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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by
impaired social communication and repetitive or stereotypic behaviours. In utero exposure to
environmental chemicals, such as polychlorinated biphenyls (PCBs), may play a role in the etiology of
ASD. We examined the relation between plasma PCB concentrations measured during pregnancy
and autistic behaviours in a subset of children aged 3—4 years old in the Maternal-Infant Research
on Environmental Chemicals (MIREC) Study, a pregnancy and birth cohort of 546 mother-infant
pairs from Canada (enrolled: 2008-2011). We quantified the concentrations of 6 PCB congeners that
were detected in >40% of plasma samples collected during the 1st trimester. At age 34 years,
caregivers completed the Social Responsiveness Scale-2 (SRS), a valid and reliable measure of
children’s reciprocal social and repetitive behaviours and restricted interests. We examined SRS scores
as both a continuous and binary outcome, and we calculated Bayesian predictive odds ratios for more
autistic behaviours based on a latent variable model for SRS scores >60. We found no evidence of an
association between plasma PCB concentrations and autistic behaviour. However, we found small
and imprecise increases in the mean SRS score and odds of more autistic behaviour for the highest
category of plasma PCB concentrations compared with the lowest category; for instance, an average
increase of 1.4 (95%PCI: —0.4, 3.2) in the mean SRS (exposure contrast highest versus lowest PCB
category) for PCB138 translated to an odds ratio of 1.8 (95%PCI: 1.0, 2.9). Our findings illustrate the
importance of measuring associations between PCBs and autistic behaviour on both continuous and
binary scales.

Keywords: autism; polychlorinated biphenyls; environmental chemicals; children; neuro-development

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition affecting 1-2% of children
that is characterized by impaired social communication and repetitive or stereotypic behaviours
that manifest during early childhood [1]. It has been suggested that maternal exposure to some
environmental chemicals during fetal development may play a role in the etiology of ASD [2-8].
The first and third trimesters of pregnancy have been identified as important developmental windows
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for chemical exposure [9]. One such class of chemicals is the polychlorinated biphenyls (PCBs), which
have well-established neurotoxic properties [10]. PCBs have been banned in Canada since the late
1970s [11] and globally since 2004 [12]. Still, PCBs continue to persist in the environment [13]. Many
studies have found that PCBs can affect mechanisms thought to be involved in the etiology of ASD,
including immune response and functions, neuronal development, neuroexcitability, oxidative stress,
and steroid hormones [8,14-17].

The impact of prenatal PCB exposure on neurodevelopment in children has been studied
extensively [16,18-22]. However, only a few studies have examined PCBs in relation to ASD, and
the effects of low-level PCB exposure are uncertain. Braun et al. [22] reported modest, but imprecise
differences in autistic behaviours associated with gestational exposure to several endocrine disrupting
chemicals, including some PCBs. A small case-control study by Cheslack-Postava et al. [20] reported
weak associations between in utero PCB exposure and ASD, whereas no associations were seen in
a larger follow-up sample from the same study [23]. More recently, in a large population-based
case-control study, Lyall et al. [21] reported that several PCB congeners were associated with increased
ASD risk in children. Overall, the effects of low-level PCB exposure on ASD remain unclear.

The purpose of this study was to examine the relation between plasma PCB concentrations
measured during the first trimester of pregnancy and elevated autistic behaviour in 3- to 4-year-old
children using the social responsiveness scale (SRS). We used Bayesian methods to analyze data
from the Maternal Infant Research on Environmental Chemicals (MIREC) Study, a prospective cohort
study of Canadian women and children.

Bayesian methods have unique advantages in epidemiological studies with small effect sizes [24].
One advantage is that we can model uncertainty in population parameters, and functions of parameters
(e.g., probability that 0 > c), using the posterior distribution. This permits a more flexible and nuanced
interpretation of the data compared to frequentist methods. In the present work, build on Gelman
and Hill [25], and we propose a novel measure of association between exposure and disease called the
Bayesian predictive odds ratio (BPOR). We use BPORs to examine SRS scores as both a continuous
and binary outcome. The method uses a latent variable model for SRS >60, which assumes that all
percentiles of the SRS distribution are equally affected by PCB exposure during pregnancy. A unique
advantage of BPORs is they quantify how small shifts in the mean SRS between exposure levels
translate into multiplicative changes in the odds of more autistic behaviour [21,26]. This enables
a direct comparison of odds ratios based on the SRS, with odds ratios for clinical ASD taken from
case-control studies such as in Lyall et al. [21].

2. Materials and Methods

2.1. Maternal-Infant Research on Environmental Chemicals (MIREC) Study

We used data from the MIREC study, a prospective pregnancy and birth cohort study of 2001
women from ten Canadian cities between 2008 and 2011. The goal of the MIREC Study was to obtain
national biomonitoring data on pregnant women and their infants to examine the effects of prenatal
exposure to environmental chemicals on pregnancy and child health outcomes [27]. Study criteria
and further details about participant eligibility and exclusions are discussed in the cohort profile by
Arbuckle et al. [27]. For this study, we employed the subsample of participants in the MIREC follow-up
neurodevelopment study when the children were 3 to 4 years old (average: 3.4 years). We included
mothers who had socio-demographic and child neurodevelopment information, as well as plasma
PCB concentrations and total lipid concentrations measured during the first trimester of the pregnancy.
A total of 546 met all the above criteria for inclusion in our analysis. This research was approved by
ethics review boards from Health Canada, Sainte-Justine Research Center, and Simon Fraser University.
All women provided informed consent for their and their child’s participation in the study.
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2.2. Biomarkers of PCB Exposure

