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Abstract: Ecofriendly reservoir operation is an important tool for sustainable water resource
management in regulated rivers. Optimization of reservoir operation is potentially affected by
the stochastic characteristics of inflows. However, inflow stochastics are not widely incorporated
in ecofriendly reservoir operation optimization. The reasons might be that computational cost and
unsatisfactory performance are two key issues for reservoir operation under uncertainty inflows,
since traditional simulation methods are usually needed to evaluate over many realizations and the
results vary between different realizations. To solve this problem, a noisy genetic algorithm (NGA) is
adopted in this study. The NGA uses an improved type of fitness function called sampling fitness
function to reduce the noise of fitness assessment. Meanwhile, the Monte Carlo method, which
is a commonly used approach to handle the stochastic problem, is also adopted here to compare
the effectiveness of the NGA. Degree of hydrologic alteration and water supply reliability, are used
to indicate satisfaction of environmental flow requirements and human needs. Using the Tanghe
Reservoir in China as an example, the results of this study showed that the NGA can be a useful tool
for ecofriendly reservoir operation under stochastic inflow conditions. Compared with the Monte
Carlo method, the NGA reduces ~90% of the computational time and obtains higher water supply
reliability in the optimization.

Keywords: environmental flow; reservoir operation; stochastic inflow; noisy genetic algorithm

1. Introduction

There are about 58,000 large dams in regulated rivers all over the world, and ~3700 new dams
are proposed in developing economies [1,2]. Although dams provide water resources for irrigation,
municipalities, and hydropower production, they also have caused serious disruption to aquatic
environments [3]. Recent researches have paid increasing attention to how dams could be operated
for sustainable water resource management [4]. Most of the studies suggest that it should operate the
reservoir in an ecofriendly manner to meet both human and riverine ecosystem requirements [5–7].
Ecofriendly reservoir operation is a useful way to achieve this goal, which determines reservoir
operation rules ensure not only the human interest but also the protection of downstream riven
ecosystem health. Different from traditional operation only satisfying the utilizable request, ecofriendly
reservoir operation also aims to protect the flow regime for downstream ecosystem by incorporating
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different environmental flow (e-flow) release policies [8–15]. Identifying effective ecofriendly reservoir
operating rules will maximize the beneficial use of these projects.

Identification of optimal ecofriendly reservoir operating rules is not easy, due to the various
uncertain conditions in reservoir operation [16,17]. The stochastic nature of inflow is one of the
unavoidable uncertainties [18–20]. Existing studies have usually ignored this problem and used a
deterministic inflow (such as historical inflows) as an input for optimization of ecofriendly reservoir
operations [8–15]. However, reservoir inflow depends entirely on rainfall in a river basin. Especially
in areas characterized by randomly distributed seasonal rainfall, reservoir inflow is a stochastic
variable [21–23]. Meanwhile, there is a low probability of reoccurrence of historical inflows and
historical inflows (like 1950–1969) are very different from the future inflows (like 2020–2039) due to the
influences of anthropogenic activity and climate change [24,25]. The proposed operating rules based
on historical inflows might not competently balance the diverse water demands of human and the
river ecosystem in the future. Hence, it is useful to consider the impacts of uncertainties in reservoir
inflows on the optimization of ecofriendly reservoir operations. According to the previous studies,
several methods are proved to be useful in handling the stochastic characteristics of inflows, including
stochastic dynamic programming (SDP), stochastic linear programming (SLP), Monte Carlo method,
and so on [16,18]. However, these methods are often required to carry out many times and the results
vary between different realizations. Computational cost and performance usually cannot be satisfied
at the same time.

To deal with the uncertain inflow conditions in ecofriendly reservoir operation, a noisy genetic
algorithm (NGA), which is especially effective in dealing with stochastic problems, could be an
alternative approach [26]. Different from the tradition simulation methods, the NGA has been
verified that it can run well without sampling plenty of realizations in different optimizations [27,28].
NGA is a standard genetic algorithm which can perform well in a noisy environment. In practice,
a noisy environment (e.g., the stochastic nature of inflows) is commonly seen in actual problems (e.g.,
optimization of reservoir operation). A sampling fitness function is designed to be adopted in the
NGA to lessen the noise of fitness assessment. Smalley at al. [26] effectively coupled the NGA with a
transport model, and found that it could identify the highly reliable designs for the situ bioremediation
system with a small amount of samples. Chan Hilton and Culver [29] compared the performance of
basic GA, noisy GA, and robust GA in dealing with the uncertainty of aquifer parameters, and the
results showed that the noisy GA could obtain higher reliability designs than others. Wu et al. [30]
attempted to solve the sampling network design problems based on the sampling of NGA under
uncertainty. Singh and Minsker [31] and Yan and Minsker [32] proved that NGA performed well in
optimizing the groundwater remediation designs. Researcher used a NGA to optimize stochastic
reservoir operation and proved that a NGA can obtain better results than other methods [33]. However,
a NGA has not been applied in the optimization of stochastic ecofriendly reservoir operations.

