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Abstract: Early decision-making and the prevention of construction safety risks are very important
for the safety, quality, and cost of construction projects. In the field of construction safety risk
management, in the face of a loose, chaotic, and huge information environments, how to design
an efficient construction safety risk management decision support method has long been the focus
of academic research. An effective approach to safety management is to structuralize safety risk
knowledge, then identify and reuse it, and establish a scientific and systematic construction safety
risk management decision system. Based on ontology and improved case-based reasoning (CBR)
methods, this paper proposes a decision-making approach for construction safety risk management
in which the reasoning process is improved by integrating a similarity algorithm and correlation
algorithm. Compared to the traditional CBR approach in which only the similarity of information is
considered, this method can avoid missing important correlated information by making inferences
from multiple sources of information. Finally, the method is applied to the safety risks of subway
construction for verification to show that the method is effective and easy to implement.

Keywords: safety risk; ontology; CBR; similarity algorithm; correlation algorithm; subway

1. Introduction

The construction industry is one of the most accident-prone sectors in the world [1], with an
occupational mortality rate as high as 30–40% in many countries, making it the most deadly of all
sectors [2]. Although many countries have made great improvements in safety, this industry still
faces serious safety problems [3] due to the dynamic complexity of construction projects [4], a lack of
experienced workers, and an uncertain weather environment [5]. How to effectively implement safety
management has therefore become a common concern [3].

To improve safety management, risk identification and assessment are important steps [6].
However, most knowledge concerning safety risks is in various unstructured forms (e.g., expert
experience, construction drawings, and construction organization design) [7,8], and the identification
and evaluation of safety risks depends on the practical experience of domain experts [9]. In addition,
due to the frequent mobilization of engineers and experts, and the inconsistency of communication
between organizations and stakeholders, knowledge related to safety risks cannot be fully utilized,
which sometimes impedes the implementation of safety risk management [10,11]. More importantly,
construction safety accidents are composed of various elements such as time, space, people, events,
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features, and object status, which are often caused by a combination of multiple highly random,
sporadic, and time–space complex risk factors. Therefore, an effective approach to safety management
is to structuralize safety risk knowledge, then to identify and reuse it, and establish a scientific and
systematic construction safety risk management decision system.

Case-Based Reasoning (CBR) technology has been increasingly applied to the field of construction
safety management for retrieving, reusing, revising, and retaining previous research, and for providing
the right solutions for a given problem [12–16]. Ontology, as a form of knowledge and information
organization, combines certain domain knowledge and expression capabilities to support risk
identification by structuring and standardizing safety risk knowledge [17,18], and plays an important
role in the semantic representation and reuse of safety management knowledge. However, there are still
some gaps in knowledge concerning the combination of ontology technology and CBR for construction
safety risk management. In addition, recent studies have also demonstrated that attribute-based and
distance-based similarity algorithms have their limitations in the CBR process [19].

In response, this paper proposes an improved method by integrating ontology and improved
CBR for construction safety risk management. The main contributions of this study are as follows:
firstly, by developing the construction safety risk domain ontology and combining ontology with CBR,
a research framework for construction safety risk management decision-making is constructed, and
the reliability and feasibility of the method is verified by a subway case study. Second, considering the
similarity and correlation of cases, the CBR algorithm is improved to find the most similar cases. A
hybrid similarity algorithm is used to improve the conventional similarity algorithm in considering
the correlation relationship and proposing a comprehensive algorithm combining similarity and
correlation, which greatly improves the accuracy and reliability of case reasoning. Finally, 83 cases of
subway construction accidents in China from 2001 to 2019 are used to provide a model for similar
studies in other countries and regions.

2. Literature Review

2.1. Construction Safety Risk Management

In the construction engineering field, risk management can be defined as a systematic process of
identifying, analyzing, and responding to risks [20]. Table 1 lists a variety of different risk management
methods used to estimate risks in construction engineering.

Furthermore, the complexity and uncertainty of the construction industry requires safety managers
to use the latest technologies to ensure they cover as many foreseeable and unforeseeable safety risks
as possible [21]. Therefore, smart safety management technologies have been developed in recent
years. Ding et al. [22] proposed a metro engineering safety risk identification system (SRIS) based
on construction drawings and applied it to graphic identification technology and risk identification
automation technology to carry out risk assessment before construction. Zhang et al. [23] established
a real-time model to identify possible safety risks among many potential risk factors. In addition,
many studies use building information modeling (BIM) to identify safety risks. Kiviniemi et al. [24]
identified potential safety hazards through BIM and determined the conditions and factors involved in
safety risks. Kim et al. [25] proposed a risk source identification method based on BIM and a real-time
location system of laborers, and ranked the safety risk factors and the proximity degree at a certain
moment with real-time construction data.

Most importantly, previous studies involving construction safety risk management have mainly
focused on risk identification and risk analysis rather than decision-making. Moreover, smart
technologies in construction safety risk management are also in need of further examination.
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Table 1. Construction safety risk management methods.