We measured concentrations of 24 congeners in plasma samples collected during the first
trimester of the pregnancy, at an average of 12.0 weeks gestation (range: 6.0-14.0 weeks). Biomarker
analysis occurred at the Toxicology Laboratory of the Institut national de santé publique du Québec,
and all samples were stored at —20 °C [28]. We quantified PCB congener concentrations (International
Union for Pure and Applied Chemistry nos. 28, 52, 66, 74, 99, 101, 105, 118, 128, 138, 146, 153, 156, 163,
167,170,178, 180, 183, 187, 194, 201, 203, 206) using gas chromatography/mass spectrometry [28]. We
retained the six PCB congeners that were detected in at least 40% of samples. Measurements below the
LOD were replaced using the single imputation “fill-in” approach where the log-PCB concentrations
<LOD were randomly sampled from a truncated lognormal distribution with mean and standard
deviation estimated from the observed data [29]. The “fill-in” approach for missing biomarkers yields
unbiased regression coefficient estimates if the imputation distribution is correct, although standard
errors may be biased. We also calculated the sum of the six PCBs, weighted by molar mass, to estimate
the relation between combined exposure to multiple PCBs and the SRS score. We did not consider
summations weighted using toxic equivalency factor (TEF) calculations, because the only dioxin-like
congener that was detected in >40% of samples was PCB118. Axelrad et al. [30] examined different PCB
body burden metrics and recommended using the sum of the most frequently detected congeners. To
account for individual-level variability in plasma lipid levels, we standardized all PCB concentrations
by total plasma lipid concentrations and expressed in units of ng/g lipids [31,32].

2.3. Social Responsiveness Scale Score

The Social Responsiveness Scale-2 (SRS-2) was the dependent variable in our analysis, a valid and
reliable caregiver-reported questionnaire that provides a quantitative measure of autistic behaviour and,
at higher scores, differentiates autism from other disorders [33]. The SRS score has been cross-validated
in a large European sample of clinical ASD cases [34], and it has been compared with the Diagnostic
and Statistical Manual of Mental Disorders (DSM) [35]. The SRS consists of a series of 65 questions
on a Likert Scale that measure a child’s behavioural characteristics during the previous 6 months.
The sum of the questions gives a total T-score, where higher scores describe greater deficiencies in
reciprocal social behaviour (i.e. interpersonal, repetitive, or stereotypic behaviours) that are more
likely to indicate clinically diagnosed autism spectrum disorder [34,36,37]. SRS score cut-offs have
been defined to denote the range of autistic behaviours. Scores from 60 to 65 are categorized as ‘Mild’,
66 to 75 as ‘Moderate’, and above 75 as ‘Severe’. The SRS has two DSM-V subscales for ASD and
five treatment subscales (social awareness, social cognition, social communication, social motivation,
and restricted interests and repetitive behaviour), which measure receptive, cognitive, expressive and
motivational aspects of social behaviour as well as autistic preoccupations.

Baby Sex

Education/Marital/Income

Alcohol
Breastfeeding

Pregnancy outcomes

Figure 1. Directed Acyclic Graph (DAG) for the relation between plasma PCB exposure during
pregnancy, the SRS score, and participant variables.
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2.4. Covariates

We included variables that may potentially confound the relationship between plasma PCB
concentrations and autistic behaviours. We created a Directed Acyclic Graph (Figure 1) to identify
factors that were either predictors of autistic behaviour, or alternatively, common causes of PCB
exposure and autistic behaviour [38]. We excluded breastfeeding and pregnancy outcomes from
our models for SRS because they may be affected by PCB levels [39,40], and therefore, mediating
variables on the causal pathway between exposure and outcome. We also excluded biomarkers of other
prenatal contaminant exposures, including lead, because a previous study in the MIREC Study cohort
found little evidence of associations with cognitive function [41]. Our final set of covariates included:
child sex, mother’s age in years, maternal race (white, other), maternal education (four levels), annual
income (four levels), marital status (married, other), ever smoked/consumed alcohol during pregnancy,
and pre-pregnancy BMI (four levels). We used the same set of covariates in all analyses.

2.5. Analytic Approach

We used Bayesian linear regression to estimate the confounder-adjusted associations between
plasma PCB concentrations and mean SRS score. We designed our analysis to make direct comparisons
with the analysis results of Lyall et al. [21]. Each PCB concentration was included in a single-pollutant
model for SRS using indicator variables to create four categories of PCB exposure, along with measured
covariates. The categories were the PCB quartiles used in Table 1 of Lyall et al. [21]. Because
categorization of a continuous exposure subject to measurement error can induce non-differential
misclassification [42], we also examined log 2 transformed PCB as a continuous exposure in linear
regression analysis, and additionally, we created scatter-plots of each PCB versus SRS.

Table 1. Mother PCB levels (quartiles) in relation to mean child SRS score in MIREC study participants,
Canada, 2008-2011 using Bayesian linear regression (1 = 546).