This study explores the effectiveness of a NGA in ecofriendly reservoir operation under different
stochastic inflow conditions. To assess its impact on stochastic ecofriendly reservoir operation,
the performances of the NGA and the Monte Carlo method, which is another common approach to
stochastic problems, are compared. The satisfaction of human needs is reflected by water supply
reliability and the influence on environmental flow requirements is characterized as the alteration of a
set of indicators based on the range of variability approach (RVA) [34]. As an illustrative example—a
reservoir in China—was selected to evaluate the effectiveness of the two methods.

2. Methods

In this study, to incorporate the effect of stochastic inflows on ecofriendly reservoir operation,
a Monte Carlo combined standard genetic algorithm (GA) and a noisy genetic algorithm (NGA) were
developed to optimize reservoir operating rules. The reservoir operating rule curves (RORCs) was
employed to guide the reservoir operation [35,36]. We used the water supply reliability to describe
the satisfaction of human need, and the degree of flow regime alteration to reflect the satisfaction of
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ecosystem requirement. To get diverse reservoir operating schemes, the environmental flow (e-flow)
releases were guided by three commonly used policies. We intended to use different policies to capture
different e-flow requirements. For each policy, we carried out the optimization independently with the
objective of maximum water supply reliability, R (the objective of actual reservoir operation).

2.1. E-Flow Allocation

E-Flow Policies

This study considers three commonly used e-flow allocation policies shown in Table 1. E-flow
is described as the flows immediately released downstream of the reservoir to protect the river flow
regime. It consists of either or both a required release and uncontrolled spills. Actually, the river
managers are only able to obtain yesterday’s reservoir inflow data. So the optimization in this study
assumes that the e-flow for the next day is determined by averaged inflows of the prior day from
initially available daily data. The three policies are described as follows.

Table 1. Detailed information of the different environmental flow policies and related scenarios.

Policy Scenarios Hypothesized Conditions

1. Fraction of Inflow (FOI) Scenario 1, FOI = 0.1;
Scenario 2, FOI = 0.2;
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Policy 1: Fraction of Inflow (FOI)
A fraction of the reservoir inflow is released as e-flows. The fraction is defined from 0.1 (FOI = 0.1)

to 0.9 (FOI = 0.9), thus this policy includes nine scenarios.
Policy 2: Flow Components (FC)
According to the Tennant method [37], this policy uses 10% of average daily flow (ADF) as

e-flow during the dry season and 30% during the wet season e-flow. This policy also tries to deliver
occasional high-flow releases [38], which are greater than the 75th percentile for all flows. The quantity
of high-flow events in a given scenario is decided beforehand. Once the practice is done, no further
high-flow event will occur. The scenario must, at least, include three high-flow events and then next
scenario will add three more; that is, scenario 1 has three high-flow events, scenario 2 has six, and
so on.
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Policy 3: Four-period release approach (FP)
In the FP approach proposed by Yin et al. [11], the e-flow requirement of four basic flow periods

in a year is as follows. (i) Floods: The 1.5-year flood is equal to an estimate of the bankfull discharge
(BD), and bd is released in a flood period for e-flow. (ii) Base flows: This period uses 10% of ADF as
e-flow during the dry season and 30% of ADF during the wet season. (iii) Extreme low flows: e-flow
equals to the reservoir inflow. (iv) High-flow pulses: all high-flow are released to the downstream.

The range of variability approach (RVA), which is one of the most commonly used approaches for
flow regime alteration assessment, is used in this study [34]. Magnitude, timing, frequency, duration,
and rate of change are the indicators in the RVA (Table 2). The degree of alteration, Dm, measures the
mth hydrological indicator’s deviation of the altered flow regime from the natural one:which is defined
as follow

Dm =

∣∣∣∣No,m − Ne,m

Ne,m

∣∣∣∣× 100% (1)

where No,m is the observed number of the mth hydrological indicator’s value within its RVA target
range in postimpact years; Ne,m is expected number of the mth hydrological indicator’s value within its
RVA target range in postimpact years. The average of these hydrological indicators’ alteration is used
to represent the overall influence on a river:

D =
1
H

H

∑
m=1

Dm (2)

where D is the total flow regime alteration, and H is the number of these hydrological indicators.

Table 2. Indicators of hydrological alteration (IHA) in the range of variability approach.

