International Journal of
Environmental Research
and Public Health

Table S1. \log cfu ml^{-1} before and after treatment for 90 s with the $250-\mathrm{mL}$ cylinder system.

Sample	Inoculum	Before Treatment	Iodine Pre- Treated Water ${ }^{\text {a }}$	Iodine Treatment after Addition of Inoculum ${ }^{\mathrm{b}}$
Water	Escherichia coli K-12	$6.13(0.13) \mathrm{c,d}$	-	-e
	Escherichia coli O157:H7	$6.49(0.01)$	-	-
	Enterococcus fecalis	$6.56(0.09)$	-	-
	Salmonella enterica	$6.28(0.12)$	-	-
	Escherichia coli K-12	$7.04(0.20)$	$6.50(0.01)$	-
Biofilms soil	Escherichia coli O157:H7	$6.49(0.01)$	ND	-
	Enterococcus fecalis	$6.43(0.19)$	ND	-
	Salmonella enterica	$6.31(0.04)$	ND	-
	Acinetobacter baumannii	$7.16(0.09)$	ND	-
	Staphylococcus aureus	$6.81(0.23)$	ND	-

${ }^{a} I_{2}$ vapor was infused 90 s before addition of bacteria. Bacteria were enumerated 90 s later.
${ }^{\mathrm{b}}$ Bacteria were added 10 s before I_{2} vapor infusion
${ }^{\text {c }}$ Average of biological triplicates.
d Standard error of means (SEM)
e-Below detection limit
${ }^{\mathrm{f}} \mathrm{ND}=$ Not determined

Table S2. \log cfu mL^{-1} before and after treatment at respective times with hand-pump bucket system (3 L test volume).

Water Source	Inoculum	Before Treatment	2 min	4 min	8 min	$\geq 24 \mathrm{~h}$
Distilled	Escherichia coli K-12	6.25 (0.05) ${ }^{\text {a }}$	-b	-	-	ND ${ }^{\text {c }}$
	Salmonella enterica	6.83 (0.07)	3.76 (1.11)	-	-	ND
	Enterococcus fecalis	6.41 (0.06)	3.33 (1.71)	-	-	ND
River	Escherichia coli K-12	6.55 (0.26)	6.46 (0.22)	6.23 (0.07)	2.78 (1.83)	2.34 (1.42)
	Salmonella enterica	6.87 (0.05)	6.77 (0.10)	6.70 (0.15)	6.30 (0.23)	3.85 (0.11)
	Enterococcus fecalis	6.18 (0.03)	4.22 (2.11)	3.89 (1.95)	3.84 (1.92)	3.66 (1.83)
Pond	Escherichia coli K-12	6.55 (0.26)	6.46 (0.22)	6.23 (0.07)	2.78 (1.83)	$2.34{ }^{\text {d }}$ (1.42)
	Salmonella enterica	6.77 (0.16)	6.71 (0.20)	6.68 (0.34)	5.01 (1.07)	4.09 d (0.75)
	Enterococcus fecalis	6.32 (0.07)	6.37 (0.04)	6.27 (0.04)	6.07 (0.27)	5.74 e (0.42)

${ }^{\text {a }}$ Value is an average of biological triplicates; standard error of means (SEM)
b-Below detection limit
c $\mathrm{ND}=$ not determined.
d 48 h incubation.
e 72 h incubation.

Table S3. Log cfu mL^{-1} of naturally occurring bacteria before and after treatment of different water samples (3 L fluid volume, high air volume).

Water Sample	Time (min)	Lennox Broth Agar	MacConkey Agar	
			Non-Lactose	Lactose
Lagoon $^{\text {a }}$	0	$6.01(0.07)^{\mathrm{b}}$	4.3	$4.99(0.01)$
	4	$4.38(0.04)$	$4.34(0.10)$	$4.23(0.08)$
	8	$4.26(0.02)$	$4.18(0.10)$	$4.07(0.01)$
	16	$4.21(0.03)$	$2.66(0.36)$	$3.44(0.06)$

Lagoon ${ }^{\text {c }}$	0	5.42 (0.02)	5.18 (0.02)	2.91 (0.01)
	4	5.42 (0.02)	5.28 (0.05)	2.91 (0.03)
	8	5.44 (0.04)	5.27 (0.05)	2.91 (0.07)
	16	5.41 (0.01)	5.23 (0.09)	2.84 (0.06)
Sewer ${ }^{\text {d }}$	0	3.54 (0.02)	2.63 (0.16)	2.18 (0.06)
	4	-e	-	-
	8	-	-	-
	16	-	-	-
Pond ${ }^{\text {d }}$	0	3.54 (0.02)	2.88(0.06)	1.302 (0.66)
	4	-	-	-
	8	-	-	-
	16	-	-	-

[^0]
[^0]: a 20 ml of centrifuged dairy lagoon water was used.
 ${ }^{\mathrm{b}}$ Value is an average of biological triplicates; standard error of the mean (SEM).
 ${ }^{c} 1 \mathrm{~L}$ of dairy lagoon water (not centrifuged) was used.
 d 3 L of sample water was used
 e-Below detection limit