PCB Category ! Value (ng/g Lipid) " Miissillifjéf—foidcn SRzgfilsl?;esg/:g)ean
PCB118

Q1 <14 108 0.0 (referent) 0.0

Q2 14-<23 143 —0.03 (—1.49, 1.50) 0.09 (—1.46,1.63)

Q3 23-<3.6 170 —0.49 (—1.90, 0.98) —0.02 (—1.55, 1.53)

Q4 >3.6 125 —0.36 (—1.89, 1.20) 0.26 (—1.34, 1.88)
PCB138

Q1 <3.2 175 0.0 0.0

Q2 3.2-<5.5 184 0.10 (—1.13,1.32) 0.70 (—0.63,2.04)

Q3 5.5-< 89 118 —0.21 (—1.59,1.18) 0.44 (—1.11,2.01)

Q4 >89 69 0.52 (—1.15,2.19) 1.35 (—0.42, 3.16)
PCB153

Q1 <42 87 0.0 0.0

Q2 42-<74 178 0.41 (—1.14,1.95) 0.58 (—1.02,2.19)

Q3 74-<11.7 144 —1.08 (—2.70, 0.50) —0.50 (—2.25, 1.26)

Q4 > 117 137 0.16 (—1.46, 1.76) 1.10 (=0.71, 2.89)
PCB170

Q1 <15 227 0.0 0.0

Q2 1.5-<2.6 141 —0.79 (—2.04, 0.48) —0.33 (—1.66, 1.02)

Q3 26-<43 110 —1.12 (—2.49, 0.24) —0.14 (—1.64, 1.33)

Q4 >43 68 0.02 (—1.58, 1.64) 0.83 (—0.97, 2.62)
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Table 1. Cont.

PCBCategory! Valuenglglipid)  n SISO e
PCB180

Q1 <34 154 0.0 0.0

Q2 34-<6.1 182 —1.99 (-3.25,—0.72)  —1.57 (—2.93, —0.16)

Q3 6.1-<10.4 120 —2.00 (—3.41, —0.58) —1.13 (—2.75, 0.50)

Q4 >=10.4 90 —0.48 (—2.02, 1.05) 0.19 (—1.60, 1.97)
PCB187

Q1 <0.92 197 0.0 0.0

Q2 0.92-<1.8 124 —0.30 (—1.64, 1.04) —0.49 (—1.83, 0.88)

Q3 1.8-<3.3 135 —0.86 (—2.15, 0.44) —0.46 (—1.84,0.94)

Q4 >=3.3 90 —0.20 (—1.71,1.27) 0.51 (—1.15,2.15)
Sum of above PCBs

Q1 <334 358 0.0 0.0

Q2 33.4-<55.3 110 —0.29 (—1.58, 0.98) 0.60 (—0.75, 1.96)

Q3 55.3-< 86.3 51 0.16 (—1.59, 1.93) 0.67 (—1.21, 2.53)

Q4 > 86.3 27 0.73 (—1.66, 3.12) 1.45 (—0.98, 3.90)

1 The Q1, Q2, Q3, Q4 are the 1st, 2nd, 3rd or 4th PCB quartiles from Table 1 of Lyall et al. [21]. 2 Adjusted for child’s sex,
mother’s age, race, marital status, education level, annual income, whether the mother has ever smoked during pregnancy,
has ever consumed alcohol during pregnancy, and pre-pregnancy BMI.

To illustrate the Bayesian approach, let Y be the SRS score, X be a single PCB exposure variable
(e.g., PCB138), and C = {C1, C2, ... , CK} be the vector of K confounders. Define Q1, Q2, Q3, Q4 to
be zero-one indicator variables for inclusion in the 1st, 2nd, 3rd or 4th PCB categories, which were
the four quartiles from Table 2 of Lyall et al. [21]. For example, for PCB138, the quartiles were [0,2.9),
[2.9/4.2), [4.2,6.2), and [6.2,46.8] measured in ng/g lipids. We modelled the outcome Y using multiple
linear regression:

Table 2. Distributions of Blood Plasma PCBs (ng/g lipid) during the first trimester for MIREC study
participants, Canada, 2008-2011 (n = 546).

MIREC
%>LOD  %>LOD GM 2 GM Mean
Congener CHMS! MIREC CHMS! MIREC MIREC SD 25th 50th 75th 95th Max
PCB118 83.2 775 3.09 2.1 29 26 17 24 34 69 302
PCB138 96.1 952 5.46 43 56 52 29 42 62 144 468
PCB153 91.6 100 8.22 7.9 10.1 97 49 75 117 250 809
PCB170 50.2 56.8 NA 14 2.6 35 07 19 31 72 403
PCB180 95.4 97.1 5.79 53 75 93 32 51 82 196 1149
PCB187 411 46.0 NA 12 2.0 24 06 14 25 55 269
?,‘ggsof NA NA NA 26.7 349 349 165 253 409 819 3453

! Plasma concentrations (ng/g lipid) for Canadian women of childbearing age (20-39 years), Canadian Health Measures
Survey (CHMS) Cycle 1, 2007-2009 [49,50]. 2 GM = Geometric Mean (not calculated in CHMS when %>LOD was less than
60%). 3 Sum of PCBs 118, 138, 153, 170, 180, and 187 weighted by molar mass.

Y = B1+ B2Q2 + B3Qs3 + P1Qs + Bc,C1 + Bc,Co + .. + By Ck + € 1)

where ¢ ~ Logistic (0, A), which is linear regression with indicator variables for each category, using Q1
as the reference category. We use logistic errors rather than normally distributed errors, which are
usually used in linear regression. The reason is because logistic errors enable a logistic regression
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interpretation of Equation 1 based on a latent variable formulation. As described below and in [25]
logistic errors imply that the log odds of Y > c is a linear equation, but this is not true for normally
distributed errors.