IHA Group Hydrological Indicators

Group 1: Magnitude of monthly water
conditions Mean value for each calendar month.

Group 2: Magnitude and duration of annual
extreme water conditions

Annual minima 1-day means; Annual maxima 1-day means;
Annual minima 3-day means; Annual maxima 3-day means;
Annual minima 7-day means; Annual maxima 7-day means;
Annual minima 30-day means; Annual maxima 30-day means;
Annual minima 90-day means; Annual maxima 90-day means.

Group 3: Timing of annual extreme water
conditions

Julian date of each annual 1 day maximum;
Julian date of each annual l day minimum.

Group 4: Frequency and duration of high
and low pulses

No. of high pulses each year; No. of low pulses each year;
Mean duration of high pulses within each year;
Mean duration of low pulses within each year.

Group 5: Rate and frequency of water
condition changes

Means of all positive differences between consecutive
daily means;
Means of all negative differences between consecutive
daily values;
Number of rises; Number of falls.

According to RVA, the degree of flow regime alteration can be classified into three-levels: low,
representing values of D between 0 and 33%; moderate, representing D between 33% and 67%; and
high, representing D between 67% and 100%.

2.2. Reservoir Operation Model

Reservoir operating rule curves (RORCs) have always been used to direct reservoir operation.
A typical RORCs graph is shown in Figure 1. On the basis of three curves (including upper, lower,
and critical limit curves), the reservoir is divided into four zones [39,40]. Different zones’ water levels
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correspond to different water supply reliabilities. The upper limit curve is determined during reservoir
design, and represents the reservoir’s flood control function. The upper limit curve remains the same
as design in this paper. The lower and critical limit curves represent the high and low storage zones.
As shown in Figure 1, X1 and X2 are the water levels for the lower limit curve, and X3 and X4 are
the water levels for the critical limit curve. T1, T2, T3, and T4 are the initial and ending times of the
transition zones for the lower limit curve, and T5, T6, T7, and T8 for the critical limit curve.
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Water supply for human consumption and the provision of e-flows could be affected by changes in
these curves. Ecofriendly reservoir release policies are determined based on water levels for particular
limit curves. Different water supply hedging rates will be triggered by water levels in different zones.
The α and β hedging rates (0 < α < β <100) are decided based on the experience of reservoir manager.

(1) If the water level rises above the upper limit curve, more water needs to be released to keep
the water level less than the upper limit.

(2) If the water level lies between the upper and lower one, it can normally satisfy human water
needs and the e-flow requirement for the downstream river.

(3) If the water level lies between the lower and critical one, the e-flow requirement can be satisfied,
but α% of human water supply should be cut.

(4) If the water level reduces below the critical limit curve, the β% of human water supply should
be cut. E-flow releases cannot be completely satisfied due to that reservoir water level must stay above
the dead storage level.

To obtain the RORCs (variables of water level Xi (i = 1, 2, 3, 4) and time Tj (j = 1, 2, . . . , 8)),
the reservoir operation objectives and constraints with the consideration of e-flow allocations are
designed as follows. A simple water balance equation (quantizing the change in storage influenced by
inflow and outflow) is adopted in the reservoir operation model:

Si − Si−1 = Ii − (Wi + Mi) (3)

where Si is the reservoir storage at the end of period i, Mi is the mass of water diverted from the
reservoir to water supply uses during period i, Wi is the water release from the reservoir during period
i, and Ii is the inflow to the reservoir during period i [13].
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In each e-flow allocation policy, the objective of reservoir operation is designed to maximize water
supply reliability, shown as follows.

R = max(SI) (4)

where SI is water supply reliability: SI = (actual water supply)/(planned water supply).
SI is subject to the following constraints for Xi and Tj.

XMAX > X1 > X2 (5)

XMAX > X1 > X3 (6)

X2 > X4 > XMIN (7)

X3 > X4 > XMIN (8)

1 ≤ T1 < T2 < T3 < T4 < 36 (9)

1 ≤ T5 < T6 < T7 < T8 < 36 (10)

where XMAX is the maximum acceptable reservoir storage level and XMin is the minimum admissible
storage level. The units of X and T are m and 10-day, respectively.

2.3. Optimization Methods

2.3.1. Monte Carlo Genetic Algorithm

The Monte Carlo Genetic Algorithm means that the simple GA runs multiple times according to
the extensive realizations generated by Monte Carlo. For each realization generated by the Monte Carlo
method, the optimization of reservoir operation becomes deterministic and is optimized independently
by the simple GA. The optimal solutions of multiple realizations are usually averaged as the final
optimal solution.

