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Abstract: For a long time, various epidemics, such as lower respiratory infections and diarrheal
diseases, have caused serious social losses and costs. Various methods for analyzing infectious
disease occurrences have been proposed for effective prevention and proactive response to reduce
such losses and costs. However, the results of the occurrence analyses were limited because numerous
factors affect the outbreak of infectious diseases and there are complex interactions between these
factors. To alleviate this limitation, we propose a cluster-based analysis scheme of infectious disease
occurrences that can discover commonalities or differences between clusters by grouping elements
with similar occurrence patterns. To do this, we collect and preprocess infectious disease occurrence
data according to time, region, and disease. Then, we construct a tensor for the data and apply Tucker
decomposition to extract latent features in the dimensions of time, region, and disease. Based on
these latent features, we conduct k-means clustering and analyze the results for each dimension.
To demonstrate the effectiveness of this scheme, we conduct a case study on data from South Korea
and report some of the results.
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1. Introduction

Historically, infectious diseases have had devastating consequences for public health. For instance,
according to the report published in 2018 by the World Health Organization (WHO) [1], three infectious
diseases: lower respiratory infection, diarrheal disease, and tuberculosis were ranked in the top
10 causes of death worldwide. Further, although human immunodeficiency virus infection and
acquired immune deficiency syndrome (HIV/AIDS) and malaria are not listed in the top 10, they have
also caused numerous deaths. Infectious diseases have resulted in not only losses of lives but also
serious social losses [2,3]. For instance, recent infectious diseases, such as Middle East respiratory
syndrome (MERS), Zika virus infection, and coronavirus disease 2019 (COVID-19), have had high
infection rates, significant mortality rates, and severe aftereffects. As soon as their outbreaks were
reported, most economic and social activities were restricted due to the fear of infection, resulting in
serious social losses and costs.

To reduce such losses and costs, most countries have established national health institutes and have
carried out diverse activities, such as disinfection, vaccination, campaigns, and quarantines. One critical
factor necessary to improve the effectiveness of such activities is to analyze the previous occurrences
of infectious diseases [4]. Based on the analysis results, governments and national health institutes
in various countries can predict disease occurrences in the near future and take measures to reduce
the risk of the expected infectious diseases, which includes vaccine production, effective regulations,
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and prevention campaigns. Hence, a variety of methods from statistical approaches to machine
learning-based approaches have been used to analyze the occurrence of infectious diseases [5–7].
One representative goal in the analysis was to reveal the relationships between infectious diseases and
factors in diverse fields, such as meteorology, sociology, and geography. The results of the analysis
could be used as a basis to select crucial factors or eliminate extraneous factors when predicting the
occurrence of infectious diseases, improving prediction performance [8].

Rodó et al. [9] introduced several studies on disease prediction models using climate data and
analyzed the effects of the climate on infectious disease occurrences. In addition, they indicated the
need for a sophisticated climate model suitable for future climate changes to ensure the performance
of the prediction models. Vazquez-Prokopec et al. [10] collected global positioning system (GPS)
data and infectious disease occurrence data on citizens and constructed a model based on the data to
determine the relationship between them. They proposed a few basic rules regarding human mobility
and, using a case study, demonstrated that understanding individual movement patterns is critical in
infectious disease dynamics. Goscé et al. [11] analyzed the relationship between public transportation
and infectious disease occurrence in cities. They concluded that public transportation of citizens is
associated with infectious disease transmission. Further, Grassly and Fraser [12] examined the causes
and consequences of seasonality. They derived several results concerning the interpretation of disease
occurrence data, such as the association of transmission mechanisms and their transmission routes,
the effects of seasonality on disease occurrences, and mathematical analyses of vaccination programs.

However, the results of previous analytical studies on infectious disease occurrences are not yet
sufficient. This is because it is challenging to evaluate the extent to which various factors known to
be associated with the development of an epidemic, such as environment, culture, or climate [13],
influenced the occurrence of a particular epidemic. Further, even with the same disease, the influence
of these factors may vary depending on spatial conditions, such as the region or country, and temporal
conditions. For instance, in temperate countries, influenza is correlated with changes in temperature
and absolute humidity but exhibits less correlation in tropical countries [14]. Moreover, the influence
of climate on infectious disease occurrences gradually varies according to global climate changes [15].

