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Abstract: Smoking-induced noncommunicable diseases (SiNCDs) have become a significant threat
to public health and cause of death globally. In the last decade, numerous studies have been
proposed using artificial intelligence techniques to predict the risk of developing SiNCDs. However,
determining the most significant features and developing interpretable models are rather challenging
in such systems. In this study, we propose an efficient extreme gradient boosting (XGBoost) based
framework incorporated with the hybrid feature selection (HFS) method for SiNCDs prediction
among the general population in South Korea and the United States. Initially, HFS is performed in
three stages: (I) significant features are selected by t-test and chi-square test; (II) multicollinearity
analysis serves to obtain dissimilar features; (III) final selection of best representative features is done
based on least absolute shrinkage and selection operator (LASSO). Then, selected features are fed into
the XGBoost predictive model. The experimental results show that our proposed model outperforms
several existing baseline models. In addition, the proposed model also provides important features in
order to enhance the interpretability of the SiNCDs prediction model. Consequently, the XGBoost
based framework is expected to contribute for early diagnosis and prevention of the SiNCDs in public
health concerns.

Keywords: smoking; noncommunicable disease; feature selection; extreme gradient boosting

1. Introduction

Noncommunicable diseases (NCDs) have emerged as a major public health problem in the world.
About 40 million people die from NCDs each year, equivalent to 70% of all deaths globally. The major
risk factors of developing NCDs consist of tobacco use, physical inactivity, alcohol use, and unhealthy
diets [1]. Approximately 80% of all heart disease, stroke, and diabetes would be prevented if these major
risk factors were eliminated. Tobacco use is negatively associated with all of the United Nation (UN)’s
Sustainable Development Goals (SDGs). In particular, smoking cessation plays an extensive role in
a global effort to achieve the SDGs target to reduce deaths from NCDs by one-third by 2030 [2,3].
Studies by public health experts found that smokers were more likely to become infected with outbreaks
of Middle East respiratory syndrome coronavirus (MERS-CoV) and corona virus disease (COVID) 19
compared to non-smokers [4,5].
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The World Health Organization (WHO) introduced the MPOWER package, corresponding to
assist in country-level implementation of interventions to increase smoking cessation, as ratified by
the WHO Framework Convention on Tobacco Control (WHO-FCTC). The MPOWER package is part
of the WHO action plan for the prevention and control of noncommunicable diseases. South Korea has
ratified the WHO-FCTC and, since 2005, has launched anti-smoking clinics at community health centers
across the country. However, the prevalence of NCDs continues to remain high, accounting for 81% of
all deaths and seven of the top causes of death in South Korea [6]. In recent years, the United States
government has aimed to expand its role in addressing the challenges of SiNCDs. NCDs account for
89% of all deaths in the United States, which far exceeds the cases of infectious diseases as considered
causes of death [7]. Current smokers who suffer from NCDs need lifelong treatment. One of the main
causes of this adverse scenario is the fact that smoking-induced noncommunicable diseases (SiNCDs)
is mostly diagnosed in late stages.

Nowadays, predictive models are frequently employed in early diagnosis and forecasting of
smoking-associated illnesses and diseases [8–12]. Early detection and efficient treatments are solutions
for reducing death rates caused by chronic diseases. In one study [13], the authors studied the association
between environmental factors and the development of Crohn’s disease among Japanese. Their results
suggest that passive smoking history is associated with the development of Crohn’s disease. Another
study [14] evaluated the association between Parkinson’s disease and rural living, farming, pesticide
use, and cigarette smoking. The weight of the evidence and meta-analysis showed that there is a causal
relationship between the risk of Parkinson’s disease and cigarette smoking, which has been consistently
discovered in related literature. In contrast, rural living, well-water consumption, farming and the use
of pesticides, herbicides, insecticides, and fungicides were less consistent within Parkinson’s disease.
Furthermore, one study [15] focused on the role of feature risk pathways in smoking-induced lung
cancer using patient data from the Gene Expression Omnibus database. They optimized the feature
sets using the anomaly score and the recursive feature elimination (RFE) method. Then, the support
vector machine (SVM) based prediction model was used. Their study concluded that smoking is
the main cause of lung cancer; moreover, stress and self-protection mechanisms in a living organism
can be identified as complex factors. In another study [16], authors developed an automatic classifier
to increase the accuracy of the forced oscillation technique for early diagnosis of smoking-induced
respiratory changes. They utilized several machine learning techniques, such as logistic linear classifiers,
k nearest neighbor (KNN), neural networks (NN), and SVM. As their result, KNN and SVM classifiers
resulted in a further increase in diagnostic accuracy.