The first step of the Monte Carlo GA is to generate multiple realizations (sets of inflow) based on
the Monte Carlo method. Statistically, every realization is equally possible. In this study, we assume
that the time series data of the reservoir daily inflow is independent and uniformly distributed, namely
I = I + σ, where I is the daily inflow, I is the average value of daily inflow, and σ is a random variable
with daily flow mean and standard deviation equaling to zero. The generated n realizations of daily
inflow based on the averages and standard deviations of historical data will be used as the input of
reservoir operation.

In the second step for every realization, the standard GA is used to optimize the reservoir
operation and the outputs of n realizations are finally averaged as the optimal solution. To obtain
the outputs, it needed to initialize population (parameters of RORCs) by GA. The fitness of every
individual parameter in the initial population is determined based on the objective function and
constraints. The GA uses three operators—selection, crossover, and mutation—to direct the population
approaches to the global optimum. The selection operator is designed for choosing better individuals.
In this process, the stochastically chosen parameters are compared with each other and then the best
individual is selected in the current generation. The crossover and mutation operators are designed
to reproduce solutions. In the crossover process, under a specific probability, chosen individuals are
coupled together to mate. In the mutation process, the stochastically chosen bits among the new
individual outputs are changed under a given probability of mutation.

2.3.2. The Noisy Genetic Algorithm (NGA)

As mentioned previously, a noisy genetic algorithm (NGA) is a standard GA that operates in a
noisy, real-world environment [31]. In the optimization of reservoir operation, the noisy environment
means the stochastic character of daily inflow. Most components of a NGA are the same as those
of a standard GA, while the key difference is the design of the fitness function. For the NGA, it is
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impossible to obtain the exact value of fitness due to the variability of daily inflows. So the value of
fitness is designed to be substituted by an expected fitness value. There are three basic parts of NGAs:

(1) Expected fitness of noisy GA: The expected fitness of an individual’s output for random daily
inflows can explore its fitness landscape at several random points in its neighborhood and calculate
its average value. The anticipated fitness value of each individual output for stochastic daily inflows
possibly can be characterized as an average of several fitness values of the nearby stochastic points.
Before the assessment of a fitness function f (x, e) (where x is the solution and e is the optimization
environment), the solution x follows the distribution with δ, that is x→x + δ. The sampling method
of solution x is completed according to random disturbance, and each disturbance is independently
selected in the neighborhood of disturbance δ [41]. Then the objective of the NGA can be transformed
to minimize the anticipated value of E( f (x + δ)) over the range of disturbance. After defining a
probability density function p(δ) of disturbance δ, the anticipated fitness could be expressed as

f (x) = E( f (x + δ)) =
∫ ∞

−∞
p(δ) · f (x + δ)dδ (11)

(2) Sampling method. The sampling method is used to disturb solution x. The random disturbance
is commonly used approach to produce a wide range of random disturbances, δ. Other methods, such
as Incremental Latin Hypercube and Monte Carlo, have also been adopted for the sampling [42]. Apart
from the same parameters in simple GA, the simple size is another parameter special for noisy GA.
Sample size is the number of samples specified to calculate the expected fitness of an individual. It has
been proved that larger sample sizes do not guarantee better optimal results [43,44].

(3) Selection of the final solution. Based on an evaluation of anticipated fitness, the fittest
individual solution is not necessarily the best solution. To address this problem, researchers have
introduced several possible approaches to find the final solution. In general, there are three possible
ways for final solution selection: (I) Optimizing Expected Fitness. (i) Explicit Averaging. A common
approach to obtain the anticipated fitness was to evaluate every individual of the final population many
times (i.e., 50 times) using random seeds and chose the best one as the final solution [41]. (ii) Implicit
Averaging. Increasing the population size can reduce the influence of the noise and, thus, ensure a
correct convergence of the algorithm [42]. (II) Multiobjective Approaches. To avoid that the expected
function might not sufficient under some circumstances, it is feasible to consider high fitness variance
and to search for solutions under different tradeoffs [43]. Branke [44] compared these three approaches
and suggested the first one to obtain the final solution selection; we also adopted the same one in
the study.