A clustering-based approach can be used to solve the aforementioned problems. Clustering
involves grouping of similar elements of a given set of elements. By analyzing the clusters, we discover
common or discriminative factors among the clusters that are likely to affect disease occurrence patterns.
This approach has been applied in various fields, including business, education, and biology [16–18].
Further, to analyze infectious diseases, several studies based on this approach have been reported.
For instance, Xiao et al. [19] collected individual contact data from a survey and grouped the individuals
into clusters using the k-medoids clustering algorithm to explore whether clusters of contacts could
better explain the transmission of infectious diseases. They demonstrated that their methodology
could provide insight into the structures underlying infection transmission, particularly the role of
age-assortative contacts. Sloan et al. [20] presented a clustering-based analysis method using a spatial
scan statistic and spatiotemporal wavelet analysis to discover how local socioeconomic factors influence
both the timing and intensity of influenza and concluded that socioeconomic factors heavily affect local
patients with influenza. McCloskey and Poon [21] presented a method to identify potential outbreaks
of infectious diseases based on clustering in the genetic sequences and evaluated their method using
both simulated and actual HIV sequence datasets. Guilamet et al. [22] applied a cluster analysis to
variables from patient characteristics, acuity of illness/clinical presentation, and infection characteristics
to identify determinants associated with bloodstream infection.

The results of clustering are highly dependent on the features used. Unlike the aforementioned
work, we use infectious disease occurrence data as features to group elements with similar occurrence
patterns. More specifically, we arrange the data by time, region, and infectious disease to analyze
infectious disease occurrences effectively. However, rather than using them as they are, we extract
latent features from the data and exploit them for clustering, which leads to a fast, robust, and general
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analysis [23–25]. This can be done easily by organizing data into tensors, decomposing them for feature
extraction, and clustering the extracted latent features.

To demonstrate the effectiveness of the proposed scheme, we conduct a case study using the
infectious disease occurrence data provided by the Infectious Diseases Portal [26] of the Korea Centers
for Disease Control and Prevention (KCDC) in South Korea.

The contributions of the paper are summarized as follows:

1. We propose an analysis scheme for infectious disease occurrences based on the Tucker
decomposition and k-means clustering by identifying elements with similar patterns of disease
occurrence in terms of time, region, and disease.

2. We show how to interpret the commonalities and differences between clusters in terms of time,
region, and disease. By doing so, we can discover possible factors that can affect the pattern of
disease occurrences.

3. We reveal the effectiveness of our scheme by conducting a case study on the infectious disease
occurrence patterns in South Korea.

The rest of the paper is organized as follows. We describe the clustering-based analysis scheme
based on the Tucker decomposition and k-means clustering in Section 2. We demonstrate and discuss
the analytical results in Section 3. Finally, we present the conclusions in Section 4.

2. Methods

Figure 1 illustrates the overall flow of the proposed scheme. The scheme consists of three main
steps: dataset preprocessing, tensor decomposition, and clustering. We first describe how to collect the
dataset of disease occurrences and preprocess them in Section 2.1. Then, we explain how to decompose
the data using tensors and perform clustering in Sections 2.2 and 2.3, respectively.

2.1. Dataset Collection and Preprocessing

The infectious disease occurrence data we used for analysis contained data on the infectious
disease, region, and number of reported patients by date. For instance, in January 2016, the number of
patients with cholera in Busan was zero, the number of patients with typhoid fever in Seoul was one,
and the number of patients with mumps in Gyeonggi-do was 216. We focused on three elements: region,
time, and infectious disease denoted as the R, T, and I dimensions, respectively. Further, we denoted
the number of elements in each dimension by NR, NT, and NI, respectively. Figure 2 illustrates the
occurrence data organized by place and disease on a specific date in the three-dimensional (3D) space.
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In this paper, we used the infectious disease occurrence data from South Korea, provided by
the Infectious Diseases Portal [26] of the KCDC. This dataset is a collection of the number of newly
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reported patients for 59 infectious diseases every month. The numbers were based on the patients
reported to public health agencies in 17 regions, and the occurrence region was determined based
on the patients’ addresses. We collected the occurrence data from January 2016 to October 2019 and
removed missing values in the collected data. The missing values were due to the change in the legal
infectious diseases list for South Korea. Because KCDC focuses on monitoring the occurrence of legal
infectious diseases, the disease occurrences before the designation were not provided, and their counts
were zero in the Infectious Diseases Portal. We deleted the infectious disease data containing missing
values, and as a result, 56 infectious diseases remained. The infectious diseases and regions contained
in the dataset are listed in Tables 1 and 2, respectively.
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Table 2. A list of regions.