Artificial intelligence (AI) utilization of automated diagnosis processes can highlight enhanced
rules in the decision support system regarding patient health care. However, there are some difficulties
in the selection of representative features and suitable classifier. Numerical studies have proposed
selecting features using information gain, gain ratio, and correlation coefficients. However, these
techniques do not consider the interactions among the features, and are not suitable for direct application
to ensemble generation [17]. Moreover, it is evidently seen that ensemble-based classifiers improve
the performance better than that of any single classifier [18]. Otherwise, a sequential ensemble learns
to generate a model, and one tries to reduce the bias of the combined estimator and reach close to
actual predictions. Thus, new models are learned from the mistakes of previous models by boosting
techniques. Tree boosting provides high performance clinical predictive modeling; furthermore, it
allows representation of feature importance and ranking [19].

Therefore, we propose efficient extreme gradient boosting (XGBoost) based framework
incorporated with the hybrid feature selection (HFS) method for SiNCDs prediction, using real-world
National Health and Nutrition Examination Survey (NHANES) datasets of South Korea and the United
States. Firstly, HFS is performed in three stages: (I) significant features are selected based on statistical
hypothesis tests, such as t-test and chi-square; (II) multicollinearity analysis serves to obtain dissimilar
features; followed by (III) final selection of best representative features is done based on least absolute
shrinkage and selection operator (LASSO). Then, selected features are fed into the XGBoost predictive
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model. Finally, our proposed model provides feature importance score based on XGBoost. Therefore,
the proposed model is compared and contrasted against several existing baseline models, such as
logistic regression (LR), random forest (RF), KNN, multilayer perceptron (MLP), NN, support vector
machine recursive feature elimination (SVM-RFE), and RF feature importance (RFFI) feature selection
methods. The accuracy, sensitivity, specificity, precision, f-scores, and area under the curve (AUC)
analysis are employed to evaluate model performances. The main contributions of this study are
as follows:

• Proposing an efficient extreme gradient boosting (XGBoost) based framework incorporated with
the hybrid feature selection (HFS) method for smoking–induced noncommunicable diseases
(SiNCDs) prediction.

• Applying the XGBoost based framework to real-world NHANES datasets of South Korea and
the United States. Our empirical comparison analysis shows that the proposed model outperformed
existing baseline models.

• Findings are expected to contribute toward achieving good health and wellbeing (ultimate targets
of SDGs of UN).

The remainder of this paper is logically structured as follows: Section 2 introduces the proposed
framework—elaborating on its two main components: the three-stage HFS method and a brief
introduction of the XGBoost algorithm. Therefore, it includes the experimental setup, regularizing
hyperparameters. Section 3 provides discussed datasets, baseline models, and overall experimental
results. Finally, the study is concluded in Section 4.

2. Materials Methods

2.1. Proposed Framework

In this paper, we propose an efficient extreme gradient boosting (XGBoost) based framework
incorporated with the hybrid feature selection (HFS) method for smoking-induced noncommunicable
diseases prediction. From its illustration in Figure 1, the proposed framework comprises of three main
components: first, three-stage HFS, and then application of XGBoost to build the model. Finally, it
provides the feature importance scores.

Int. J. Environ. Res. Public Health 2020, 17, x  3 of 22 

support vector machine recursive feature elimination (SVM-RFE), and RF feature importance (RFFI) 
feature selection methods. The accuracy, sensitivity, specificity, precision, f-scores, and area under 
the curve (AUC) analysis are employed to evaluate model performances. The main contributions of 
this study are as follows: 

• Proposing an efficient extreme gradient boosting (XGBoost) based framework incorporated with 
the hybrid feature selection (HFS) method for smoking–induced noncommunicable diseases 
(SiNCDs) prediction. 

• Applying the XGBoost based framework to real-world NHANES datasets of South Korea and 
the United States. Our empirical comparison analysis shows that the proposed model 
outperformed existing baseline models. 

• Findings are expected to contribute toward achieving good health and wellbeing (ultimate 
targets of SDGs of UN). 