Construction Safety Risk
Management Method Advantages Disadvantages Reference

Traditional
methods

Safety risk factor
identification

Expert interviews and
questionnaires

Domain experts have rich professional knowledge,
and the operation is simple, which is conducive to the
rapid and accurate identification of risk knowledge

Subjective influence of interviewees [26]

Case analysis Relevant to the actual situation, high credibility Consider the influence of many different
factors on the results of risk identification [27]

Expert interviews and interpretive
Structural Models (ISM)

Turn expert expertise into intuitive, well-structured
models

Strong subjectivity, the relationship
between the elements in the system

depends on people’s experience
[28]

Safety risk
analysis

Fault tree analysis (FTA) and event
tree analysis (ETA) The analysis is intuitive, clear and logical Analysis of specific events with limitations [29]

Bayesian network and fuzzy fault
tree analysis (FFTA)

Overcome limitations on the current probability
estimation

The collection of safety-related knowledge
relies heavily on domain experts [30]

Case analysis Relevant to the actual situation, high credibility Consider the influence of many different
factors on the results of risk identification [21]

Safety risk
response

The zonal-based approach A tool for selecting risk response strategies Only applicable when considering two risk
criteria [31]

The trade-off approach The desirable strategies can be selected among the
candidate ones according to efficient frontier rule

Either consider only two factors or make
trade-offs based on qualitative analysis [32]

The WBS (work breakdown
structure)-based approach

When the analyzed activity is the actual one, risks are
identified and strategies can be formulated directly

associated with that activity or can be selected among
candidate ones by an index of scope expected

deviation

It is unknown whether the strategies
obtained are an optimal solution to the

strategy selection problem
[33]

The optimization-model approach Establish an optimization model to solve the risk
response strategy selection problem Can only be applied to small-scale projects [34]

Smart methods

CBR The most similar historical cases can be retrieved
using the method

Requires that the information in the case
base is very comprehensive [35]

Apply graphic recognition and risk
Identification automation

technology

Safety risks can be automatically identified from the
knowledge database

High requirements for design codes and
construction engineering experience [22]

Identify potential risk models in
real time Identify the possible safety risks factors in real time The method of weight determination is

more troublesome [23]

Building Information Modeling
(BIM)

Facilitate the exchange and interoperability of project
information management

System development requires a large
number of domain experts to participate [24]

BIM and real-time location system
of laborers

Identify hazardous areas in construction sites
automatically

The accuracy of real-time location-tracking
system positioning needs to be improved [25]
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2.2. Ontology Technology in Construction Safety Management

Ontology was originally a concept in the field of philosophy, and has been gradually applied
to artificial intelligence (AI), knowledge management, libraries, and information. Though there are
many different interpretations, most studies have the same view on the essence of ontology, the current
authoritative definition proposed by Gruber [36] being that “Ontology is the conceptualization of
terms and their relations in a domain”. Domain ontologies provide a set of terms for describing some
domain, such as medicine, air campaign planning, or computer maintenance; they can be very large
and include thousands of concepts [37]. At present, ontology technology is regarded as a method
of organizing and representing knowledge concepts. Ontology formalizes knowledge through the
classification of objects, attributes, and logical relationships between objects in a particular domain to
facilitate information integration, retrieval, and reuse [38].

There are many methods for developing ontology models, including the Skeleton [39],
KACTUS [40], TOVE [41], METHONTOLOGY [42], and Seven-step methods. The Seven-step method
developed by Stanford University is used to build domain ontology, and is the most widely used
ontology development method in studies throughout the world [8,43,44]. In comparison with other
ontology development methods, the Seven-step method is considered to be a relatively mature and
sound technology, as it focuses on the ontology development process and is highly applicable to
construction work, as well as being especially suited to domain ontology development. It is therefore
used in the present study as the development method for the safety risk ontology model.

With the infiltration of information technology and digital technology in multi-disciplinary fields,
research into ontology technology has begun to appear in the construction industry [6,8,45,46]. In the
field of construction safety management, ontology has also been used for the representation, sharing,
exchange, and reuse of safety knowledge [6]. The interaction between safety ontology and BIM is also
examined, and a prototype application of ontology-based job hazard analysis and visualization is made
to further illustrate the applicability and effectiveness of the developed safety ontology [47]. Another
study proposes an ontology-based semantic modeling method for construction safety knowledge that
is combined with BIM for automated risk analysis [35]. Le et al. [48] combine ontology with social
networks to propose a social network system for sharing construction safety and health knowledge to
enhance communication between building project stakeholders and construction safety knowledge.
Furthermore, other studies use ontologies to model and reuse construction knowledge for safety
inspections [6], work hazard analysis [45], the emergency plan management of metro operations [49],
and safety risk analysis [50].

2.3. Case-Based Reasoning (CBR) in Construction

Case-Based Reasoning (CBR) has enjoyed tremendous success as a technique for solving problems
related to knowledge reuse [51]. One of the key factors in ensuring this success is CBR’s ability to allow
users to easily define their experiences incrementally and to utilize their defined case knowledge when a
relatively small core of cases is available in a case base [51]. Considering the construction industry’s large
amount of historical experiences, it is unsurprising that the applicability and effectiveness of Case-Based
Reasoning (CBR) has been demonstrated in various construction management areas, including
construction tendering, bidding and procurement [52,53], construction contract management [15,54],
international market selection [55], construction infrastructure maintenance [56], value engineering [57],
onsite supervisory manpower [58], and construction cost estimation [59]. As a decision-support tool in
construction, CBR is well suited to construction safety management (Table 2).

