaluate the systematic deviation of mapping gullies by the operator. If the systematic
errors produced by the same operator had been generally larger than the interpreting errors (absolute
errors) between the mapped and the measured gullies, this study would have been valueless.

After that, the morphological parameters of interpreted and measured gullies, including gully
length, gully width, gully area and gully perimeter, were calculated based on the gully edge lines
using ArcMap and AutoCAD F.51.0 (Autodesk, Inc., San Rafael, CA, USA).

2.5. Assessment of Interpretation Accuracy

In this study, gully area and gully perimeter were selected as the gully morphology parameters
analyzed in accuracy assessment, because only this kind of planar morphology parameters could
be extracted from the imagery without stereopair, but also because gully area and gully perimeter
are common and important parameters assessed in the gully erosion studies [16,54,55]. On the one
hand, gully area and gully perimeter over different periods are direct indicators to understand gully
development processes and to quantitatively assess gully erosion. Especially when at large spatial
scales, the gully depth information is scarce and costly to gain, but the gully erosion studies at these
scales are imperative under the intensive global climate change and human activities. On the other
hand, gully area has been proved to be an effective geometric variable to predict gully volume in the
Loess Plateau [21,56], thus estimating erosion volumes and conducting some more in-depth gully
erosion studies were also possible based on this parameter. Moreover, before assessing the interpreted
gullies with measured gullies, systematic deviation of delineating the gullies by the operator was
evaluated first. Hence, the systematic error of gully area (SEA) and gully perimeter (SEP), i.e., the
average of the differences of each two interpreted gully replications, and the absolute error of area
(AEA) and perimeter (AEP) between the interpreted and the measured gully, were quantified as follows:

Aip =
1
3
(

Aip1 + Aip2 + Aip3
)

(1)

Pip =
1
3
(

Pip1 + Pip2 + Pip3
)

(2)
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SEA =
1
3
(∣∣Aip1 − Aip

∣∣+ ∣∣Aip2 − Aip
∣∣+ ∣∣Aip3 − Aip

∣∣) (3)

SEP =
1
3
(∣∣Pip1 − Pip

∣∣+ ∣∣Pip2 − Pip
∣∣+ ∣∣Pip3 − Pip

∣∣) (4)

AEA =
∣∣Aip − Ams

∣∣ (5)

AEP =
∣∣Pip − Pms

∣∣ (6)

where Aip1, Aip2 and Aip3 are area of the interpreted gully replication 1, 2 and 3, respectively; Pip1, Pip2

and Pip3 are perimeter of the interpreted gully replication 1, 2 and 3, respectively; Aip and Pip are the
average of the interpreted gully area and gully perimeter, respectively; Ams and Pms are the measured
gully area and gully perimeter, respectively.

After that, the relative error of area (REA) and perimeter (REP) between the interpreted and the
measured gully were quantified as follows:

REA =

∣∣Aip − Ams
∣∣

Ams
× 100% (7)

REP =

∣∣Pip − Pms
∣∣

Pms
× 100% (8)

2.6. Factors Potentially Influencing Gully Interpreting

To understand the influence of different factors on gully interpreting accuracy, potential factors
including gully dimensions, gully sinuosity and the vegetation cover surrounding gully edge were
gained with the following methods. The dimensions of gully consisted of length (Lms), width (Wms),
area (Ams) and perimeter (Pms), which were all field measure-based and had been calculated in
Section 2.4. The vegetation coverage (represented with NDVI) of the study watershed was first derived
from the pre-processed Pleiades image with the methods same as Rouse, et al. [57] and Qi, et al. [58].
Then, outside 5 m buffer zones along gully edge line were created in ArcMap, which were further
used to extract vegetation cover surrounding gully edge (VC) from the watershed NDVI image.
Gully sinuosity (Sin) was defined as the ratio between the perimeter of a gully and the perimeter of a
circle of equal area [59], which reflected the shape complexity of gully edges:

Sin = Pms/PCirc (9)

PCirc = 2π · (Ams/π)1/2 (10)

where Pms and Ams are the measured gully perimeter and gully area, respectively; PCirc is the perimeter
of a circle having equal area with the gully.