# Region # Region

1 Seoul 10 Chungcheongbuk-do
2 Busan 11 Chungcheongnam-do
3 Daegu 12 Jeollabuk-do
4 Incheon 13 Jeollanam-do
5 Gwangju 14 Gyeongsangbuk-do
6 Daejeon 15 Gyeongsangnam-do
7 Ulsan 16 Jeju-do
8 Gyeonggi-do 17 Sejong
9 Gangwon-do

For the collected occurrence data, we performed normalization on the number of patients with
infectious diseases to reduce the effect of more common infectious diseases that many patients have
developed. Without normalization, the analysis results significantly depend on those diseases, while
the other diseases have a trivial effect. However, some diseases that had few patients had a high
mortality rate or high contagion. For instance, MERS is a rarely reported infectious disease in South
Korea. However, when the outbreak of MERS was reported in 2015, it caused about 38 fatalities
and a tremendous amount of economic damage in South Korea [27]. Therefore, we performed
normalization because it was necessary to prevent the analysis results from being too dependent on a
few specific diseases.

For normalization, we first determined the maximum number of patients during the period for
each disease and region pair and then divided the number of patients by the maximum value. During
the normalization process, the occurrence values in the dataset were converted into real numbers
between zero and one. Figure 3 illustrates this process. In the figure, the occurrence values of 96,
64, and 48 for the pair Region1 and Disease2 were converted into 1.0, 0.67, and 0.5, respectively, after
normalization, as the maximum value is 96.
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More specific reasons for using normalization are the following. We can reduce the influence of
diseases that have significantly more patients compared to other diseases, as mentioned above. If we
normalize the number of patients without considering their relative differences, the problem remains
unsolved. Thus, we used the maximum patient number for each infectious disease. The normalized
values of one disease are determined only by the maximum number of patients with the disease,
no matter how many patients are infected with other diseases. For instance, in Figure 3, Disease1 has
more patients than Disease2 and Disease3. If we perform the normalization, Disease1 has 1.0, 0.67, and 0.5
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normalized values for Time1, Time2, and Time3, respectively, in Region2, whereas Disease2 has 0.2, 1.0,
and 0.2 normalized values for the same region at the respective times.

Moreover, we can suppress the effects of the difference in population between regions. The number
of patients in the region tends to become larger as the population increases. Thus, dividing the data
by the maximum number of patients in the region removes the effects of the population differences.
Dividing the number of patients by the population might be one option. However, severe but
rarely occurring diseases have few patients, while the population can be relatively numerous. Then,
the normalized values become close to zero, and it is difficult to affect the analysis results.

To handle 3D data (region, infectious disease, and time) effectively, we represented the disease
occurrence data using tensors. A tensor is a multidimensional array for dealing with data whose
dimension is equal to or higher than three. In the case of disease occurrence data, the tensor M has
three dimensions R, I, and T, and the resulting size is NR × NI × NT. The tensor contains normalized
patient numbers according to R, I, and T.

2.2. Tensor Decomposition

By decomposing a tensor, we extracted diverse latent features from each tensor element. Compared
with raw data-based clustering, latent feature-based clustering has the following advantages. (i) It can
decrease computation time and memory requirements by reducing the data dimensionality [23]. (ii) It
is also more robust to noise [24]. (iii) Finally, latent features can represent the data in a more general
form than the raw data [25].

To extract latent features from the raw data, we used a tensor decomposition technique that
divides a tensor into smaller tensors or matrices. Tensor decomposition has been commonly used to
extract latent features from data whose form is a tensor and has demonstrated its effectiveness in data
analysis [28,29]. Among various methods for tensor decomposition, we used the Tucker decomposition
because it is a generalized form of tensor decomposition [30,31]. It has been widely used for latent
feature extraction in diverse domains, such as vectorized electroencephalography signals [32], human
behaviors [33], and drug responses to diseases [34].