3. Case Study

A single reservoir, the Tanghe Reservoir, is selected as an illustrative example. The Tanghe
Reservoir is built on the main section of the Tang River, one of the main tributaries of the the Taizi River
(as shown in Figure 2). There are three large reservoirs located in the Taizi River basin—Guanyinge
Reservoir, Shenwo Reservoir, and Tanghe Reservoir; there are no reservoirs located upstream of the
Tanghe Reservoir. The dam was completed in 1969. The capacity of the reservoir is 707 × 106 m3 and
the drainage area is 1228 km2. Its capability of release is 282 m3 s−1 and spillway is 2713 m3 s−1. It is
daily operated and has multipurpose. Prior to 1969, there was no water project or large-scale water
user in the Tang River, and little water was taken from the upstream river. So the inflow of the Tanghe
Gauging Station, recorded from 1950 to 1969, was barely affected by human activities and could be
used as natural flow of the reservoir. To simplify the computation, we only considered the operational
aim of water supply in this study. Four main water users including Liaoning Chemical Industry
Group, Liaoyang Domestic Water Supply Company, Gongchangling Mine Industry Company, and
Anshan Domestic Water Supply Company were yearly planned to supply 54.8× 106 m3, 36.5× 106 m3,
18.3 × 106 m3, and 73 × 106 m3 of water, respectively.
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In this study, our reservoir operation model only considers a single-purpose reservoir (i.e., water
supply). We ignore the impact of the water use of residents in Tang River due to that it has little
influence on flow regime of river. However, although the ecofriendly reservoir operation model only
consider the water supply purpose, the optimization results are also appropriate for the reservoir
systems including irrigation, navigation and other functions. Only the studied reservoirs like the
Tanghe Reservoir, which conserves water in the wet season and consumes water in the dry season.

4. Results and Discussion

4.1. Analysis of Historical Inflow

The bd (that is the 1.5-year flood) of Tanghe Reservoir was 42.38 m3 s−1, ADF was 6.9 m3 s−1,
and the mf was 295.08 m3 s−1. Based on the Tennant method, there was 10% ADF for the baseflow
during the dry season (November to April) was 0.69 m3 s−1 and 30% ADF for the baseflow during the
wet season (May to October) was 2.06 m3 s−1. There are 25 high-flow events in total of the dry year at
Tanghe Reservoir, thus Policy 2 has eight scenarios (from FC = 3 to FC = 24).

The twenty-year (from 1950 to 1969) daily inflows of the Tanghe Reservoir were used as historical
time series. The averages and standard deviations of daily inflows were obtained and reflected in
Figure 3. It can be seen that the average values was roughly independent and uniformly distributed.
The inflows of the Tanghe Reservoir were extremely uneven during the year, and the inflow in July and
August accounted for 49.4% of the annual inflow. The high flow only lasted for a short period of time.
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The daily precipitation, minimum temperature, and maximum temperature from 1950 to 1969
at the Tanghe Gauging Station were also obtained for the statistical analysis for hydroclimatology
parameters. We plotted the dependence of average of daily inflow on average of daily precipitation,
minimum temperature and maximum temperature shown in Figure 4. The averages of daily inflow
generally increase with the average of daily precipitation, minimum temperature and maximum
temperature. Compared with Figure 4a–c, it can be found that the inflows are more convincingly
related to the minimum temperature (R2 = 0.8119, p < 0.01) and maximum temperature (R2 = 0.8309,
p < 0.01). This indicates that the inflow of reservoir is not just water transformation from precipitation
but also is strongly influenced by the temperature variation. This information proved that the inflows
of reservoir could be influenced by the climate change. Thus, directly using the historical inflows
without the consideration of uncertainty in inflow will lead to poor performance of reservoir operation.
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temperature, and maximum temperature. (a) Relationship between average of daily inflow
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(c) Relationship between average of daily inflow and maximum temperature.

4.2. Performance Tests for Monte Carlo GA and NGA

To test the performance and sensitivity of the Monte Carlo GA and the NGA stochastic models,
we used Policy 3 as an example. In the Monte Carlo GA, inflow is generated based on the average and
standard deviation values of historical inflow data shown in Figure 3. The method for daily inflow
generation is similar to the Monte Carlo method [45]. To fully consider the stochastic nature of daily
inflows, the Monte Carlo GA needs a great deal of realizations to get the final solution for a noisy
environment. In accordance with prior research, 1000 realizations were used [24]. In the NGA, the
inputs are historical data and the stochastic nature of inflow is solved by using the sampling fitness
function to reduce the noise of fitness assessment. According to the parameters given in Table 3,
the Monte Carlo GA and the NGA optimize reservoir operation independently. Equation (4) was
explored as the objective function targeting maximum water supply reliability and parameters α and
β were assumed to equal 20 and 30, respectively [11,35,39]. MATLAB 7.1was used to complete the
reservoir optimal operation process.
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Table 3. Components and initial parameters of the Monte Carlo Genetic Algorithm (GA) and the Noisy
Genetic Algorithm (NGA).