Typically, a case comprises the problem that describes the state of the world when the case
occurred, and the solution comprises the derived solution to that problem and/or the outcome that
describes the state of the world after the case occurred. There is no consensus in the CBR community
over what information should be in a case. However, two pragmatic measures can be taken into account in
deciding this: the functionality and the ease of acquisition of the information represented in the case [65].
Hence, CBR does not require explicit domain models, although attribute classifications and similarity
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calculations are important factors. Semantic similarity refers to the degree of similarity between two
concepts and generally is 0 or 1. If the two concepts are interchangeable in any context, their similarity is
1; otherwise, if the two concepts cannot be replaced in any context, their similarity is 0.

Table 2. Applications of Case-Based Reasoning (CBR) in construction safety management.

Method Purpose References

CBR and knowledge-based
systems Construction hazard identification [16]

CBR with nearest-neighbor
retrieval (NNR) search

Adjudicating construction industry
occupational accidents [15]

CBR Automatic retrieval of subway operation safety risks [60]

CBR and risk response strategies Generate an actual response policy plan [61]

CBR Improve building maintenance management levels [62]

A web-based CBR-RBR system Active fall protection systems [13]

CBR and the genetic algorithm Improve safety performance [63]

CBR and artificial neural networks Estimate the severity of major engineering
safety incidents [64]

It is generally agreed that the concept of a semantic similarity algorithm based on ontology can be
divided into four categories: (1) semantic similarity based on attributes, (2) semantic similarity based
on content, (3) semantic similarity based on distance, and (4) hybrid methods [66–68]. Some studies
also suggest that semantic similarity should consider the hierarchy structure [66,67,69]. However,
a case similarity algorithm based on attributes inevitably results in computational errors, for example,
the stored case and the target case will commonly contain some missing or null attribute values in
reality [70]. A content-based similarity algorithm determines the similarity of two classes by comparing
the content information contained in the common parent node of the classes and ignores the content
information contained in the keyword itself. The basic idea of a distance-based semantic similarity
algorithm is to quantify the semantic distance between two conceptual words in the ontology tree
classification system [71]. However, the main drawback of this method is to assume that the distance of
all edges in the system is equally important in the ontology classification. Obviously, this assumption
cannot be true—the importance of the edge being related to its location information and the type and
strength of its association.

In most CBR applications, similarity is assessed based on attribute-value. For instance, cases with
an internal structure require a similarity mechanism that considers structure descriptions of cases
using similarity metrics that use these attribute values. As mentioned above, in the face of diverse
attributes, practical experience in the development of CBR systems indicate that a simple attribute
vector does not adequately represent the complexity of cases encountered in practice [72]. Therefore,
the present study uses a hybrid similarity mechanism to determine the similarity of cases, which is
applicable to the ontology currently constructed. The advantage of this algorithm is that it considers
both the position information (distance, hierarchy) of the class in the ontology tree and the content
information contained in the keyword itself.

Resnik [73] suggested that the assessment of similarity in semantic networks can be thought
of as involving solely taxonomic links to the exclusion of other link types, although this admittedly
excludes some potentially useful information. Similarly, in the CBR matching algorithm, compared
with semantic similarity, semantic correlation is neglected by many studies, leading to the omission
of much useful information. Semantic similarity and the semantic correlation between two objects
has long been a basic problem in the field of data mining and knowledge management, but they are
two different concepts [74]. Semantic correlation refers to the degree of the interrelationship between
two concepts. It is very common to have no similar relationship between two concepts of semantic
correlation but a correlation relationship may be formed by some other reasons. Semantic similarity is
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the aggregation of concepts, while semantic correlation is the combination of concepts. Resnik [73]
explained the difference between similarity and correlation using the example of cars, petrol, and
bicycles, where cars depend on gasoline as fuel, and are obviously more closely related to each other
than cars and bicycles, but it is generally believed that cars and bicycles are more similar to each other
than cars and gasoline.

In an ontological structure, there is a similarity in the relationship between two concepts that
are normally associated by an “is a”, and a correlation relationship between two concepts that are
associated by other relationships (such as “part of”). It should be noted that semantic similarity
or correlation is based on a perspective or context, and concepts that are similar or relevant in one
perspective may not be similar or relevant in another.

However, in the conventional CBR decision-making system, the case database usually includes
specific case knowledge, and not domain knowledge that is important for decision-making [14]. In
addition, in traditional cases, the determination of similarity involves adopting a method based on
keyword matching or keyword distance, with the semantic correlation relationship contained in
the keyword itself not being considered. Therefore, the present study is devoted to improving case
similarity matching and the CBR similarity degree algorithm, to acquire better matching cases.

In summary, the application of smart technology in the construction of safety risk management
decision-making is a likely trend in future safety management. Based on the combination of ontology
and CBR, it is easy to reuse and share knowledge in construction safety management. However,
combining the two methods has received little attention in the existing construction safety risk
management literature. The method used in this paper is highly improved for safety risk identification,
reuse, and management by incorporating more relevant and useful information.