2.7. Software and Methods for Data Analysis

Influence of different factors on gully interpreting accuracy was analyzed by Spearman correlation
analysis using R 3.5.0 (R Development Core Team, Vienna, Austria). Linear regression was used to
establish the correction models between measured and interpreted gully area and gully perimeter using
SPSS 23.0 (International Business Machines Corporation, Armonk, NY, USA). The figures were plotted
with Origin 2018C (OriginLab Corporation, Northampton, MA, USA) and “ggplot2” package [60]
written for R 3.1.0.
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3. Results

3.1. Accuracy Assessment of Interpreted Gullies

The results of the Paired-Samples T Test between SEA and AEA and between SEp and AEp

demonstrated that the absolute errors of area and perimeter were both significantly higher than their
respective systematic errors (p < 0.01, Table 1), indicating that the subsequent analyzing and discussing
of this study were meaningful.

Table 1. Comparison of systematic error and absolute error of gully area and gully perimeter (mean± SD).

Area (m2) Perimeter (m)

Absolute Error Systematic Error Absolute Error Systematic Error

12.8 ± 16.5A 2.8 ± 3.4B 2.9 ± 3.1A 0.9 ± 0.9B

Note: Different letters between different types of errors of area or perimeter indicate significant differences (p < 0.01).

Therefore, it could be seen from Figure 3 that the relative errors of gully area and gully perimeter
varied from 0 to 53.7% and 0.1% to 47.8%, with an average of 11.1% and 8.9%, respectively. The majority
of relative errors for area and perimeter were both within 15%, accounting for 74.2% and 82.3% of all
the corresponding errors, respectively. Generally, the accuracy of interpreted gullies was maintained at
a high level.
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3.2. Influence of Potential Factors on Gully Interpreting Accuracy

The correlation matrix was used to analyze the influence of potential factors on the interpreting
accuracy of gully (Figure 4).

The results showed that the parameters representing gully dimensions were all significant
negatively correlated with the gully interpreting errors (p < 0.01), except that the correlation between
Wms and the perimeter-related errors were just significant at the 0.05 level, which indicated that larger
gullies could be interpreted more accurately from remote sensing imagery and vice versa. The Sin was
significant positively correlated with all the errors (p < 0.01), resulting from larger possibilities to lose
details of gully edge during interpreting the gullies with higher Sin. However, VC had no significant
correlation with all the errors (p > 0.05), which might be attributed to the generally lower vegetation
coverage (0.19 ± 0.11) when the interpreted image was acquired.
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Figure 4. Correlation matrix between gully interpreting errors and potential influencing factors.
Note: Lms, measured gully length; Wms, measured gully width; Ams, measured gully area; Pms,
measured gully perimeter; Sin, sinuosity of gully edge line; VC, vegetation cover; CVA, coefficient
of variance of interpreted gully area replications; SEA, systematic error of interpreted gully area
replications; REA, relative error between the interpreted and the measured gully area; CVP, coefficient
of variance of interpreted gully perimeter replications; SEP, systematic error of interpreted gully
perimeter replications; REP, relative error between the interpreted and the measured gully perimeter.
* Correlation is significant at p < 0.05 level (2-tailed). ** Correlation is significant at p < 0.01 level
(2-tailed).

3.3. Correction Model of Interpreted Gully Morphology Parameters

Linear regression models between interpreted and measured gully area and gully perimeter were
respectively fitted as follows:

Ams = 1.021Aip+0.139
(

n = 130, R2 = 0.994
)

(11)

Pms = 0.949Pip+0.722
(

n = 130, R2 = 0.983
)

(12)

where Ams is measured gully area (m2) and Aip is interpreted gully area (m2), Pms is measured gully
perimeter (m) and Pip is interpreted gully perimeter (m).