The remainder of this paper is logically structured as follows: Section 2 introduces the proposed 
framework—elaborating on its two main components: the three-stage HFS method and a brief 
introduction of the XGBoost algorithm. Therefore, it includes the experimental setup, regularizing 
hyperparameters. Section 3 provides discussed datasets, baseline models, and overall experimental 
results. Finally, the study is concluded in Section 4. 

2. Materials Methods 

2.1. Proposed Framework 

In this paper, we propose an efficient extreme gradient boosting (XGBoost) based framework 
incorporated with the hybrid feature selection (HFS) method for smoking-induced 
noncommunicable diseases prediction. From its illustration in Figure 1, the proposed framework 
comprises of three main components: first, three-stage HFS, and then application of XGBoost to build 
the model. Finally, it provides the feature importance scores. 

 
Figure 1. Extreme gradient boosting (XGBoost) based framework for smoking-induced 
noncommunicable diseases prediction. LASSO: least absolute shrinkage and selection operator. 

2.1.1. Three-Stage HFS 

The feature selection to reduce the data dimensionality and keep only the important features is 
performed in three stages. 

• Step 1: Statistical Hypothesis Test (t-test and p-value) 

Figure 1. Extreme gradient boosting (XGBoost) based framework for smoking-induced
noncommunicable diseases prediction. LASSO: least absolute shrinkage and selection operator.



Int. J. Environ. Res. Public Health 2020, 17, 6513 4 of 22

2.1.1. Three-Stage HFS

The feature selection to reduce the data dimensionality and keep only the important features is
performed in three stages.

• Step 1: Statistical Hypothesis Test (t-test and p-value) The first stage excludes redundant and
irrelevant features in order to reduce the complexity for training model. For this purpose, it
assesses chi-square test for categorical features and t-test for continuous features to accept or reject
the alternative hypothesis. After the test, if deemed significant, features are stored for the first
stage filtering. Otherwise, such features are excluded.

• Step 2: Multicollinearity Analysis The key assumption behind the multicollinearity analysis [20] is
that it indicates the correlation between independent features. The value of variance inflation factor
is used to verify multicollinearity in regression analysis. In essence, this step takes the complete
set of features and loops through all of them applying the appropriate test.

• Step 3: Least Absolute Shrinkage and Selection Operator (LASSO) LASSO [21] has been extensively
used in both fields of statistics and machine learning. Several studies [22,23] proposed the LASSO
method for estimating the causal effect to identify their outcomes. A rational decision is taken
to execute the LASSO in order to select a group of features simultaneously for a given task.
During the feature selection process, LASSO penalizes the coefficients of the regression features,
regularizing some of them to zero. On the contrary, features that still have a non-zero coefficient
after the regularizing process remain to be part of the training model. This stage allows us to
prevent the predictive of the causal inference problem.

2.1.2. XGBoost Classifier

XGBoost is an efficient and scalable machine learning classifier, which was popularized by Chen
and Guestrin in 2016 [24]. Gradient boosting decision tree is the original model of XGBoost, which
combines multiple decision trees in boosting way. In general, each new tree is created to reduce
the residual of the previous model by the gradient boosting. Residual is designated by the differences
between the actual and predicted values. Until the number of decision trees specify threshold,
the model has been trained. XGBoost has following the same principle of gradient boosting; it uses
the number of boosts, learning rate, subsampling ratio, and maximum tree depth to control overfitting
and enhance the better performance. More importantly, XGBoost optimizes the objective of function,
size of the tree, and magnitude of the weights, which are controlled by standard regularization
parameters. The XGBoost accomplishes superior performance with numerous hyperparameters in
specific searching space as summarized in Table 1.

Table 1. Searching space of XGBoost model.

Parameters Symbol Search Space

Maximum tree depth Dmax 2, 4, 6, 8
Minimum child weight wmc 2, 3, 4, 5

Early stop round e 100
Learning rate τ 0.1

Number of boost N 60
Maximum delta step δ 0.4, 0.6, 0.8, 1

Subsample ratio rs 0.9, 0.95, 1
Column subsample ratio rc 0.9, 0.95, 1

Gamma γ 0, 0.001

According to the hyperparameters, gamma γ ∈ (0,+∞) denotes minimum loss reduction, which
requires to make a split for making the partition on a leaf node of the tree. Minimum child weight
wmc ∈ (0,+∞) defines as minimum sum of instance weight, which means if the tree partition step
results in a leaf node with the sum of instance weight less than wmc, then the tree will discard
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further partition. Early stop algorithm works for finding the optimal epoch number referring to
given other hyperparameters. Finally, XGBoost also offered subsampling techniques and rc ∈ (0, 1)
column subsample ratio constructs in each tree. In the final step, grid search is used to regulate
the hyperparameters in order to minimize the classification error.