3. Research Methods

This study develops a decision method for construction safety risk management based on ontology
and CBR methods in which semantic similarity and a semantic correlation algorithms are combined.
Figure 1 depicts the framework and implementation steps involved.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 28 

 

Case study

Validation of 
ontology

Feature 
extraction of 
target case

Literature 
survey

Consultant 
expert

Acquire 
knowledge of 
construction 
safety risks

List terms and 
concepts

Defines a hierarchy of 
classes and classes

Define attribute 
relationships

Create 
instance

1.Whether the construction safety 
risk ontology is comprehensive

2.Whether the construction safety 
risk ontology structure is clear

3.Whether the construction safety 
risk ontology structure is practical

NO

Yes

Case
 matching

Case 
increase

Refer to 
this case

Calculation and 
matching of 

similarity and 
correlation

Yes

Typical case
Yes

Finish

No

Case 
modification

No
Construction 

safety risk 
case base

Step1:risk 
identification

Step2:ontology 
modeling

Step3:validation of 
ontology

Step4：case-based 
reasoning

 

Figure 1. Construction safety risk management decision-making framework and 
implementation steps based on ontology and CBR. 

Step 1: Construction Safety Risk Identification 
The construction safety risks were obtained from the literature, the case study, and the 

interviews from experts. Firstly, the literature related to construction safety risks was reviewed, 
and risks were summarized and categorized. Then, historical cases were investigated to extract 
the key construction safety risks involved. Finally, domain experts experienced in construction 
safety risk management evaluated the safety risks identified. 

The reuse and sharing of the existing ontology in the construction field were also 
considered before constructing the new ontology. Generally, there are two methods for 
ontology reuse, one includes new ontology being retained as a part of an existing ontology and 
adds new knowledge, and the other is to extend the existing ontology by combining a new 
ontology with the same concepts and relationships of existing ontologies. 

Step 2: Ontology Modeling 
Protégé ontology modeling software is used to develop the construction safety risk 

ontology model, and an improved Seven-step method used as the ontology model 
development method. The steps are depicted in Figure 2. 

Figure 1. Construction safety risk management decision-making framework and implementation steps
based on ontology and CBR.



Int. J. Environ. Res. Public Health 2020, 17, 3928 7 of 23

Step 1: Construction Safety Risk Identification
The construction safety risks were obtained from the literature, the case study, and the interviews

from experts. Firstly, the literature related to construction safety risks was reviewed, and risks were
summarized and categorized. Then, historical cases were investigated to extract the key construction
safety risks involved. Finally, domain experts experienced in construction safety risk management
evaluated the safety risks identified.

The reuse and sharing of the existing ontology in the construction field were also considered before
constructing the new ontology. Generally, there are two methods for ontology reuse, one includes new
ontology being retained as a part of an existing ontology and adds new knowledge, and the other is to
extend the existing ontology by combining a new ontology with the same concepts and relationships
of existing ontologies.

Step 2: Ontology Modeling
Protégé ontology modeling software is used to develop the construction safety risk ontology

model, and an improved Seven-step method used as the ontology model development method. The
steps are depicted in Figure 2.
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Step 3: Ontology Verification
It is necessary to evaluate and verify the developed construction safety risk ontology. Ontology

verification requires the participation of domain experts of construction safety management to complete
the optimization and modification of the ontology. The verification procedure is shown in Figure 3.

Step 4: Case-Based Reasoning (CBR)
Construction risk ontology provides a way for the standardized input of construction risk history

cases, based on which, construction risk cases can be stored and reused effectively. The present
study proposed an ontology-based comprehensive similarity and correlation method to conduct case
reasoning. Before developing the safety risk case reasoning approach, past events or experiences
were first stored in a case database using ontology technology. When a construction safety risk
occurs, managers extract attributions of the case by referring to the ontology, and then compute the
comprehensive similarity and correlation between the case base index and the target case index. The
similarity of each index of the cases is weighted and summarized, and the similarity value between the
cases is obtained. Then, one or several case’s risks with the highest similarity to the target case’s risks
can be retrieved from the case base to provide a reference for the target case’s risk management. If the



Int. J. Environ. Res. Public Health 2020, 17, 3928 8 of 23

retrieved case is not applicable to the target case, modifications and adjustments are made according
to the target situation to obtain a solution. Then, the target case is saved as a new case in the case
database for subsequent retrieval.
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CBR problem solving is therefore a four-phase process of retrieve, reuse, revise, and retain [75],
the main purpose of which is to retrieve the most similar previous cases from the case base to solve a
new problem. Therefore, this study mainly focuses on retrieval rather than the other three phases,
and involves five steps: (1) calculating the attribute semantic similarities, (2) calculating the attribute
semantic correlation, (3) calculating the comprehensive attribute semantic similarity and semantic
correlation, (4) deriving the attribute weights of cases, and (5) calculating the weighted case similarities.

The risk case reasoning process is depicted in Figure 4.
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3.1. Calculating the Attribute Semantic Similarities

3.1.1. Semantic Similarity Algorithm Based on Distance

Generally, the semantic similarity algorithm based on distance determines the degree of similarity
according to the distance between two concepts in a hierarchical network that is the ontology tree.
These concepts are represented in the tree by nodes; the closer the distance, the higher the similarity.
Assuming that a and b are two nodes in the tree, and defining the distance between the two nodes as
dist(a, b), then

dist(a, b) =


0 a, b is the same node in the ontology tree

∞ a, b have no common ancestors in the ontology tree

N n is the sum o f the sides o f a and b

(1)

the semantic similarity being obtained based on distance as

Sim1(a, b) =


1 dist(a, b) = 0
0 dist(a, b) = ∞

∂×N+1
n+∂×N+1 dist(a, b) = n

(2)

where Sim1(a, b) indicates the similarity value of the concept represented by node a, the concept
represented by node b, dist(a, b) is the distance between two nodes of a and b, and N is the distance
between the root node of the construction safety risk ontology and the closest parent node of nodes a
and b. ∂ is an adjustment factor that represents a domain expert’s opinion of the similarity degree and
can be obtained by expert interview or questionnaire.