Actually, in order to take the regional variability in vegetation cover and gully shape complexity
into account, VC and Sin were also used as independent variables together with Aip and Pip to try
building relationship with Ams and Pms, respectively, but they both did not entered into the resulting
equations in the stepwise multiple regression, so Aip and Pip were then directly connected with Ams

and Pms, respectively. The two fitted equations both had considerably large values of coefficient of
determination (R2), with 0.994 for that of gully area and 0.983 for that of gully perimeter, which
indicated that Aip and Pip were enough to predict the actual gully area and gully perimeter accurately,
respectively. To validate the models further, the predicted gully area and gully perimeter values were
respectively compared with their measured values (Figure 5). It could be observed that the measured
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values and the predicted values were distributed along the 1:1 line, and the trend lines for area and
perimeter both almost entirely overlapped with corresponding 1:1 line, with a R2 value of 1.000 for
area trend line and 0.983 for perimeter trend line. These demonstrated that the two correction models
were reliable. Although it could be found that the interpreted gully area seemed not to be transformed
so much before into coincident values of measured gully area through Equation (11), considering the
fact that the average relative error of interpreted gully area was 11.1% and 25.8% of all the study gullies
had REA greater than 15%. Thus, the established relationship between the interpreted and measured
gully area still presented practical value for correcting gully area extracted based on satellite images in
this area.
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4. Discussion

4.1. A quantitative Standard to Judge Gully Delineating Accuracy

Previous studies extracting gully erosion features based on remote sensing images rarely
determined an exact standard to judge whether a gully was delineated accurately, however, which
was important for assessing the ability of remote sensing images to interpret gully and further for
conducting gully evolution research at multiple spatial-temporal scales. Here, inspired by Evans
and Lindsay [41] who found errors of delineated gully width always close to the resolution of the
used imagery, a potential standard adopting one-pixel tolerance along gully edge line to assess gully
interpreting accuracy from remote sensing images was proposed in this study.

Due to gully edges being defined as the break of slope and usually at which the bare soil and
vegetation cover were also divided. In addition, pixel is the smallest unit of an image (for this study
its dimension is 0.5 m × 0.5 m), and it is fully uniform in interior even if there should have been
some smaller ground details existed. Thus, the outward sides from gully inside of these pixels which
spanned the gully edge would be assigned to the gully during image interpretation. However, in fact,
gully edges were not necessarily the outward sides of the break pixels, it could be anywhere in each
break pixel if the gully edge was generalized as a line with width sufficiently small when compared
with that of a pixel and, considering that a pixel is a uniform whole in which the specific position
where gully edge line occurred was unknown. So, this is the reason why the tolerance was specified as
one image pixel. The area tolerance (AT) for each gully in this study was obtained by creating 0.50 m
buffer polygon along the interpreted gully edge line and then calculating the area of them. Further, the
area tolerance was compared with corresponding absolute area error (AEA) gully by gully. Finally, the
gullies, having the ratio of AEA to AT (AEA/AT) within 1.00, were supposed to be delineated accurately
because their interpreting errors did not exceed the corresponding tolerances, and the closer the value
of AEA/AT to zero, more accurately the gullies were delineated. The division of gully interpreting
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accuracy using the AEA/AT index was presented in Table 2. The results showed that more than 80% of
the gullies were accurately mapped in this study, indicating that high-resolution remote sensing image
had the potential to extract gully overall precisely by the means of visual interpretation. This is also in
accordance with the results in Section 3.1.

Table 2. Division of gully interpreting accuracy based on the AEA/AT index (mean ± SD).

Gully Types AEA/AT Percentage (%)

Accurately delineated (AEA/AT ≤ 1.00) 0.42 ± 0.28 80.77
Not accurately delineated (AEA/AT > 1.00) 1.61 ± 0.82 19.23

All 0.65 ± 0.64 100

Hence, it could be concluded that the proposed standard adopting one-pixel tolerance along
the interpreted gully edges was able to effectively judge gully interpretation accuracy. Besides, this
standard could be readily applied to the studies with regard to gully mapping based on currently
popular UAV imagery and aerial photograph as well (provided that the data were preprocessed
strictly) whenever manual digitizing is involved, since this two types of images had similar acquisition
mechanisms and nature with satellite image. Nevertheless, this standard should be carefully used
for those smaller gullies or coarser resolution images, because that would lead to relatively greater
proportion of one-pixel tolerance area compared to the gully area [41].