We did not adjust for co-pollutant confounding from multiple PCBs in Equation 1 because the
biomarkers are highly correlated, which induces variance inflation in parameter estimates. For the
parameters By, B3, B4, which describe the association between PCB exposure category and mean
SRS, adjusted for confounders, we assigned an autoregressive prior to smooth the dose-response
curve, where:

Biit ~ N(/Si, 72) fori=1,2,3 )

and we assigned:
72 ~ N(0,10000), 7> > 0. A3)

The parameter 72 induces a shrinkage factor that pulls the segments of the dose-response curve
together. This approach gives a more realistic dose-response curve, including smaller 95% intervals,
better prediction of Y, and is less susceptible to random errors in the data [43]. Additionally, we assigned
uninformative priors to the parameters B1, Bc,, Bc,, - - -, Bcy 52

B1,Bc,,Bcy -, Bey ~ N(0,10000); A ~ N(0,10000), A > 0. )

We used Markov Chain Monte Carlo (MCMC) with the software Stan [44] to generate a sample
from the posterior distribution [45].

To make direct comparisons with the odds ratios for ASD observed in Lyall et al. [21], we examined
SRS scores as both a continuous and a binary outcome. We calculated BPORs for more autistic
behaviour based on a threshold SRS score >60 using the MCMC output. To compute the odds of more
autistic behaviour (SRS>60) for participants in the uppermost PCB category divided by the odds of
more autistic behaviour in the lowest PCB category, we computed:

odds(Q4 =1)  1— plogis(60, By + Ba, A)

where the values of 81, B4, A are MCMC sample iterations from the posterior distribution in Equation (1).
The quantity 1 — plogis (60, B, A) is the probability that SRS >60, and plogis(.) is the cumulative
distribution function of a logistic random variable.

Because of the properties of the logistic distribution, the value of the BPOR (e.g., for Q4 versus Q1)
does not depend on the particular threshold c that is used to define more autistic behaviour. The reason
is because if the mean of a logistic random variable is 4 = a 4 X, then the odds that Y > c is given by:

Odds(Y > c|u,A) = exp{—(c—pu)/A} =exp{—(c— (a+ BX))/A}, (6)
and therefore, the odds ratio of Y > ¢ based on a unit increase in X, is given by
Odds(Y > c|X=x+1,a,B,1)/0dds(Y > c|X =x,a,B,A) =exp(B/A), (7)

which does not depend on c. Therefore, with no loss of generality, we use a threshold of SRS > 60 in to
compute BPORs in the MIREC Study.

We obtained 95% posterior credible intervals (PCIs) for model parameters, which are the Bayesian
equivalent of frequentist confidence intervals (CIs). The abbreviation CI is specific to frequentist
confidence intervals. The parameters are interpreted as random variables and the boundaries indicate
a 95% probability range for the unknown quantity. The BPOR approach gives much narrower 95%
interval estimates for odds ratios compared to logistic regression directly on the dichotomized SRS
score because it uses the underlying linear model for SRS to predict the probability that SRS > 60.



Int. J. Environ. Res. Public Health 2019, 16, 457 7 of 17

Additionally, we used the MCMC samples to calculate the posterior probability that the BPORs were
greater than 1.0.

We conducted additional multiple linear regression analyses to estimate differences in subscales of
the SRS score (Social Awareness, Social Cognition, Social Communication, Social Motivation, and
Restricted Interests and Repetitive Behaviour). We conducted a sex stratified analysis for males and
females because ASD is more prevalent in boys and the effects of PCB exposure during pregnancy
may differ by sex [3,46—48].

3. Results

3.1. Descriptive Statistics

The women were generally >30 years of age (77.5%) with a post-secondary degree (94.7%), and
had an annual household income >$80,000 (59.0%) (Table 3). Eight (six boys and two girls) out of
546 children in the MIREC sample (1.5%) had SRS scores > 60. Characteristics that were predictive of
lower SRS scores included: higher maternal age, higher education, an annual income >$100,000, and
having a female child.

Six (118, 138, 153, 170, 180, 187) of 24 PCB congeners were detected in >40% of participants;
PCB153, which was the most prevalent, was detected in 100% of participants (Table 3). Geometric
mean concentrations (ng/g lipid) among the six PCBs were as high as 7.9 (range: 1.7-80.9) for PCB153
and as low as 1.2 (range: 0.5-26.9) for PCB187. The geometric means of PCBs for pregnant women
in MIREC were generally lower than the Canadian women of childbearing age (20-39 years) from
Canadian Health Measures Survey (CHMS) [49,50]. They were also lower than levels reported in an
earlier survey of chemical exposures in pregnant American women [51].

The Cronbach’s alpha for all SRS scores (i.e., total SRS, two DSM-V subscales and five treatment
subscales) were all greater than 0.90, which indicates a high internal consistency. To calibrate our
inferences about the strength of the association between plasma PCB exposure and SRS, we used
frequentist regression analyses to show the relation between each participant characteristic and SRS
score (Table S1). Children who were male and had mothers who were not married had higher mean
SRS scores, with mean differences in SRS score of 2.3 (95% CI: 1.3, 3.3) versus female and 1.5 (95% CL:
0.3,2.7) versus married mothers, respectively.
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Table 3. Sociodemographic characteristics of MIREC study participants, Canada, 2008-2011 (1 = 546).