3.1.2. Semantic Similarity Algorithm Based on the Hierarchy

In the ontology tree, the deeper the node is in the hierarchy of the ontology tree, the more specific
concept it represents. Therefore, the depth of the node has an influence on the semantic similarity. A
larger depth difference between the two nodes causes a smaller similarity.

Suppose that the hierarchy of node a in the ontology tree is D(a), the hierarchy of node b in the
ontology tree is D(b), and the largest hierarchy in the ontology tree is D(C). Let Sim2(a, b) represent
the similarity based on the hierarchy between nodes a and b. When a = b, it can be easily inferred that
the attributed similarity is 1. Therefore, based on the research [76], the improved algorithm is

Sim2(a, b) =

 1 i f a = b;
D(a)+D(b)

|D(a)−D(b)|+2×D(C) i f a , b.

 (3)

3.1.3. Semantic Similarity Algorithm Based on Content

Assuming that a and b are two nodes in the tree, C is the root node, P(a) represents the number
of nodes between node a and C, and P(b) represents the number of nodes between node b and C.
P(a)

⋂
P(b) and P(a)

⋃
P(b) respectively represent their intersection and union. Let Sim3(a, b)

represent the semantic coincidence between a and b, with

Sim3(a, b) =

∣∣∣P(a)⋂ P(b)
∣∣∣∣∣∣P(a)⋃ P(b)
∣∣∣ (4)
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3.1.4. Comprehensive Attribute of the Semantic Similarity Algorithm

Considering the above three factors affecting semantic similarity, we propose the comprehensive
semantic similarity algorithm

Sim(a, b) = ω1 × Sim1(a, b)+ω2 × Sim2(a, b)+ω3 × Sim3(a, b) (5)

whereω1, ω2, ω3 are weight parameters that can be obtained from expert experience, machine learning,
or statistical methods, and ω1 +ω2 +ω3 = 1.

3.2. Calculating Semantic Correlation

In the ontology description language, there are two types of conceptual relationships: the attribute
type (owl: Object Property) and data type (owl: Data Property). The data type represents the
relationship between concepts and values, but it is not a problem of semantic correlation, which
means that it is only necessary to consider the influence of the attribute type on the correlation of the
ontology concept.

Definition: set any two nodes, a and b, in the ontology tree; S(a, b) indicates the shortest path
length from a to b. Based on this, we can derive the correlation formula between the two concepts on
the domain ontology as

Cor(a, b)=

 1 if a = b
ω4

S(a,b)+ω4
if a , b

 (6)

where ω4 is an adjustable parameter determined by the path length.

3.3. Calculating Comprehensive Semantic Similarity and Semantic Correlation

Semantic similarity represents the relationship between ontology and semantics, while semantic
correlation represents the relationship between concepts. Combining these to examine the relationship
between concepts gives

Sim∗(a, b)= ω5 × Sim(a, b) + (1−ω5) ×Cor(a, b)

where, ω5 is the weight parameter of semantic similarity in the similarity calculation that can be
obtained by expert experience, machine learning, or statistical methods.

3.4. Deriving Index of Weights of Cases

In reality, there are a large number of indicators in the subway construction risk case; therefore, it
is important to determine their weights. This is done here by a combination of expert evaluation and
analytic hierarchy process (AHP) [77].

Firstly, this is done by establishing the indicator judgment matrix:

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

 (7)

Each column in the matrix represents a certain kind of indicator, and xi j is the relative value of the
indicator importance, which means the importance of the index in column i is relative to the index in
column j. Secondly, the relative importance of the values of the indicators of each row are added to
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solve Equation (8), and then the sum of the relative values of the importance degrees of all the indices
is obtained to solve Equation (9), with

Yi =
n∑

j=0

xi j( j = 1, 2, . . . , n) (8)

U =
n∑

i=0

Yi = Y1 + Y2 + . . .Yn (9)

The weight of each attribute pi can be obtained by using the sum of the index importance relative
values of each row Yi and then dividing the sum of index importance relative values of all indices U,
as shown in Equation (10):

pi =
Yi
U

, p = (p1, p2 . . . pn)
T (10)

3.5. Calculating Case Similarity

Assume there are n cases in the subway risk case database, and each case has m attributed
indicators. A similarity matrix is constructed so that each row in the matrix represents a case, and each
column represents an attribute. The similarity matrix for each indicator of the target project and each
indicator for the historical case in the case base is expressed as

Sim =


Sim(1, 1) Sim(1, 2) · · · Sim(1, m)

Sim(2, 1) Sim(2, 2) · · · Sim(2, m)
...

...
. . .

...
Sim(n, 1) Sim(n, 2) · · · Sim(n, m)

 (11)

The index similarity is multiplied by the index weight to obtain the similarity q between the target
and the historical case in the case base as

[q 1 . . .qn

]T
=


Sim(1, 1) Sim(1, 2) · · · Sim(1, m)

Sim(2, 1) Sim(2, 2) · · · Sim(2, m)
...

...
. . .