Component and Parameter Type and Value Component and Parameter Type and Value

Representation Real Crossover Scattered, 0.7
Selection Tournament, 4 Mutation Uniform, 0.08

4.2.1. Parameter Setting for the Monte Carlo GA

In this section, with the other parameters listed in Table 3, the population size and number of
generations of Monte Carlo GA were tested. The results of total 1000 realizations based on the Monte
Carlo method were averaged as the final solution. The sensitivities of population sizes of 5–200 and
number of generations of 5–200 were tested and the results are shown in Figures 5 and 6. Based on
these figures, the population size of 70 and the number of generations of 150 were adopted in this
study. For the Monte Carlo GA, the computational time of each optimization cost ~55 min and 30 s on
the computer with 2 GB RAM memory and a 2.0 GHz CPU.
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4.2.2. Parameter Setting for the NGA

With other parameters shown in Table 3, sensitivities of population sizes of 5–200 and number
of generations of 5–200 were tested and the results are shown in Figure 4. It has been proved that
larger sample sizes do not guarantee better optimal results. For simplicity, a sample size of five was
chose according to Branke [44]. Seen in Figures 7 and 8, it can be concluded that the population size
of 40 and number of generations of 80 can be applied in NGA. The calculation of each optimization
costed ~5 min and 40 s on the computer with 2 GB RAM memory and a 2.0 GHz CPU.
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4.3. Comparison of the Two Stochastic Models

To test the effectiveness of the Monte Carlo GA and NGA, we considered two different stochastic
inflow conditions for the optimization of ecofriendly reservoir operation. The first condition considered
the stochastic inflow in a traditional way based on the average and standard deviation of historical
inflows. The second condition is based on the changed average (±10%) and standard deviation (±10%)
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of historical inflows. With five inflow conditions, two stochastic optimization models, and 18 release
policies, 5 × 2 × 18 sets of optimal RORCs were finally achieved.

4.3.1. Optimization Based on the Average and Standard Deviation of Historical Inflows

Regarding the Monte Carlo GA, n realizations of daily inflows were generated based on the Monte
Carlo method using the daily average and standard deviations of daily inflows are shown in Figure 3.
Each generated realization was used as the input of ecofriendly reservoir operation and the GA was
adopted to optimize the operation. Then the multiple optimal solutions were average as the final
decision. To fully consider the stochastic character of daily inflow, 1000 realizations were used [33].
As for the NGA, twenty years of daily historical inflows were used as the input. During the sampling
process, the average and standard deviation of daily inflows were used as the bound to adopt range of
disturbances for the expected fitness function.

(1) Water supply reliability (R)
Figure 9 and Table 4 show the maximum value of water supply reliability under three different

e-flow release policies (18 scenarios) for the two optimization models. Water supply reliability, R, is
clearly different under different models. It can be seen that the obtained water supply reliability R of
NGA is clearly higher than that of Monte Carlo GA, aside from four scenarios (FC = 0.4, 0.7, 0.8, 0.9)
where the results of the two methods are relatively similar. Compared to the Monte Carlo GA, NGA
recognized 78% cost-effective solutions without extensive computational effort. Under the same e-flow
release policies, the NGA could perform better than the Monte Carlo GA in stochastic ecofriendly
reservoir operation. Although e-flow allocation can decrease the water supply reliability in reservoir
operation, using the NGA to optimize reservoir operation could ensure higher water supply reliability
under the same conditions.

Under this inflow condition with 18 release policies, 18 × 2 = 36 sets of optimal RORCs were
finally achieved. The optimal RORCs with 100% water supply reliability under FOI = 0.1 scenario
optimized by NGA were plotted as in Figure 10. According to the rules in Figure 10, the reservoir
managers could completely satisfy water supply reliability for human.

Table 4. Water supply reliability R for Monte Carlo GA and NGA models.

Policy
Stochastic Model

Monte Carlo GA NGA

1 FOI = 0.1 1 1
FOI = 0.2 0.9996 1
FOI = 0.3 0.9995 1
FOI = 0.4 0.9976 0.9867
FOI = 0.5 0.9151 0.9237
FOI = 0.6 0.8099 0.8148
FOI = 0.7 0.6925 0.683
FOI = 0.8 0.6425 0.619
FOI = 0.9 0.5895 0.5447

2 FC = 3 0.9479 0.9987
FC = 6 0.9162 0.9879
FC = 9 0.8713 0.9443
FC = 12 0.8096 0.8977
FC = 15 0.7405 0.8395
FC = 18 0.6795 0.7574
FC = 21 0.6382 0.703
FC = 24 0.4862 0.6386

3 FP 0.6778 0.7863

Note: FOI, FC, and FP represent fraction of inflow, flow components, and four-period release approach, respectively.



Int. J. Environ. Res. Public Health 2019, 16, 868 14 of 21
Int. J. Environ. Res. Public Health 2019, 16, x 14 of 21 

 

 
Figure 9. Water supply reliability R for different e-flow release policies under different models. 