2.2. Experimental Setup

2.2.1. Experimental Environment

In this study, all experiments were performed on computer with 3.20 GHz, Intel Core i5-8250U
(Intel Corporation, Santa Clara, CA, USA), and 8 GB Random access memory (RAM) using a Microsoft
Windows 10 operating system (Microsoft Corporation, Redmond, WA, USA). Scikit-learn, Statsmodels,
Matplotlib, and other libraries [25–28] of Python were used to develop the proposed and comparative
models, respectively.

2.2.2. Baseline Models

We compare the proposed model with the following baseline classifiers and feature
selection methods:

Logistic regression (LR) [29] is a widely used statistical method for classification and regression
task. LR is used when our target of interest has two possible dichotomy values that is limited to values
between 0 and 1.

Random forest (RF) [30] is a parallel structured ensemble tree-based method that utilizes bagging
to aggregate multiple decision tree classifiers. Each tree of the RF is trained on bootstrap samples
of the training sets, using randomly selected features in the tree generation process; after that, each
tree votes for the most popular class. In this study, we have configured the number of estimators
in the random forest as 500, 750, 1000, 1250, 1500; moreover, quality of split-measured criteria was
selected by “gini” for the Gini impurity and “entropy” for the information gain, respectively.

K-nearest neighbor (KNN) [31] is a supervised machine learning algorithm that can solve
the classification task. In the classification phase, instances are classified to the class most frequently
occurring amongst the neighbors, measured by the distance function. For the KNN classifier,
hyperparameters of weights and number of neighbors were adjusted in this study. The weights set
up to “uniform”, where all points in each neighborhood are weighted the same, or “distance” where
closer points are more heavily weighted toward the decision. The setting of the neighbor numbers
refers to how many neighboring points are to fall inside of one group. Furthermore, we have turned
the value of the k number between 3 and 12.

Multilayer perceptron (MLP) and neural network (NN) [32,33]: MLP is the most typical type of
neural network application using back propagation for training. Neural networks are inspired by
composed of nodes. MLPs consist of at least three layers, such as input, hidden, and output. Nodes in
neighboring layers are interconnected, but nodes in the same layer are not. Each connection between
neurons is multiplied by the corresponding weight during training. Finally, the output of hidden nodes
is estimated by applying an activation function and output layer makes decisions. For the MLP models,
we use the one and three hidden layers with five nodes. NN models consist of turning the two to ten
hidden layers using two to five nodes, respectively. These models are optimized by Adam. Moreover,
we set the learning rate is 0.001 with “sigmoid” activation function.

Support vector machine recursive feature elimination (SVM-RFE) [34] estimate the weights of
the features according to the support vectors, then eliminate the necessary features until the specified
number of features is reached.

Random forest based feature selection (RFFS) [35] has been found to provide feature importance
scores that are successfully utilized in data mining. On the other hand, RF classifier estimates
the importance of each features, then naturally ranks them.
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3. Experimental Results and Discussion

The comparison of our proposed model with the baseline models is presented in this section.
The flowchart of the experimental design is depicted in Figure 2. This study is reported according to
the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis
(TRIPOD) statement [36], shown in Appendix A (Table A1).
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Initially, we preprocess the smoking-induced noncommunicable diseases (SiNCDs) datasets to
eliminate missing values and outliers. Next, we elect a subset of representative features using feature
selection methods. Finally, classifiers are used to build predictive models. Comparison findings would
be to reveal a suitable combination of the feature selection methods and classifiers in an efficient
predictive model among each dataset.

3.1. Dataset

In this study, the National Health and Nutrition Examination Survey datasets of South Korea
(KNHANES) and the United States (NHANES) were used to build the proposed model and other
existing baseline models for SiNCDs prediction.