...
Sim(n, 1) Sim(n, 2) · · · Sim(n, m)

×


p1
p2
...

pm

 (12)

4. Case Verification

A subway construction project is used to demonstrate and verify the proposed construction safety
risk management method based on ontology and CBR. The system is developed in Java language,
using the Jena, JDK, MySQL, and protégé to build the ontology. Firstly, the model for the subway
construction based on the safety risk ontology is completed in protégé and saved as an owl type file.
Then, the risk ontology model file is stored and integrated into the MySQL database through Jena.
After completing the integration of the ontology database, Jena is used to design a program for the
similar case reasoning algorithm.

4.1. Construction Safety Risk Subway Project Identification

The subway project construction risks can be summarized based on a large number of studies and
related historical cases, combined with the suggestions of subway area experts. The ontology mainly
describes the potential risks in the subway construction process, which are mainly composed of risk
types, sources, levels, consequences, and prevention measures [8].
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In subway construction, there are two main types of risks. One is the technical risk caused by
human operation (e.g., complex construction methods), and the other is natural environmental risk,
such as the risk of a building collapse caused by poor geological conditions.

The source of risk is a description of the potential safety risks, mainly from environmental changes,
equipment failures, or risks caused by human actions or operational errors. The subway construction
risk source is defined here as a potential event that may induce risks in the project. At present, there is
no clear classification of the risk sources for subway construction projects. An improved version of the
method developed by Fidan et al. [78] is therefore used which proposes to divide engineering project
risk sources into two categories of unexpected situations and adverse changes. The risk sources are
first classified according to the type of risk, and the subcategories of unexpected and adverse changes
are further supplemented. Table 3 provides an example of the environmental changes, equipment
failures, human behavior, or operational errors involved.

Table 3. Subway construction safety risk sources.

Risk Type Risk Source Type

Environmental change
risk source

Accidents

Rainstorm

Typhoon

Debris flow

Earthquake

Adverse
change

Unfavorable changes in foundation pit support

Adverse changes in formwork support

Adverse changes in building cracking

Adverse changes in underground pipeline fracture

Adverse changes in the deformation of the face

Unfavorable changes in surrounding rock mutations

Unfavorable changes in water inrush

Equipment failure risk
source

Accidents

Scaffolding off

Steel support shedding

Steel structure falling

Car hanging drop

Adverse
change

Unfavorable changes in tower crane overturning

Adverse changes in the overturning condition of steel structures

Unfavorable changes in the condition of car hoisting

Improper use of mechanical equipment causes adverse changes in fire

Human behavior or
operational error risk

source

Accidents

Unfavorable changes in electrical equipment caused by electrical
equipment failure

Object blow

Heat stroke accident

Poisoning accident

Adverse
change

Unfavorable changes in construction cracks

Unfavorable changes in the deformation of the face due to
blasting errors

Unfavorable changes in landslides caused by blasting errors

Unfavorable changes in the test section are not set

Adverse changes in the design of precipitation schemes

Unfavorable changes in the disposal or disposal of confined water

Unfavorable changes in improper placement of foundation pit
support systems
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The risk level is used to measure the severity of the risk. According to the probability of occurrence
of risk events, risk loss, and social impact, the risk can be divided into five levels (Table 4).

Table 4. Subway construction safety risk sources.

Risk Level Level 1 Level 2 Level 3 level 4 Level 5

Severity of risk Negligible
danger General danger Significant

danger High danger Extreme danger

The risk consequences are mainly used to indicate the consequences of the occurrence of risks,
mainly involving casualties, economic losses, environmental damage, and construction shutdowns.

Risk prevention measures generally comprise three main types: design measures, construction
measures, and management measures [8].

4.2. Subway Risk Ontology Modeling

Ontology modeling software protégé is used to construct the subway construction risk ontology
based on the Seven-step method [43]; the ontology development steps are shown in Figure 5.
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After determining the purpose and domain ontology, it is known whether there is an existing
ontology that can be reused. The main difficulty in the modeling is to clarify the classes and attributes
of the risks involved.

4.2.1. Classes and Their Hierarchical Relationship

Five classes of risks are defined in the ontology, namely risk types, sources, levels, consequences,
and prevention measures.

4.2.2. Attribute Relationships

The attribute can not only explain the situation of the ontology class in detail, but can also link the
classes through defining the domain and range of the attribute, which is helpful for the intuitive input
and representation of the safety cases. Such attributes as “Cause”, “Having consequence”, “Control”,
and “Respond to”, are defined here. The attribute relationships between the various classes are shown
in Figure 6.
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4.3. Ontology Verification

Ontology evaluation is essential for the development of ontologies [79]. Criteria-based evaluation
is an important ontology evaluation method used to verify the content of ontologies through a set
of predefined criteria [80]. Seminars are considered to be the main form of conducting criteria-based
evaluation (the consistency criterion evaluation is based on a logic reasoner) [8]. Ten experts engaged
in subway construction projects were interviewed for ontology verification. Firstly, the experts were
informed of the relationship between classes and attributes, and then introduced to the whole decision
system and reasoning process. Secondly, detailed discussions were held with the experts, and their
recommendations were recorded in detail. Finally, the experts completed a questionnaire, and the
ontology was revised accordingly. This involved a five-point Likert scale from 1 (strongly disagree)
to 5 (strongly agree) to evaluate their level of agreement with three simple statements regarding the
ontology. The results (Table 5) are taken to mean that the experts verify that the safety risk ontology
and reasoning system of the subway project are comprehensive, concise, and practical.