SRS PCB118 PCB138 PCB153 PCB170 PCB180 PCB187 Sum of PCBs !
n (%) (Median (IQR)) (ng/g Lipid) (Median (IQR))

Total 546 (100) 44 (41-49) 24(17-34) 42(29-62) 75(49-117) 19(0.7-31) 51(32-82) 1.4(0.6-25) 253 (16.5-40.9)
Child Sex

Male 261 (47.8) 45 (42-50) 2.5(1.7-3.4) 4.3 (3-6.3) 7.6 (5-11.4) 1.8 (0.7-3) 51(3.2-79) 1.4(0.6-25) 26.5(16.9-38.9)

Female 285 (52.2) 43 (40-47) 24(1.6-34) 42(28-62) 73(48-11.8) 19(0.7-3.1) 52(32-84) 14(0.6-25) 24.5(15.5-41.6)
Mother’s Age

19-29 122 (22.3) 45 (42-52) 1.9 (1.2-2.6) 3(2.24) 5(3.6-7.4) 1(0.4-1.9) 3.1(22-5.1) 1(0.5-1.6) 16.7 (12.2-24.4)

30-34 205 (37.5) 44 (41-48) 23(1.7-33) 42(29-58) 7.2(49-104) 15(0.6-27) 48(32-72) 12(05-21) 24.1(16.6-35.1)

35+ 219 (40.0) 44 (40-47) 28(2.1-42) 55(3.6-7.8) 9.6(67-143) 24(1.6-3.8) 67(48-103) 2.1 (1-3.3) 33 (23.5-49.5)
Race

White 491 (89.9) 44 (40-49) 29(24-48 58(3.7-9.1) 11.6(7.1-18) 26(1.9-54) 7.1(5.1-12.7) 29(1.2-3.8) 40.2(25.9-57.6)

Other 55 (10.1) 44 (40-49) 29(24-34) 6(41-92)  13(82-18)  35(2-56)  98(52-14) 3.1(1.2-63)  46.5(28.9-76.4)
Marital Status

Married 241 (89.9) 44 (40-49) 292448 58(3.7-9.1) 11.6(7.1-18) 26(1.9-54) 7.1(5.1-127) 29(1.2-3.8) 40.2(25.9-57.6)

Other 154 (28.2) 44 (40-49) 29(24-4) 53(37-92) 91(69-182) 26(1.9-55) 7(5.1-13.2) 2 (1-57) 30.7 (25.9-70)
Education Level

High School Diploma or less 29 (5.3) 44.5 (42-52.2) 14(05-2.2) 2.6(1.9-35) 4.6(3.5-61) 0.7(03-1.7) 3.1(1.9-4.5) 0.6 (0.2-1) 14.5 (12.2-19.5)

College or Trade School Diploma 154 (28.2) 45 (42-50) 22(15-31) 3.6(25-58) 6(42-99) 13(04-25 4(26-67) 12(0523) 19.5(14.1-33.8)

Undergraduate University Degree 213 (39.0) 45 (41-49) 24(1.8-34) 44 (3-6.2) 7.5 (5-11.2) 1.8 (0.8-3) 5.1(3.4-7.6) 1.4 (0.6-2.3) 24.9 (16.9-39)

Graduate University Degree 150 (27.5) 43 (40-47) 29(21-39) 51(38.6-73) 9.6(69-132) 25(1.6-3.6) 6.8(4.8-9.9) 2(1-3.3) 33.4 (23.7-47.9)
Annual Household Income

<$40,000 73 (13.4) 45 (42.8-52.2) 22(15-31) 34(24-58 63(37-112) 15(0.6-2.8) 45(2.3-74) 1(04-23)  20.1(12.8-39.1)

$40,001-$80,000 151 (27.7) 45 (41.5-50.5) 23(17-35) 38(27-6) 69(45-105) 15(0.5-27) 4.7(29-7.2) 14(0.8-24) 23.5(14.9-36.2)

$80,001-$100,000 105 (19.2) 44.5 (40.8-49) 21(1.2-3.1) 37(27-59) 62(4.6-107) 15(0.7-27) 42(3.2-76) 1.1(04-19) 19.9 (14.8-36.6)

>$100,000 217 (39.7) 44 (40-47) 26(1.9-39) 49(35-68) 8.6(59-125) 2.1(1.2-35)  6(4.1-9.6) 1.8(0.7-2.9)  29.4 (19.5-44.6)
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SRS PCB118 PCB138 PCB153 PCB170 PCB180 PCB187 Sum of PCBs !
n (%) (Median (IQR)) ipi i
edian (IQ (ng/g Lipid) (Median (IQR))
Has Ever Smoked During
Pregnancy
Yes 189 (34.6) 45 (40-49) 24(1.6-34) 46(29-64) 7.8(52-125) 2(0.8-34) 53(33-89) 1.6(0.6-2.7) 27 (17-42.4)
No 357 (65.4) 44 (41-48) 24(1.7-34) 4229-61) 74(49-11.3) 1.8 (0.7-3) 5.1 (3.2-8) 1.3 (0.6-2.4) 24.9 (16-38.6)
Has Ever Consumed Alcohol
During Pregnancy
Yes 91 (16.7) 44 (40-48) 27(2.1-38) 45(34-66) 7.6(55-124)  2(0.6-33) 53(3.6-87) 14(05-2.5) 265 (18.7-44.3)
No 455 (83.3) 44 (41-49) 24(1.6-34) 42(28-62) 74(48-115) 1.8 (0.7-3) 51(3.1-81) 14(0.6-2.5) 25.2(15.9-40.1)
Pre-Pregnancy BMI
Underweight 14 (2.6) 46.5 (42-48.8) 25(05-33) 5.6(24-83) 11.2(44-193) 27(1.1-41) 79(3.6-109) 24(12-39)  39.5(15-61.2)
Normal 332 (60.8) 44 (41-49) 25(1.6-36) 4.6(3.1-64) 81(.6-12.3) 21(1.1-33) 57(491) 17(07-27) 27.3(18.2-42.5)
Overweight 112 (20.5) 44 (41-48) 25(1.6-34) 43(29-64) 74(45-11.8) 1.6(0.7-29) 4.7 (3-7.8) 12(0.5-2.5)  24.9(14.7-41.5)
Obese 88 (16.1) 44 (41-51) 22(1.7-29)  3(24-47) 5.2 (3.8-8) 08(03-18)  3(2.2-4.8) 1(0.3-1.6) 17 (13.2-27.2)