 

Figure 10. Optimal reservoir operating rule curves (RORCs) with 100% water supply reliability 
under the FOI = 0.1 scenario by NGA. 

(2) Flow regime alteration (D)  
Figure 11 and Table 5 illustrate total flow regime alteration (D) corresponding to three e-flow 

release policies under the first inflow condition. We can see that although minimizing flow regime 
alteration D is not our objective, most values of D (~83%, except scenarios FOI = 0.7, 0.9, and FC = 3) 
obtained by the NGA are lower than those based on the Monte Carlo GA. The lower degree of flow 
regime alteration means that the downstream ecosystem could obtain better protection. The NGA 
can identify lower D for riverine ecosystem and higher R for human interest at the same time, 
which is proved to be effective tool for ecofriendly reservoir operation under uncertainty. 

Meanwhile, a comparison of different values of D in Figure 11 indicates that total flow regime 
alteration does not always decrease as e-flow increases. In Policy 1, it can be seen that the variability 
in D of the results shows a U-form. For values less than FOI = 0.6 (fraction of inflow for e-flow), the D 

Figure 9. Water supply reliability R for different e-flow release policies under different models.

Int. J. Environ. Res. Public Health 2019, 16, x 14 of 21 

 

 
Figure 9. Water supply reliability R for different e-flow release policies under different models. 

 

Figure 10. Optimal reservoir operating rule curves (RORCs) with 100% water supply reliability 
under the FOI = 0.1 scenario by NGA. 

(2) Flow regime alteration (D)  
Figure 11 and Table 5 illustrate total flow regime alteration (D) corresponding to three e-flow 

release policies under the first inflow condition. We can see that although minimizing flow regime 
alteration D is not our objective, most values of D (~83%, except scenarios FOI = 0.7, 0.9, and FC = 3) 
obtained by the NGA are lower than those based on the Monte Carlo GA. The lower degree of flow 
regime alteration means that the downstream ecosystem could obtain better protection. The NGA 
can identify lower D for riverine ecosystem and higher R for human interest at the same time, 
which is proved to be effective tool for ecofriendly reservoir operation under uncertainty. 

Meanwhile, a comparison of different values of D in Figure 11 indicates that total flow regime 
alteration does not always decrease as e-flow increases. In Policy 1, it can be seen that the variability 
in D of the results shows a U-form. For values less than FOI = 0.6 (fraction of inflow for e-flow), the D 

Figure 10. Optimal reservoir operating rule curves (RORCs) with 100% water supply reliability under
the FOI = 0.1 scenario by NGA.

(2) Flow regime alteration (D)
Figure 11 and Table 5 illustrate total flow regime alteration (D) corresponding to three e-flow

release policies under the first inflow condition. We can see that although minimizing flow regime
alteration D is not our objective, most values of D (~83%, except scenarios FOI = 0.7, 0.9, and FC = 3)
obtained by the NGA are lower than those based on the Monte Carlo GA. The lower degree of flow
regime alteration means that the downstream ecosystem could obtain better protection. The NGA can
identify lower D for riverine ecosystem and higher R for human interest at the same time, which is
proved to be effective tool for ecofriendly reservoir operation under uncertainty.
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Table 5. Flow regime alteration D for the Monte Carlo GA and the NGA.

Policy
Stochastic Model

Monte Carlo GA NGA

1 FOI = 0.1 0.5875 0.5854
FOI = 0.2 0.5875 0.5229
FOI = 0.3 0.5625 0.4403
FOI = 0.4 0.4438 0.3174
FOI = 0.5 0.3344 0.2597
FOI = 0.6 0.3431 0.2813
FOI = 0.7 0.3513 0.4056
FOI = 0.8 0.4250 0.4326
FOI = 0.9 0.4731 0.5347

2 FC = 3 0.7250 0.7347
FC = 6 0.6588 0.6139
FC = 9 0.6325 0.5382
FC = 12 0.5644 0.4583
FC = 15 0.4606 0.4292
FC = 18 0.4669 0.4229
FC = 21 0.5263 0.4563
FC = 24 0.5069 0.4875

3 FP 0.5375 0.3958

Note: FOI, FC, and FP represent fraction of inflow, flow components, and four-period release approach, respectively.