Tucker decomposition divides a given tensor into four components: three matrices corresponding
to each dimension and one core tensor. Equation (1) is the equation for the Tucker decomposition,
and all components in the equation are generally obtained by high-order orthogonal iteration [35],
where γ is a core tensor whose size is dR × dI × dT, ×D denotes a k-mode product for a dimension D,
and AD is a matrix of D whose size is ND × dD.

M ≈ γ×R AR ×I AI ×T AT. (1)

Figure 4 illustrates the details of the Tucker decomposition. Here, AD contains the latent features
of the elements in dimension D, and these features consist of dD real values (i.e., each element
is represented by a vector). For instance, in the region matrix AR, “Seoul” is represented by[
v1, 1, . . . , v1, dR

]
, and “Gyeonggi-do” is represented by

[
v2, 1, . . . , v2, dR

]
. Similarly, “Polio” is represented

by
[
vNI , 1, . . . , vNI , dI

]
in the disease matrix AI, and “Feb. 2016” is represented by

[
v2, 1, . . . , v2, dT

]
in the

time matrix AT. We call these vectors element vectors. Although we cannot know what the values in
the element vectors mean because they are latent features, the more similar two vectors are, the more
similar their corresponding elements are. Based on this property, we performed clustering.
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2.3. Clustering

We grouped similar elements using the matrices obtained from decomposition. For this purpose,
we used k-means clustering, which is one of the most popular clustering algorithms. This algorithm
separates a given set of data into k clusters based on the distance between data and the centers of the
clusters. For each dimension D, the algorithm works as follows:

1. Acquire all element vectors in D from the matrix AD.
2. Set the number of clusters, k.
3. Generate center vectors of k clusters randomly.
4. For each element vector in D, calculate the Euclidean distances to the center vectors, and obtain

the nearest center vector.
5. Assign each element vector to the cluster with the nearest center vector.
6. Recalculate the center vector of each cluster.
7. Repeat Steps 4 to 6 until no more changes occur in the cluster assignment.

Based on the results obtained using k-means clustering, we performed the data analysis. Compared
with other clustering algorithms, k-means clustering is simple to implement and is suitable for
low-dimensional data [36,37]. In contrast, the k-means clustering method requires prior knowledge
about the optimal number of clusters [38], which is nearly impossible to achieve. Hence, we adopted
the elbow method to estimate the optimal number of clusters [39,40]. That is, for k from 1 to ND/2,
we iteratively ran k-means clustering and measured the sum of the squared error (SSE) between element
vectors and their center vector. Then, we plotted a graph of SSE versus k and found k where the change
in SSE value decreases considerably. This point is called an elbow point, and we used this k as the
optimal number of clusters for D, kD. Hence, we obtained kD clusters as a clustering result for each
dimension and analyzed these clusters.

3. Results

3.1. Experimental Setup

We conducted all the experiments in a Python environment. For the Tucker decomposition,
we used the TensorLy [41] library, and its hyperparameters are the same as the default setting of the
library except for the number of latent features. We set the number of latent features in each dimension,
dR, dI, and dT, to four. To set the number of clusters for each dimension, kR, kI, and kT, we plotted
graphs of SSE versus k for each dimension as illustrated in Figure 5 and selected six, six, and four
for the optimal cluster numbers, respectively. All the hyperparameters of the proposed schemes are
organized in Table 3.
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Table 3. A list of hyperparameters.

Variable Description Value

NR The number of elements in the region dimension 17
NI The number of elements in the infectious disease dimension 56
NT The number of elements in the time dimension 46
dR The number of latent features in the region dimension 4
dI The number of latent features in the infectious disease dimension 4
dT The number of latent features in the time dimension 4
kR The number of clusters in the region dimension 6
kI The number of clusters in the infectious disease dimension 6
kT The number of clusters in the time dimension 4

From now on, we present the clustering and analytical results of the infectious disease, time,
and region in turn.

3.2. Analysis of Disease-Based Clustering

Figure 6 illustrates the six disease clusters obtained by clustering in terms of infectious disease.
In the figure, all diseases in each cluster are listed except for Cluster 1. Because Cluster 1 contained
30 diseases, we only listed some of them. Figure 7 presents the characteristics of each cluster, which is
the spatiotemporal normalized occurrences of a representative disease in each cluster. In the graphs,
the x-axis and y-axis indicate the time and normalized occurrences, respectively. In addition, the 17 lines
in the graphs represent the regions contained in the data.