1 Sum of PCBs 118, 138, 153, 170, 180, and 187 weighted by molar mass.
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3.2. Linear Regression Analyses

Higher plasma PCB concentrations were associated with subtle non-monotonic differences in
continuous SRS scores, meaning that we saw a change in direction of the response between the
categories of ng/g lipid PCB concentrations (Table 1). All six PCBs, and the sum of PCBs, were
associated with weak and imprecise increases (large posterior standard deviation) in the mean SRS
when comparing the fourth category with the first category. For instance, mean SRS scores were
1.4 points (95%PCIL: —0.4, 3.2) higher among children in the 4th PCB138 category compared to the
1st category. In other settings, comparisons of the 2nd or 3rd PCB category to the lowest category
were associated with reductions in the mean SRS score (e.g., PCB180 in Table 1). Table S9 examines
PCBs as a continuous exposure, and the results illustrate a pattern of associations, influenced by
confounding bias from participant characteristics, wherein higher PCBs levels are associated with
imprecise increases in the mean SRS.

3.3. BPOR Analyses

In the BPOR analyses of Table 4, for all six PCBs, we observed small increases in the odds of
SRS > 60 in the fourth category compared to the first category, although the resulting 95% interval
estimates were very imprecise (large posterior standard deviation). For instance, PCB138 exhibited
a modest odds ratio in the fourth category compared to the first category, with an odds ratio of 1.76
(95%PCI: 0.99, 2.92). We also reported the posterior probabilities that the OR is greater than 1.0 (Table 4).
This tells the reader that if the model is correct, then for PCB138, there is an estimated 98% probability
that the odds ratio (fourth category versus first category) is greater than 1, emphasizing the value of the
BPOR approach and narrower 95% interval estimates. To enable comparisons with previous research,
Table 4 also includes odds ratios for ASD from Lyall et al. [21], and the results show some similarity
with the BPORs from the MIREC Study.

Table 4. Bayesian Predictive Odds Ratios (BPORs) for the relation between mother PCB levels (quartiles)
and child autistic behaviours defined by an SRS > 60 threshold, in MIREC study participants, Canada,
2008-2011 (1 = 546).

Adjusted Odds Ratio (95% CI)

Bayesian Results

Traditional Frequentist Results

PCB Category ! Value (ng/g Lipid) n BPOR 2 Prcc))b; I;illity R eIg‘(r’egSi::i; 3 S,f:llf 2: 3‘5331114
PCB118
Q1 <14 108 1.0 (referent) 0% 1.0 1.0
Q2 1.4-<2.3 143 0.93(0.57, 1.44) 38% 1.57(0.27,11.3)  1.29 (0.86, 1.95)
Q3 2.3-<3.6 170 1.00 (0.62, 1.53) 50% 0.49 (0.07,3.74)  1.38(0.90, 2.11)
Q4 >3.6 125 1.20(0.72, 1.89) 77% NAS 1.15(0.72, 1.82)
PCB138
Q1 <3.2 175 1.0 0% 1.0 1.0
Q2 3.2-<5.5 184 1.21(0.79, 1.76) 82% 3.10(0.53,28.0)  1.39(0.92,2.10)
Q3 5.5-<8.9 118 1.36 (0.84, 2.09) 91% NA S 1.34 (0.87,2.07)
Q4 >89 69  1.76(0.99,2.92) 98% NA 5 1.79 (1.10, 2.92)
PCB153
Q1 <4.2 87 1.0 0% 1.0 1.0
Q2 42-<74 178 1.36 (0.80, 2.16) 89% 1.98(0.27,414) 1.32(0.88,1.99)
Q3 74-<11.7 144 1.09 (0.62,1.78) 63% 0.19(0.01,5.90)  1.24(0.80, 1.93)
Q4 >11.7 137 1.82(1.02, 3.02) 98% 0.19 (0.01,6.50)  1.82(1.10, 3.02)
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Adjusted Odds Ratio (95% CI)