4.2. Gully Width Detection Limit of Remote Sensing Imagery in the Loess Plateau

The spatial resolution of imagery is an indication of the potential details of the features in
the imagery and consequently strongly influences the level of gully detectability [3,35,41,56,61].
Generally, it was possible to identify smaller gullies in the finer resolution images than in the
coarser resolution data [28,35,41], as was shown in Figure 6a where a positively linear relationship
between image resolution and minimal identifiable gully width was exhibited. Moreover, utilizing
the images with a better resolution would likely decrease the uncertainty in gully detection and
delineation [30], accordingly, the inaccuracy of the gully features extracted increased with a decrease
in image resolution [35].
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Figure 6. (a) The relationship between image resolution and minimal identifiable gully width, which
were collected from following literature: [3,11,26,30,35,39,41,62–64]. (b) The width range of gullies that
were accurately and inaccurately delineated from Pleiades image, respectively, which were divided
according to the standard determined in Section 4.1.

In Figure 6a, it could be found that all the points distributed above or at the 1:1 line at least,
indicating that remote sensing imagery could identify gullies whose width was equal to or greater
than the imagery resolution, which was consistent with those concluded by Desprats, et al. [3],
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Vrieling, et al. [23], Vrieling, et al. [65], and Warren, et al. [66]. In this study, the lower limit of width of
accurately delineated gullies (3.18 m), which were determined according to the standard proposed
in Section 4.1, significantly larger than those detected from images with same resolution (0.50 m)
in previous studies (Figure 6). This may be caused, on the one hand, by the inherent magnitude
of permanent gullies in the study area (with a range of gully width from 3.18 to 35.23 m and an
average of 10.05 m for this study), which was a result of the combination of frequent rainstorms
and typical soil properties prone to erosion in this region [15]. However, it could also be observed
that from Figure 6b, in this study, the width range of inaccurately delineated gullies was within that
of accurately delineated, indicating that the image used here should have been able to discern the
incorrectly delineated gullies.

This was possibly related to the broken topography in the study area (Figure 7), which was
inferred through reviewing the overlay of the incorrectly discerned gullies on the true-color Pleiades
image. Some gullies could not be accurately delineated even with a larger scale due to the broken
topography, this was, on the other hand, the reason why the minimal identifiable gully width in this
study larger than those in literature. Consequently, the gully detection limits based on satellite image
in this region was narrower compared to those in other regions around the world, images with higher
resolution than normally perceived thus were needed when mapping erosion features here, especially
for those with smaller dimensions.
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Figure 7. Broken topography in the Loess Plateau mainly caused under three cases. (a) Periodical
erosion of runoff to original loess surfaces; (b) varying anti-erodibility between different loess layers; (c)
abiogenetic mass failure such as landslide, fault, collapse and so on. The Pleiades image was displayed
as true color composite with a spectral band combination of B2, B1 and B0 assigned to red, green and
blue, respectively.

4.3. The Causes of Higher Gully Interpreting Errors

Through overlaying the mapped gully edge lines with REA and REp respectively >15% on the
true-color Pleiades image, it was found that the higher interpreting errors were mainly caused by
broken topography, vegetation cover and the deviation in measured data, as presented in Table 3 and
Figures 7 and 8. Firstly, the broken topography, on the one hand, was a result of the long-term and
serious gully erosion in this area, especially that of permanent gully [15]. On the other hand, the three
cases in Figure 7, all made great contributions to the formation of such topography, meanwhile, they
left multiple and complex slope break lines on loess surfaces, which seemed extremely like gully edges
on the satellite image and consequently confused the interpreters with the actual gully edges during
delineating [67]. Secondly, although vegetation cover was not significantly correlated with errors of
all types in this study due to its overall lower values in winter, several comparatively high coverage
among them still brought about large interpreting errors to their corresponding gullies (Figure 8a).
Vrieling, et al. [23] found that a gully had low activity when abundant trees grew in and around it,
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implying that further erosion of the gully was minimal, and thus the distinct characteristics of exposed
bare subsoil was not dominant and moreover concealed by the tree crowns, resulting in the limited
success in delineating these gully edges from a QuickBird image in Brazilian Cerrados. Moreover,
Marzolff and Poesen [68], James, et al. [20] and Desprats, et al. [3] reported similar findings respectively
from aerial photographs taken by a blimp-based remoting sensing platform in semi-arid southeast
Spain, LiDAR topographic data in the southeastern United States and QuickBird and SPOT images in
Tunisia. Therefore, more emphasis should also be laid on the development of new methods to map
the gullies under vegetation from imagery in the future. Then, the deviation of measured gully edge
lines mainly occurred in which gully wall was severely undercut near the bottom and thus forming
overhanging gully scarp (Figure 8b) that was weak to support weight and accordingly hard to get
to as close as possible during the field measuring. This is also the reason why gully mapping based
on remotely sensed data are increasingly explored, owing to its non-contact feature [69], of course,
also its higher efficiency compared to field measurements [1,17,26,30]. In this study, the available
gully area, consuming unitary time, labor and money, for field-based and image-based methods
were 10 m2/(min·person·dollar) and 167 m2/(min·person·dollar), respectively (Supplementary data).
The latter was about 17 times larger than the former.Int. J. Environ. Res. Public Health 2018, 15, x 15 of 19 
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Table 3. Statistics of main causes to higher gully interpreting errors.