Table 5. Survey results.

Problem Mean Median Variance Results

Do you think that the risk ontology covers the
main content of the subway construction

project risk information?
2.36 3 0.41 Better

comprehensiveness

Do you think the risk ontology structure is
clear, concise, and easy to understand? 2.43 3 0.20 Better conciseness

In the future, are you willing to apply this
technology to your work? 2.19 3 0.29 Good practicality
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4.4. Subway Case Reasoning

Construction of the Case Base

After the subway construction safety risk ontology is established, the base case is easy to compile.
Five attributes are used comprising the risk source, type, level, consequence, and prevention measures
as important indicators. The risk attribute indicators of the current project were extracted, the five
most important being “environmental change”, “adverse water inrush changes”, “risk level is 4”,
“economic loss and construction stoppage”, and “technical measures”. Assume the following five
cases exist in the case base as shown in Table 6.

Table 6. Risk attribute indicators of the target case and historical cases in the case base.

Projects Risk Type Risk Source Risk Level Risk Consequences Precautions

Current project Environmental
change

Unfavorable water
inrush changes 4 Economic loss and

construction stoppages
Technical
measures

Case one Equipment failure Scaffolding off 4 Building downtime
and casualties

Technical
measures

Case two Environmental
change

Unfavorable changes
in surrounding rock 5 Economic loss and

construction stoppages
Technical
measures

Case three Environmental
change

Collapse caused by
blasting mistakes 3 Economic losses Management

measures

Case four Human behavior
or operational error

Deformation of the
rock face caused by
blasting mistakes

4 Economic loss and
casualties

Management
measures

Case five Human behavior
or operational error

Unfavorable changes
in construction cracks 3 Economic loss and

construction stoppages
Construction

measures

4.5. Reasoning Results

4.5.1. Determination of Indicator Weights

The subway construction safety risk experts compared the risk types, sources, levels, consequences,
and prevention measures mentioned above according to the importance of each indicator; the index
judgment matrix being obtained from Equation (7) as

X =


1 6/5 7/9 11/10 1/2

5/6 1 2 5/2 11/5
9/7 1/2 1 10/11 5/11

10/11 2/5 11/10 1 5/9
2 5/11 11/5 9/5 1


(13)

The sum of the importance of relative values of each row and the sum of index importance relative
values of all indexes are calculated by Equations (8) and (9) as

Y1 = 4.58, Y2 = 8.53, Y3 = 4.14, Y4 = 3.96, Y5 = 7.45 (14)

U = 28.66 (15)

while the weights of each indicator are calculated by Equation (10) as

p = [0.160 0.298 0.144 0.138 0.260 ] (16)

4.5.2. Case Similarity Correlation and Parameter Settings

Through the analysis of 83 Chinese subway construction statistics and correlations occurring
in 2017–2018 (see Supplementary Material), the adjustment factor is set to ω1 = 0.5,ω2 = 0.3,
ω3 = 0.2, and ω5 = 0.7, calculated, as suggested in Gu et al [81], by Genetic Algorithm research. The
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attribute similarity indicators are listed in Tables 7–9 and the Semantic correlation calculation results is
listed in Table 10.

Table 7. Distance-based semantic similarity calculation results.

Cases Risk Type Risk Source Risk Level Risk Consequences Precautions

Case one 3/5 3/7 1 3/5 1
Case two 1 3/5 3/5 1 1

Case three 1 3/5 3/5 3/5 3/5
Case four 3/5 3/7 1 3/5 3/5
Case five 3/5 3/7 3/5 1 3/5

Table 8. Attribute-based semantic similarity calculation results.

Cases Risk Type Risk Source Risk Level Risk Consequences Precautions

Case one 3/4 3/4 1 3/4 1
Case two 1 3/4 3/4 1 1

Case three 1 3/4 3/4 3/4 3/4
Case four 3/4 3/4 1 3/4 3/4
Case five 3/4 3/4 3/4 1 3/4

Table 9. Content-based semantic similarity calculation results.

Cases Risk Type Risk Source Risk Level Risk Consequences Precautions

Case one 1/2 3/5 1 1/2 1
Case two 1 3/5 1/2 1 1

Case three 1 3/5 1/2 1/2 1/2
Case four 1/2 3/5 1 1/2 1/2
Case five 1/2 3/5 1/2 1 1/2

Table 10. Semantic correlation calculation results.

Cases Risk Type Risk Source Risk Level Risk Consequences Precautions

Case one 1/3 1/5 1 1/3 1
Case two 1/2 1/3 1/3 1 1

Case three 1 1/3 1/3 1/3 1/3
Case four 1 1/5 1 1/3 1/3
Case five 1/2 1/5 1/3 1 1/3