Bayesian Results

Traditional Frequentist Results

PCB Category ! Value (ng/g Lipid) n BPOR 2 ProObRa l;illity Relngsi::i; 3 ]3 i{llf 2: 383 1i]n4
PCB170
Q1 <15 227 1.0 0% 1.0 1.0
Q2 1.5-<2.6 141 0.90 (0.60, 1.31) 30% 0.46 (0.08,2.11)  1.15(0.76, 1.76)
Q3 2.6-<4.3 110 1.04 (0.65,1.58) 57% NAS 1.17 (0.75, 1.83)
Q4 >43 68 1.39 (0.80, 2.24) 90% 0.30(0.01,2.71)  1.48(0.88, 2.50)
PCB180
Q1 <34 154 1.0 0% 1.0 1.0
Q2 3.4-<6.1 182 0.63(0.40,0.96) 19% 0.33 (0.06,1.78)  1.00 (0.66, 1.50)
Q3 6.1-<10.4 120 0.79 (0.46,1.24) 18% 0.11(0.00,1.10)  1.17(0.75,1.81)
Q4 >10.4 90 1.20 (0.67, 1.98) 75% 0.14 (0.01,1.58)  1.49 (0.89, 2.49)
PCB187
Q1 <0.92 197 1.0 0% 1.0 1.0
Q2 0.92-<1.8 124 0.92(0.60, 1.34) 62% 0.60 (0.10,2.95)  0.89 (0.58, 1.36)
Q3 1.8-<3.3 135 0.99 (0.65, 1.44) 48% 0.23(0.02,1.42) 1.22(0.79,1.87)
Q4 >33 90 1.46(0.89, 2.24) 95% NA 5 1.32 (0.79, 2.20)
Sum of above PCBs
Q1 <334 358 1.0 0% 1.0 1.0
Q2 33.4-<55.3 110 1.32 (0.88,1.92) 92% 0.32(0.02,2.16)  1.08(0.72,1.63)
Q3 55.3-<86.3 51 1.44 (0.82, 2.36) 91% NA 5 0.99 (0.64, 1.51)
Q4 >86.3 27 1.97(0.90,3.77) 97% NA S 1.36 (0.88, 2.11)

1 The Q1, Q2, Q3, Q4 are the 1st, 2nd, 3rd or 4th PCB quartiles from Table 1 of Lyall et al. [21]. > BPORs for autistic
behaviour in MIREC using an SRS threshold of 60. Adjusted for child’s sex, mother’s age, race, marital status, education
level, annual income, whether the mother has ever smoked during pregnancy, has ever consumed alcohol during pregnancy,
and pre-pregnancy bmi. 3 Frequentist logistic regression using the dichotomized SRS data as the dependent variable
(SRS > 60). Adjusted for child’s sex, mother’s age, race, marital status, education level, annual income, whether the mother
has ever smoked during pregnancy, has ever consumed alcohol during pregnancy, and pre-pregnancy BMI. 4 ORs for ASD
copied directly from Table 1 of Lyall et al. [21]. > Maximum likelihood estimator of the odds ratio did not converge.

To further demonstrate the advantage of Bayesian methods and the BPOR approach, we also
calculated odds ratios for more autistic behaviour (SRS > 60) using frequentist logistic regression
directly on the dichotomized SRS scores (Table 4). A total of eight (1.5%) out of 546 children (six boys
and two girls) had SRS > 60. Because only 1.5% had scores for SRS > 60, we see that the ORs from
a traditional logistic regression model are extremely imprecise and, in many cases, the maximum
likelihood estimator did not converge. In contrast, the 95%PCIs from BPOR are much narrower because
they leverage the underlying linear regression model for SRS to provide more accurate estimation of
the probability of more autistic behaviour (SRS > 60).

3.4. Supplemental Analyses of SRS Subscales and Stratification by Sex

We conducted additional analyses to estimate differences in subscales of the SRS score
(Tables S2-56) and a sex stratified analysis for males (n = 261) and females (n = 285) (Tables S7
and S8). However the width of the 95% Cls for model parameters were wider, and this makes the
interpretation of results more challenging. Changes in PCB concentrations were associated with
small increases or decreases in the SRS subscales. In some cases, we saw the same patterns with
the Bayesian models for the total SRS score (Tables S2-56). For instance, the Social Communication
subscale had a mean increase of 1.8 [95%CI: 0.0, 3.6] for PCB138, compared to the first category. In the
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sex stratified analysis for PCB138, we saw an overall increase in the mean SRS score, with increases of
1.8 [95%PCI: —1.2, 4.8] for boys and 0.6 [95%PCI: —1.6, 2.8] for girls (Tables S7 and S8).

4. Discussion

We examined the relationship between plasma PCB concentrations and elevated autistic behaviour
using a novel Bayesian analytic approach. We found no evidence of an association between plasma
PCB concentrations and autistic behaviour. SRS scores differed modestly as plasma PCB concentrations
increased; the associations were generally non-monotonic. However, all six PCBs, and the sum of
PCBs, were associated with weak and imprecise increases in the mean SRS when comparing the
highest PCB category with the lowest category. Comparisons of the 2nd or 3rd PCB category to the
lowest category were in some cases associated with reductions in the mean SRS score (e.g., PCB180).
Additionally, the BPORs provided an alternative framework to examine the SRS as a dichotomous
outcome. We observed higher odds of elevated autistic behaviour in the highest PCB category
compared with the lowest category, and additionally, we observed similarities between the BPORs in
MIREC versus the ORs for ASD from Lyall et al. [21].

Interestingly, the 95% PCls from BPORs were similar in size than the corresponding 95% Cls
from Lyall et al. [21], even though only eight out of 546 children in the MIREC sample (1.5%) had
scores for SRS > 60. The reason is because BPORs leverage the underlying linear regression model for
SRS from Equation (1) to enable more accurate Bayesian predictions of the odds ratio compared to
logistic regression directly on the dichotomized SRS score data. For example, in Table 4 for PCB138
(Q4 versus Q1) the OR is 1.76 [95%PCI: 0.99, 2.92] for the BPOR, which is remarkably similar to the OR
from Lyall et al. [21] given by 1.79 [95%PCI: 1.10, 2.92].