Cluster 1 contained the 30 most infectious diseases, including cholera, Japanese encephalitis,
and hydrophobia. The diseases in Cluster 1 never occur or rarely occur in South Korea. For instance,
from January 2016 to October 2019, hydrophobia was never reported. In the case of cholera, most of the
patients were reported in 2018 with one or two patients in each region. Similarly, Cluster 2 contained
rare diseases, such as measles, rubella, and Q fever. The difference between Cluster 1 and Cluster 2
was that the diseases in Cluster 1 had similar occurrence patterns in most regions, whereas those in
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Cluster 2 did not. Figure 7a,b presents the normalized occurrences of Japanese encephalitis in Cluster 1
and measles in Cluster 2, respectively. Japanese encephalitis periodically occurred in a few regions
every July to October. In contrast, measles occurred irregularly in some regions from 2016 to 2018,
and the number of patients suddenly increased in 2019. Meanwhile, Japanese encephalitis seemed
to have patterns similar to severe fever with thrombocytopenia syndrome of Cluster 5 illustrated in
Figure 7e. However, Japanese encephalitis was assigned to Cluster 1 rather than to Cluster 5 due to the
relatively small number of reported cases.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 19 
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Cluster 3 consisted of infectious diseases whose patients continue to be reported in most regions
without seasonality. Figure 7c illustrates the normalized occurrences of acute hepatitis B in Cluster 3.
Patients with acute hepatitis B were present consistently in all regions. However, the peak points in
each region were slightly different from each other, which results in a relatively complicated graph,
as shown in Figure 7c. Hepatitis A showed similar patterns except that the peak points of all regions
appeared only in early 2016 or at the end of 2019.

Cluster 4 comprises three infectious diseases commonly categorized as “febrile illness during the
fall” in South Korea. Figure 7d reveals the normalized occurrences of scrub typhus. The number of
patients with the disease drastically increased during fall and early winter, and afterward, decreased
rapidly. This occurrence pattern repeated every year, and the other infectious diseases in this cluster
exhibited similar trends. Meanwhile, leptospirosis demonstrated both a pattern of Cluster 4 and a
pattern similar to Cluster 5, presented in Figure 7e. This is because patients with leptospirosis were
often reported during late summer.

Cluster 5 comprises infectious diseases frequently reported from spring to fall. The patients
continued to develop diseases during that period, with a few cases reported in winter. Figure 7e presents
the normalized occurrences of severe fever with thrombocytopenia syndrome, which illustrates that
trend. Among the four diseases in Cluster 5, patients with enterohemorrhagic Escherichia coli infection
had been reported more frequently in winter compared to the other diseases. Thus, its occurrence
pattern was somewhat similar to that of Cluster 3.

Finally, Cluster 6 was composed of infectious diseases whose periodicity was roughly six months.
The number of patients increased during the transition period from spring to summer and from fall
to winter, with a similar trend in most regions. Chickenpox showed that trend perfectly, as shown
in Figure 7f. Although pneumococcus and primary syphilis also showed such a trend, their peak
points in each region were different from each other, and the peak-to-peak differences were relatively
marginal, unlike those of chickenpox.
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3.3. Analysis of Time-Based Clustering

Time is another important clustering criterion. To observe the temporal trend, we performed
month-based clustering based on the disease occurrence pattern. Figure 8 depicts the results for
46 months from January 2016 to October 2019 where four clusters are represented using assorted colors.
In the figure, Clusters 1 to 3 repeat from January 2016 to December 2018. More specifically, Clusters 1,
2, and 3 repeated from winter to early summer, in summer, and in fall, respectively. This tendency
indicates that infectious diseases, such as scrub typhus and influenza, have seasonality [12,42]. When we
considered the clusters obtained in the disease-based clustering, we could roughly connect the disease
clusters and time clusters. For instance, diseases in disease Cluster 3 are closely related to those in time
Cluster 3. Second, diseases in disease Clusters 5 and 6 were determinants of time Clusters 1 and 2.
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However, the trends changed dramatically in 2019. A new cluster, Cluster 4, appeared in January
2019, which had not been previously observed. Cluster 4 spanned until April, and then, Cluster 1
appeared in May 2019. However, in the next month, Cluster 2 started, which was one month earlier
than in the previous years. Further, Cluster 2 lasted for 5 months. This indicates that the pattern
of infectious disease occurrences considerably changed in 2019. Such changes can be explained by
investigating the main diseases and their occurrences.