Meanwhile, a comparison of different values of D in Figure 11 indicates that total flow regime
alteration does not always decrease as e-flow increases. In Policy 1, it can be seen that the variability in
D of the results shows a U-form. For values less than FOI = 0.6 (fraction of inflow for e-flow), the D
decreased as fraction of inflow for e-flow increased. For values greater than FOI = 0.6, D presents a
growth trend. This demonstrates that D is more sensitive than R in e-flow policies. The optimal RORCs
with 0.3958 flow regime alteration under FP scenario optimized by NGA were plotted as in Figure 12.
According to the rules in Figure 12, the reservoir managers could well protect the downstream flow
regime for riverine ecosystem.
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flow regime alteration than other scenarios under the two methods. Meanwhile, the NGA performs
well in reservoir operation under this kind of inflow condition.
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4.3.2. Optimization Based on Changed Average and Standard Deviation

In this section, the average and standard deviation of historical inflow shown in Figure 3 were
designed to be changed with ±10%, respectively. Those conditions were designed to compare
performance of the NGA and the Monte Carlo GA under a range of stochastic conditions. The Monte
Carlo method was used to generate 1000 realizations based on the changed average and standard
deviation of daily inflow. The simple GA used the each realization as input to optimize the reservoir
operation, and the results were averaged as the final solution. NGA also used the historical inflow as
input, while the changed average and standard deviation as the bound of disturbances.
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Figure 14a,b illustrates water supply reliability R for the three e-flow release policies under the
second stochastic inflow condition. It is evident that R is influenced by changes in inflow for all
policies. As expected, the NGA produced higher D values than the Monte Carlo GA. It can be seen
that in Figure 14a almost all values of R under the increase of inflow average are higher than that
under the decrease of inflow average. This is easy to be understood. The increase of inflow average
means an increase in the total amount of water in river, leading to greater satisfaction of water supply
requirement of human and higher R. In contrast, in Figure 14b, the values of R under the increase of
inflow standard deviation are lower than that under the decrease of inflow standard deviation. That is
to say, when the standard deviation of daily inflow decreased, the inflows are slightly different from
each other and it will easier to obtain higher R. A comparison of the four changed inflow conditions in
Figure 14 indicates that high average or low standard deviations of inflows correspond with higher R.
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Figure 15 illustrates the flow regime alteration D for the three e-flow release policies under the
second inflow condition based on Monte Carlo GA and NGA. It is evident that D is influenced by the
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changes in inflows for all policies. In most cases, the NGA produced lower D values than the Monte
Carlo GA. We can see in Figure 15a that the values of D under the increase of inflow average are not
always lower than that under the decrease of inflow average. This is to say, an increase in the total
amount of water in river does not mean the river downstream will obtain better protection. This kind
of protection much depends on the e-flow release scenarios. It is obvious in scenarios FOI = 0.8,
FOI = 0.9, FC = 18, FC = 21, and FC = 24, where the R is almost the same with different inflow condition
and optimization methods. Thus, the choice of e-flow release scenario is also an important way to
influence the performance of reservoir operation.
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In Figure 15b, the results of D under the conditions of increase and decrease of inflow standard
deviation in policy 1 and policy 2 crossed with each other. In scenarios FOI = 0.1 (FC = 3) to FOI = 0.4
(FC = 15), the values of R under the increase inflow standard deviation are lower than that under
the decrease condition, which is in contrast with scenarios FOI = 0.5 (FC = 18) to FOI = 0.9 (FC = 24).
A comparison of the four changed inflow conditions in Figure 15 indicates that, high average inflows
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correspond with lower D, while the influence of standard deviation on D is depends on the choice of
e-flow scenario.

In general, based on these results, we conclude that, under different stochastic inflow conditions
and e-flow release scenarios, NGA could identify more reliable and cost-effective solutions with about
90% less computational effort than based on Monte Carlo GA. Meanwhile, the optimization with e-flow
scenario FOI = 0.6 often obtained a lower flow regime, which can be recommended as the candidate
solution for reservoir operation.

5. Conclusions

In this study, we developed a Monte Carlo GA and a NGA for ecofriendly reservoir operation
optimization, taking the stochastic nature of inflows into consideration. Using the Tanghe Reservoir in
China as an example, the results of this study showed that a NGA can be a useful tool for ecofriendly
reservoir operation under stochastic inflow conditions.

In solving the problem, for Monte Carlo GA, a classical simple of a GA, needs to repeatedly used
to research the final solution. Instead of redundant repeated computation, a noisy GA could just run
once and get the optimal solution, simplifying the optimization process.

(1) A NGA could greatly reduce the computational time for optimization over that of a Monte
Carlo GA, which needs to be used repeatedly for every realization. The NGA could find an optimal
solution the first time based on the sampling fitness function. The NGA will lead to lower flow regime
alteration and higher water supply reliability under some e-flow release policies.

(2) This study suggests that the NGA is better than the Monte Carlo GA for stochastic ecofriendly
reservoir operation. However, the NGA may not be a better alternative than all other optimizing
methods. We have only used a single water supply reservoir as an example. The effectiveness of the
NGA in other reservoirs or systems remains a topic for further study.
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