KNHANES data is conducted by the Korea Centers for Disease Control and Prevention (KCDC)
(http://knhanes.cdc.go.kr) [37]. It consists of a health examination of various numbers of diseases, health
interviews, and nutrition surveys of the Korean population. NHANES is designed to assess the health
and nutrition status of the general population in the United States. This nationwide survey is a major
program of the National Center for Health Statistics (NCHS) that is part of the Centers for Disease
Control and Prevention (CDC) (https://www.cdc.gov/nchs/nhanes) [38]. Generally, this survey examines
approximately 5000 people each year across the United States. NHANES consists of demographic,
socioeconomic, dietary, and health-related questions. Furthermore, some important features were
surveyed from a minor of the population in both of the KNHANES and NHANES, similarly.

We combined KNHANES datasets from 2013 through 2017, and NHANES datasets from 2013
through 2018, as shown in Figures 3 and 4. Datasets contain a large number of missing values and
outliers. It is well known that missing values reduce the statistical power and become a cause of the bias
in the estimation of parameters. To prevent model complications, we excluded all of the missing values
and outliers. The outliers were removed based on the interquartile range. Essentially 22,183 subjects
of KNHANES and 19,292 subjects of NHANES were excluded due to missing value, outliers, and
class targets, which were stored in given initial features. Additionally, subjects aged 20 years old were
considered for our analysis for both KNHANES and NHANES datasets. This study was designed to
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include target and healthy control groups. Healthy control group was defined by subjects who had
never smoked and had not been diagnosed with NCDs. On the other hand, target group was defined
by subjects who had a history of one of the NCDs, for diabetes, prediabetes, asthma, heart failure,
corona hearth disease, heart attack, stroke, hypertension, kidney failure, or angina, as well as had
smoked at least 100 cigarettes in their life.
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3.2. The Results of Hybrid Feature Selection (HFS)

At the first stage of HFS, t-test and chi-square statistical hypothesis tests are used to determine
the null or alternative hypothesis in order to select significant features. The threshold of 0.01 indicates
statistical significance. If the feature is of a numeric type, the significance is tested using t-test,
otherwise, for the categorical features, chi-square is used. In the KNHANES dataset, the p-values of
“self-management”, “daily activities”, and “economic activity status” features were estimated by 0.16,
0.58, and 0.50, respectively. While p-values of “Pulse regular or irregular?”, “Salt usage level”, and
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“Description of job/work situation” features were indicated by 0.19, 0.12, and 0.13, respectively. A large
p-value (>0.01) indicates weak evidence against the null hypothesis; thus, we exclude these features
due to criteria of the first stage of HFS.

Thereafter, we verify to check the collinearity between independent features using multicollinearity
in regression analysis after eliminating the non-significant features in the second stage of HFS.
Multicollinearity is one of the major concerns in causal inference. This second stage leads to prevent
the causality issue that occurs when two or more features are highly correlated. It is challenging for
a reliable estimation of the variable coefficients. It is suspected that multicollinearity will present if
the variance inflation factor (VIF) lies between 5 and 10 in this study. If the VIF value is greater than
those values, it investigates a high correlation among features that remain problematic.

In our analysis of the KNHANES dataset, we did not remove any features in terms of their low VIF
values. On the contrary, we removed “annual household income” and “poor appetite or overeating”
features that represented VIF values of 5.312 and 5.005 in the NHANES dataset. The detailed results
of the bivariate and multicollinearity analysis of the KNHANES dataset in Table A2 and NHANES
dataset in Table A3 are shown in Appendix B.

In the third stage of HFS, the least absolute shrinkage and selection operator (LASSO) helps to
increase the prediction of the models by removing irrelevant features that are not related to target
classes. The LASSO identified irrelevant features, such as “residence area”, “walk duration (hours)”,
and “health checkup status” in KNHANES dataset, whereas, “ever told doctor had trouble sleeping?”
and “number of healthcare counseling over the past year” in NHANES dataset. Thus, these irrelevant
features were eliminated by assigning them a coefficient equal to zero. In terms of the three-stage HFS
method, we selected sufficiently representative 26 of 32 features in KNHANES and 28 of 35 features in
NHANES. Moreover, these are used as inputs to the predictive model.

3.3. The Results of the Comparative Analysis

To prove the efficient XGBoost based framework equipped with the HFS method for SiNCDs, it is
compared with other current techniques, including LR, RF, KNN, MLP, NN, and XGBoost incorporated
with HFS, SVM-RFE, and RFFS methods in terms of KNHANES and NHANES datasets.