Figure 9 presents some pairs of clusters where noticeable changes were observed in the normalized
occurrences. In the graphs, the x-axis and y-axis represent the region and normalized occurrence,
respectively, and the clusters were represented using the colors defined in Figure 8. Figure 9a illustrates
the normalized occurrences of measles of Clusters 1 and 4. The average number of patients with
measles was about 50 per month in early 2019 and increased to 260 in April. It was about two per
month before 2019. In May 2019, the number of patients decreased and went back to the trend from
Cluster 1. In the figure, the normalized occurrences of Cluster 1 were so small that the maximum
among the regions was only about 0.1. However, all the normalized occurrences of Cluster 4 ranged
from 0.3 to 0.7.

Another major change is the reduction in patients with scarlet fever. From January to April 2019,
the reported cases of scarlet fever nationwide decreased by more than half of those reported in the
same month in 2018, and in a few regions, the number was reduced to a quarter. This is shown in
Figure 9b. In Figure 9b, we observe that the normalized occurrences of Cluster 1 were equal to or more
than about twice those of Cluster 4 in most regions.

The second pair of clusters we investigated was Clusters 1 and 2. The total number of patients
with shigellosis nationwide increased slightly in June 2019. Although the number was only about
20, it was nearly three times larger than the previous year. Further, the number of patients with
hepatitis A drastically increased, which reached about 20 times the patient number in the previous year.
Figure 9c,d reveals the normalized occurrences of shigellosis and hepatitis A, respectively. In Figure 9c,
the normalized occurrences of Cluster 1 were close to zero except for a few regions. However, in June
2019, some regions had considerably large values compared to Cluster 1. Meanwhile, the differences
between the two clusters in Figure 9d were more noticeable compared to those in Figure 9c.
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Figure 9. Comparison of normalized occurrences of infectious diseases between clusters: (a) measles in
Clusters 1 and 4; (b) scarlet fever in Clusters 1 and 4; (c) shigellosis in Clusters 1 and 2; (d) hepatitis A
in Clusters 1 and 2; (e) hepatitis A in Clusters 3 and 2; (f) scrub typhus in Clusters 3 and 2.
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Lastly, the number of patients with hepatitis A and measles increased, but the number of patients
with scarlet fever decreased in October 2019, compared to the same month of the previous year.
In addition, the number of patients with scrub typhus that frequently occurred in the fall declined
significantly in 2019. This is presumed to be the primary reason October 2019 was assigned to Cluster
2 instead of Cluster 3. Figure 9e,f displays the normalized occurrences of hepatitis A and scrub typhus,
respectively. In the figure, although the normalized occurrences of Cluster 3 were much lower than
those of Cluster 2, the normalized occurrences of Cluster 3 were much larger than those of Cluster 2.

3.4. Analysis of Region-Based Clustering

The last clustering that we performed was in regions. Figure 10 reveals the results where six region
clusters were created from 17 regions, represented using different colors. Generally, geographically
adjacent regions were more likely to be grouped into the same cluster. For instance, Cluster 3
consisted of two adjacent regions, Chungcheongbuk-do and Chungcheongnam-do, and Cluster 1
comprised spacious and connected regions, such as Gangwon-do, Gyeongsangbuk-do, Jeollabuk-do,
and Jeollanam-do. Although Jeju-do is not directly connected because it is an island, it was included in
Cluster 1. Meanwhile, metropolises, such as Busan, Daegu, Ulsan, Gwangju, Daejeon, and Sejong,
except for Incheon and Seoul, were grouped into Cluster 2 regardless of their locations. This result is
consistent with previous studies, in that the degree of urbanization led to differences in the occurrence
patterns of the infectious diseases [43,44].
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However, we did not find significant differences between clusters, unlike the disease-based
clusters or time-based clusters. That is, the difference in the occurrence of infectious diseases was
too small to separate into clusters. We assume that this is because South Korea has a well-developed
transportation system and is a small territory compared to other countries, such as the United States,
Canada, and China. As the exchange of people between regions is active, regions tend to have similar
characteristics in terms of disease occurrences.