The comprehensive similarity calculation is

sim = 0.7 ∗


0.5



3
5

3
7 1 3

5 1
1 3

5
3
5 1 1

1 3
5

3
5

3
5

3
5

3
5

3
7 1 3

5
3
5

3
5

3
7

3
5 1 3

5


+ 0.3



3
4

3
4 1 3

4 1
1 3

4
3
4 1 1

1 3
4

3
4

3
4

3
4

3
4

3
4 1 3

4
3
4

3
4

3
4

3
4 1 3

4


+ 0.2



1
2

3
5 1 1

2 1
1 3

5
1
2 1 1

1 3
5

1
2

1
2

1
2

1
2

3
5 1 1

2
1
2

1
2

3
5

1
2 1 1

2


}+ 0.3 ∗





3
5

3
7 1 3

5 1
1 3

5
3
5 1 1

1 3
5

3
5

3
5

3
5

3
5

3
7 1 3

5
3
5

3
5

3
7

3
5 1 3

5





(17)
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=


0.618 0.520 1 0.618 1

1 0.632 0.618 1 1
1 0.632 0.618 0.618 0.618

0.618 0.520 1 0.618 0.618
0.618 0.520 0.618 1 0.618


(18)

[q 1 . . .qn

]T
=


0.618 0.520 1 0.618 1

1 0.632 0.618 1 1
1 0.632 0.618 0.618 0.618

0.618 0.520 1 0.618 0.618
0.618 0.520 0.618 1 0.618


·


0.160
0.298
0.144
0.138
0.260


=


0.743
0.835
0.683
0.644
0.647


(19)

the current case two having the highest similarity (0.835) with the target project. Therefore, the risk
treatment prevention of case two is taken as the main reference to the target case. Cases three, four,
and five have low similarity, and will not be considered in decision-making.

5. Discussion

In previous studies, most semantic similarity algorithms have been considered based on attributes,
content, and distance, of which the distance-based similarity algorithm is the most widely used [2,35,82].
However, solely using these algorithms can result in large errors and a better approach is to apply
all three approaches simultaneously as is done here, that is, the hybrid similarity algorithm. The
advantage of the algorithm is that it considers both the position information of the class in the ontology
tree and the content information contained in the keyword itself.

The setting of attribute weight is a crucial step in this algorithm. Similarity-based attribute
assessment involves the systematic comparison of the attributes of a target case and those of the
previous cases stored in the case base. Different attribute weights can lead to different case similarities,
and thus different previous cases may be retrieved for solving the target case. In such complex
applications as subway safety risks, it is extremely difficult for human experts to quantify the relative
importance of the attributes precisely. Such a weight elicitation process is subjective, and the weights
elicited from different expert groups may differ greatly. In previous studies, various methods such as
the equal weights method, feature counting, the gradient descent method, the analytical hierarchy
process, decision trees, multiple regression analysis, neural networks, and genetic algorithms have been
put forward to calculate attribute weight for CBR models to improve the estimation performance [83].
Weight learning of CBR is the future development trend within attribute selection and weight
determination, such as evolutionary algorithms, entropy method, etc. [84–86]. Motivated by these
previous studies, this paper adopts a genetic algorithm to calculate the attribute weight of the suggested
CBR model.

Compared with semantic similarity, semantic correlation is neglected by many studies. Semantic
similarity and correlation are two different concepts, semantic correlation referring to the degree
to which two concepts are interrelated. A very common situation is that there may be no similar
relationship between two concepts but they may be correlated for other reasons. Semantic similarity
reflects the concept of aggregation, while semantic correlation represents the combination of concepts.
This paper has made some explorations into the semantic correlation, but further improvements will
be needed in the future.

6. Conclusions

In practice, construction engineering is a complicated process involving frequent risks.
Construction safety risk management plays an important role in construction safety production.
However, unstructured safety knowledge and cases are difficult to be identified, encoded, and reused,
resulting in low efficiency risk management. In order to improve construction safety risk management
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and decision-making, this study proposes an ontology-based safety risk CBR method, which provides
a more scientific method for managers to implement safety risk identification, reuse, and management.

Firstly, the integration of ontology technology and CBR is applied to the methodology of
construction safety. Then, the similarity and correlation algorithms are integrated to improve the
CBR algorithm, and the case with the highest similarity is found by calculating case similarity
and correlation. We also verify the method through an application to subway construction safety
risk management. Through a literature review and a case study, the study extracts the subway
construction risk factors and establishes the ontology model of subway construction safety risk to put
forward some measures of metro construction safety risk management to help construction safety risk
management decision-making.

Semantic similarity and semantic correlation are considered to be simultaneous, with semantic
similarity having three parts. The first refers to similarity based on attributes, mainly referring to the
attribute information of two risk indicators. The second refers to content-based similarity, mainly
referring to the possibility that the two risk indicators can be replaced without changing the risk
consequences and risk management measures involved. The third is based on the similarity of distance;
the smaller the semantic distance between two risk indicators, the closer their semantic similarity will
be, and vice versa. Semantic correlation refers to the combinatorial relationship between two risk
indicators. For example, in this study, there is no commonality between risk type and risk source, but
risk source is determined by risk type.

The study is limited to the classes and attributes in the built-in subway construction risk information
ontology model being unable to cover all the project risk information, the cases constructed in this
system are limited and more comprehensive practical cases are needed, and only a framework and
basic method for solving problems are provided—the development of a practical ontology model and
inference system is a long and complicated process, and its implementation in practice require repeated
modification and test evaluation. Therefore, further research is needed to improve the construction
risk database; ontology model and case base requiring constant modification; demonstration and
maintenance; the construction risk case reasoning, revision, and retention; the selection of target cases,
with more complex target cases being used to verify the feasibility of the system based on ontology and
case-based reasoning; and the similarity algorithm, with data mining, machine learning, and statistical
methods combined with CBR to provide a more accurate similarity assessment.
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