In this study, the entire process of parameter estimation in most baseline models are utilized
based on the research paper [39]. For evaluating the prediction models, we split the data into 80% for
the training set and 20% for the evaluation set. In order to prevent overfitting, a 5-fold cross-validation
procedure [40] is applied to the training set. In the procedure of 5-fold cross-validation, the dataset is
randomly partitioned into five parts: 4 folds of the training set are used to train classification models,
and the remaining 1 fold is used to validate the model. To evaluate the performance of the predictive
models, the classification accuracy, sensitivity, specificity, precision, f-score, and area under the receiver
operating characteristic curve (AUC) [41,42] were used.

Table 2 shows the performances of all predictive models in the KNHANES dataset and highest
performance of evaluation metrics are marked in bold. For KNHANES dataset, XGBoost with HFS
model achieved the highest accuracy of 0.8812 precision of 0.8737 and F-score of 0.8707. NN with
RFFS models outperformed the best sensitivity of 0.8871 and specificity of 0.8902. Following by it,
the second-best accuracy of 0.8758 and precision of 0.8691 were achieved by NN with HFS model,
a specificity of 0.8496 is reached by RF with HFS, and sensitivity of 0.8782 and F-score of 0.8703 was
reached by XGBoost with RFFS in the prediction of SiNCDs. As can be seen, KNN with SVM-RFE
based predictive model performed slightly lower results compared with other predictive models in
terms of the evaluation metrics.
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Table 2. Evaluation results of the prediction models in the Korea National Health and Nutrition
Examination Survey dataset.

Feature
Selection Classifier Accuracy Sensitivity Specificity Precision F-Score

SVM-RFE

LR 0.7948 0.7818 0.7532 0.7676 0.7746
RF 0.7890 0.7989 0.7984 0.8115 0.8052

KNN 0.7342 0.6958 0.7381 0.7961 0.7426
MLP 0.8070 0.7936 0.7791 0.8016 0.7976
NN 0.8197 0.8274 0.8203 0.8387 0.8330

XGBoost 0.8098 0.8108 0.8310 0.8533 0.8315

RFFS

LR 0.7804 0.7371 0.7422 0.8024 0.7684
RF 0.8264 0.7699 0.7338 0.8236 0.7958

KNN 0.8048 0.7128 0.7661 0.7753 0.7427
MLP 0.7994 0.7808 0.7396 0.8115 0.7959
NN 0.8507 0.8871 0.8902 0.8522 0.8693

XGBoost 0.8311 0.8782 0.7984 0.8626 0.8703

HFS

LR 0.7834 0.7989 0.7813 0.7959 0.7974
RF 0.8362 0.7805 0.8496 0.8115 0.7957

KNN 0.8032 0.8018 0.7123 0.7872 0.7944
MLP 0.8421 0.8305 0.7513 0.8257 0.8281
NN 0.8758 0.8518 0.8158 0.8691 0.8604

XGBoost 0.8812 0.8677 0.8126 0.8737 0.8707

SVM-RFE: support vector machine recursive feature elimination; RFFS: random forest feature selection; HFS: hybrid
feature selection; LR: logistic regression; KNN: k-nearest neighbors; NN: neural network; RF: random forest; MLP:
multilayer perceptron; XGBoost: extreme gradient boosting. Highest scores are marked in bold.

As shown in Table 3, we have summarized results of the predictive model in the NHANES
dataset and highest performance of evaluation metrics are marked in bold. For the NHANES dataset,
the best model was distinguished by our proposed XGBoost with HFS in terms of the accuracy,
sensitivity, specificity, precision, and F-score, which reached 0.9309, 0.8944, 0.9522, 0.8874, and 0.8909,
respectively. Moreover, second-best performances were yielded by the XGBoost with RFFS, which
achieved the accuracy of 0.9029, sensitivity of 0.8507, specificity of 0.9379, precision of 0.8264, and
f-score of 0.8384. Otherwise, it can be seen that the XGBoost classifier exhibited the best capability of
probability prediction results incorporating different feature selection methods, significantly.

On the contrary, SVM-RFE method achieved the lowest prediction performances compared
with the other feature selection method; therefore, that SVM-RFE method is not suitable for SiNCDs
predictive models. Besides, the RFFS method performed computable results with the proposed HFS
method in our prediction task. It is well known that accuracy is the most appropriate metric for
evaluating predictive models.