An important finding is that small changes in the mean SRS score translate to observably larger
changes in the odds of autistic behaviour based on an SRS threshold of 60. For example, for PCB138
an average increase of 1.4 [95%PCI: —0.4, 3.2] in the mean SRS for (Q4 versus Q1) translates to an
odds ratio of 1.76 [95%PClI: 0.99, 2.92]. Furthermore, an important property of the logistic error model
given in Equation (1), as detailed in Methods, is that the BPOR is invariant to the choice of threshold
(e.g., 60 or 75) used to define more autistic behaviour [52]. These findings have important implications
in the study of autistic behaviour because seemingly small shifts in the distribution of SRS can translate
into larger effect sizes on the multiplicative risk scale. This phenomenon has been described in other
studies looking at the impact of toxicants on children, as depicted in a YouTube video by Lanphear
about how “Little things matter” [26,53-55].

This study builds on the existing literature examining in utero PCB exposure and autistic
behaviours [16,18-22]. Cheslack-Postava et al. [20] found some evidence that higher total PCB levels
were associated with high frequency of ASD, whereas Braun et al. [22] found evidence that several
PCBs (e.g., PCB138) were associated with more autistic behaviours. The larger case-control study of
Lyall et al. [21] presented clearer evidence of monotonic dose-response relationships between PCBs
(e.g., PCB 138 and 153) and risk of ASD in offspring. In addition to differences in statistical methodology;,
differences in mixtures to which study populations are exposed (for example, other chemicals acting as
confounders, or dietary factors that modify associations that vary across populations) could also
account for discrepancies across existing work. More generally, there is evidence from human
and animal studies that some PCB congeners are associated with neurotoxic endpoints even at low
doses [56,57].

The study has several limitations. Although the linear model in Equation (1) accounts for
non-linear dose-response using PCB quartiles, it is overly simplistic and does not adjust for co-pollutant
confounding or interaction between PCB congeners. PCB concentrations by lipid volume may
not reflect the dose in the target tissues, and categorization of the biomarker into categories can
induce differential misclassification even if the underlying measurement error is non-differential [42].
We also examined PCBs as a continuous variable in the supplementary analyses (see Figure S1 and
Table 59). Our analysis ignored the effect of combined exposure to multiple PCBs on autistic behaviour.
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Calculating the sum of PCBs is not satisfactory to characterize the combined effect of multiple PCBs.
Individual congeners or the sum of PCBs with similar chemical properties may play a larger role in
associations with autistic behaviour or other neurodevelopmental disorders [21]. Instead, we could
have considered other Bayesian methods (e.g., [58,59]) which incorporate several PCBs into the same
model, while imputing PCBs that fall below the LOD [60,61].

Another limitation of our analysis is that SRS scores are not a perfect quantitative measure of
autistic traits. Our BPOR analysis defines elevated autistic behaviour using an established threshold of
>60, which indicates mild, moderate or severe autistic behaviour [34], rather than clinical information.
The SRS is not a diagnostic test for ASD; it may also capture other aspects of social behaviours
and latent traits that tend to co-occur with other behavioural disorders such as attention deficit
hyperactivity disorder or language disorders [34,62,63]. Furthermore, SRS may have low specificity
for ASD, because of traits related to social motivation and ADHD [62-64]. Further study is needed to
compare ORs based on the SRS with ORs based on ASD diagnosis.

5. Conclusions

In conclusion, this is one of only a few studies to examine in utero PCB exposures and autistic
behaviour in a prospective cohort of pregnant women. We found no association between plasma PCB
concentrations and autistic behaviour. However, we found small and imprecise increases in the mean
SRS score and odds of more autistic behaviour for the highest category of plasma PCB concentrations
compared with the lowest category. Our findings demonstrate the value of measuring associations
between PCBs and autistic behaviour on both continuous and binary scales using Bayesian statistics.
Further research is needed to examine the effects of chemical mixtures and combined exposure to
multiple PCBs to improve our understanding of the effects of multiple correlated exposures.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1660-4601/16/3/457/s1,
Figure S1: Scatterplots for Log2 Transformed Plasma PCB levels (quartiles) in relation to mean child SRS score in
MIREC study participants, Table S1: Regression coefficients for the relation between participant covariates and
mean SRS score in MIREC study participants, Canada, 2008-2011 using Multiple Linear Regression (n = 546),
Table S2: Plasma PCB levels (quartiles) in relation to Social Awareness score of MIREC study participants using
Multiple Linear Regression (1 = 546), Table S3: Plasma PCB levels (quartiles) in relation to Social Cognition score of
MIREC study participants using Multiple Linear Regression (1 = 546), Table S4: Plasma PCB levels (quartiles) in
relation to Social Communication score of MIREC study participants using Multiple Linear Regression (n = 546),
Table S5: Plasma PCB levels (quartiles) in relation to Social Motivation score of MIREC study participants using
Multiple Linear Regression (1 = 546), Table S6: Plasma PCB levels (quartiles) in relation to Restricted Interests and
Repetitive Behaviour score of MIREC study participants using Multiple Linear Regression (1 = 546), Table S7:
Plasma PCB levels (quartiles) in relation to SRS score of MIREC study participants with male babies using Multiple
Linear Regression (n = 261), Table S8: Plasma PCB levels (quartiles) in relation to SRS score of MIREC study
participants with female babies using Multiple Linear Regression (1 = 285), Table S9: Log2 Transformed Plasma
PCB levels (quartiles) in relation to mean child SRS score in MIREC study participants, Canada, 2008-2011 using
Multiple Linear Regression (1 = 546).
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