One notable point is that Seoul belongs to Cluster 4 along with Gyeongsangnam-do. Although
Seoul is the biggest metropolis in Korea, it was not grouped with other metropolises, such as Incheon
and Gyeonggi-do, which are close to Seoul. Just by comparing the number of patients or normalized
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occurrences of regions, we could not find any significant difference between clusters. However,
by constructing tensors from the extracted features of regions listed in Table 4 and comparing
them, we observed some differences between the tensors. Using this methodology, we found
that the normalized occurrences were roughly dependent on feature F1 in Table 4. From this
viewpoint, Seoul (0.331) had an occurrence pattern that was more similar to Gyeonggi-do (0.337)
than to Gyeongsangnam-do (0.261) for various infectious diseases, including hepatitis A, chickenpox,
and scrub typhus. However, considering the rest of the features, Seoul and Gyeongsangnam-do formed
a cluster (Cluster 4), and Gyeonggi-do formed another cluster (Cluster 5).

In Cluster 2, the features of Sejong were different from those of other regions. In particular, Sejong
exhibited significant differences in F1 and F2 compared to the other regions in the cluster. For instance,
the F1 and F2 values of Sejong were 0.132 and −0.587, respectively, while their cluster averages were
0.211 and −0.165, respectively. Hence, when we performed k-means clustering with k set to 7, Sejong
formed a new cluster, and other clusters remained unchanged. When we investigated the occurrences
of diseases in Sejong, we found that overall infectious disease occurrences in this city were fewer than
that in the other cities. We think this is because Sejong has the smallest population among the regions.
Jeju-do, which has the second smallest population, also had a similar F1 value.

Table 4. Extracted features of the regions.

Cluster Region
Features

F1 F2 F3 F4

1

Gangwon-do 0.218 −0.153 0.269 −0.212
Gyeongsangbuk-do 0.258 −0.065 0.285 −0.233

Jeollabuk-do 0.234 −0.256 0.147 −0.210
Jeollanam-do 0.216 −0.139 −0.045 −0.392

Jeju-do 0.177 −0.117 −0.182 −0.335

Average 0.220 −0.146 0.095 −0.277

2

Daejeon 0.216 −0.047 0.004 0.193
Daegu 0.243 −0.044 −0.162 −0.034

Gwangju 0.201 −0.176 −0.098 0.238
Busan 0.257 −0.044 −0.327 −0.127
Ulsan 0.214 −0.093 −0.392 0.314
Sejong 0.132 −0.587 −0.192 0.136

Average 0.211 −0.165 −0.194 0.120

3
Chungcheongbuk-do 0.205 −0.098 0.256 0.250
Chungcheongnam-do 0.261 −0.187 0.396 0.186

Average 0.233 −0.143 0.326 0.218

4
Seoul 0.331 0.305 −0.003 0.352

Gyeongsangnam-do 0.261 0.201 −0.178 0.184

Average 0.296 0.253 −0.091 0.268

5 Gyeonggi-do 0.337 0.420 0.318 −0.025

6 Incheon 0.276 0.359 −0.319 −0.326

4. Conclusions

In this paper, we proposed a clustering-based analysis scheme for investigating the occurrence
patterns of infectious diseases. To do this, we collected disease occurrence data containing time, region,
and infectious disease and constructed a tensor. Then, we extracted latent features from the tensor
by using Tucker decomposition and performed k-means clustering for each dimension in the latent
spaces. To demonstrate the effectiveness of the scheme and how to interpret the obtained results,
we conducted a case study of South Korea and showed the resulting clusters for each dimension.
We analyzed the results by comparing the raw data and extracted features. Some disease clusters had
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seasonality and periodicity, whereas other disease clusters showed an aperiodic occurrence pattern.
Further, we explained the changes in disease occurrences over time. We observed the abrupt changes
between 2019 and the previous years and derived the reason from the data. Lastly, we confirmed the
differences in the occurrence patterns between region clusters, caused by the degree of urbanization
and geographical adjacency.

In the future, we aim to extend our scheme on a global scale to analyze infectious disease occurrence
patterns affecting a wide range of countries. In addition, we will investigate deep learning-based
feature extraction methods to extract better features of the given data and use explainable artificial
intelligence techniques for a more effective explanation of the analysis results.
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