Causes
REA REP

Percentage (%) Relative Error (%) Percentage (%) Relative Error (%)

Broken topography 26.47 42.20 ± 30.73 36.36 27.46 ± 8.17
Vegetation cover 38.24 25.17 ± 9.18 36.36 24.64 ± 10.18

Deviation in measured data 20.59 24.79 ± 7.58 18.18 20.21 ± 5.49
Gully growth 2.94 20.19 4.55 17.97

Shadow 11.76 18.97 ± 1.69 4.55 18.76

Note: The relative error is reported as the form of mean ± SD (if necessary).

The effect of gully development and shadow just held a small part in the interpreting errors of
gullies (Table 3). Among them, gully growth means some gullies had grown when the measured
data was obtained compared to that time the image was acquired, which might due to the accidental
collapse of gully sidewalls. Shadow hinders the visual interpretation of gully by making the surface
invisible or incompletely visible. But Giménez, et al. [27] found that areal gully determination based on
photogrammetry was almost unaffected by shadow since under the situation where gully depth was
not involved, gully edges could be defined with a much larger accuracy compared to its inner contours.

Figuring out the causes of the higher interpreting errors was not only helpful for understanding
the roles that different factors played in gully interpreting based on remote sensing imagery, but
also for selecting appropriate imagery indoors and gullies (as study objects) outdoors in the future
imagery-based gully studies by taking these factors into account.

5. Conclusions

In this study, it was found that gullies could be overall accurately interpreted using the Pleiades
satellite image, with an average relative error of gully area and gully perimeter being 11.1% and
8.9%, respectively, and 74.2% and 82.3% of the relative errors for gully area and gully perimeter were
within 15%. Still, field measurements of gullies to be involved is a serious recommendation for present
imagery-based gully studies. Moreover, a standard adopting one-pixel tolerance along the mapped
gully edge to judge whether gullies were mapped accurately was proposed, by which the reliability
of the interpreted gullies was similarly confirmed, indicating that this standard was an effective way
to judge gully interpretation from remote sensing imagery. Correlation analysis indicated that larger
gullies were able to be interpreted more accurately but the increasing gully shape complexity would
decrease interpreting accuracy. Overall lower vegetation coverage in winter basically did not affect
gully interpretation because vegetation had withered and fallen. Furthermore, due to the overall
broken topography in the Loess Plateau, the gully detectability on imagery in this region was lower
compared to those in other regions worldwide, consequently images with higher resolution than
normally perceived are needed when mapping gully erosion features here. Taking the roles of these
influencing factors into consideration will be beneficial to select appropriate imagery and gullies (as
study objects) in future imagery-based gully studies. Finally, two models were built for correcting
gully area and gully perimeter visually extracted from remote sensing images, by connecting them
with the area and perimeter measured (Equations (11) and (12)), respectively. These models will be
helpful for improving the accuracy of interpreting results, and further accurately estimating gully
development and developing more effective automated gully extraction methods on the Loess Plateau
of China.
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