According to the accuracy score, Figures 5 and 6 illustrate the boxplots of the prediction models in
the KNHANES and NHANES datasets. In the figures, x-axis denotes the accuracy scores and y-axis
presents the utilized predictive models on SiNCDs. As depicted in Figure 5, the proposed XGBoost
based framework equipped with HFS presented the highest score in the KNHANES dataset. Thereafter,
NN with HFS showed the second-highest score, otherwise, the HFS method was capable of predicting
the target in this task. By contrast, KNN with SVM-RFE and RFFS with RF models reached the worst
scores of 0.7342 and 0.7804, respectively. Furthermore, the proposed XGBoost with the HFS model also
achieved the highest score in the NHANES dataset as represented in Figure 6. Interestingly, the worst
scores of 0.7349 and 0.7903 were exhibited by the LR with SVM-RFE and LR with HFS, respectively. In
the NHANES dataset, the LR baseline classifier determined the worst predictive model, but results
slightly improved when this classifier was combined with RFFS.
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Table 3. Evaluation results of the prediction models in the National Health and Nutrition Examination
Survey dataset.

Feature
Selection Classifier Accuracy Sensitivity Specificity Precision F-Score

SVM-RFE

LR 0.7349 0.6969 0.8874 0.7086 0.7027
RF 0.8522 0.7904 0.8805 0.8157 0.8029

KNN 0.8118 0.7432 0.8608 0.8105 0.7754
MLP 0.8002 0.7171 0.8759 0.6816 0.6989
NN 0.8339 0.7659 0.8397 0.7609 0.7634

XGBoost 0.8248 0.7707 0.8512 0.8066 0.7882

RFFS

LR 0.8356 0.7169 0.8685 0.6938 0.7052
RF 0.8741 0.7863 0.9065 0.7356 0.7601

KNN 0.8444 0.7716 0.8635 0.7594 0.7655
MLP 0.8221 0.7043 0.8949 0.6842 0.6941
NN 0.8639 0.7651 0.9003 0.7534 0.7592

XGBoost 0.9029 0.8507 0.9379 0.8264 0.8384

HFS

LR 0.7903 0.7781 0.8990 0.7732 0.7756
RF 0.8961 0.8157 0.9136 0.7857 0.8004

KNN 0.8363 0.7928 0.8990 0.7981 0.7954
MLP 0.7918 0.7586 0.9083 0.7635 0.7610
NN 0.8553 0.8173 0.8808 0.7934 0.8052

XGBoost 0.9309 0.8944 0.9522 0.8874 0.8909

Highest scores are marked in bold.
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Table 4 shows the AUC analysis results of the predictive models in the KNHANES and NHANES
datasets; results were verified by statistical significance test. It is evidently seen that, in terms of AUC,
predictive models were statistically significant. A careful look at the results of KNHANES dataset,
the highest performance of 0.8887 (95% CI, 0.8659–0.9005) was scored by NN with RFFS, following by
0.8402 (95% CI, 0.8384–0.8635) was achieved by our proposed XGBoost with the HFS model. Whilst
SVM-RFE with the KNN model performed the lowest performance of 0.7170 (95% CI, 0.7094–0.7390)
in this analysis. For the NHANES dataset, the proposed model indicated the better performances of
0.9233 (95% CI, 0.9073–0.9345) than other benchmark baselines. Moreover, XGBoost with the RFFS
model achieved the second-best performance of 0.8943 (95% CI, 0.8757–0.9013), followed by HFS with
RF of 0.8647 (95% CI, 0.8564–0.8859), significantly. These results provided evidence that our ensemble
models evaluated the better performances among other baseline models in the NHANES dataset.

Figure 7 illustrates the ROC curves for the SiNCDs predictive models on the three kinds of
feature selection methods across KNHANES and NHANES datasets. In ROC curves analysis, we
can demonstrate the separation and discrimination ability of the predictive models. The ROC curve
was plotted with the measurements of true positive rate (sensitivity) along with the y-axis, and false
positive (1-specificity) along with the x-axis. For the KNHANES dataset, ROC curves of NN and
XGBoost classifiers represented high results across SVM-RFE based models. RFFS based NN and
XGBoost models indicated notably higher results compared with RFFS based models, significantly.
Moreover, the three-stage HFS method based classifiers showed fluently good results among other
baselines. ROC curve analysis of the NHANES dataset, the RF, and XGBoost classifiers incorporated
with SVM-RFE had higher results across other SVM-RFE based models. Moreover, it can be seen that
the proposed HFS based XGBoost model emerged as being a good combination model, as it can reach
notable significant results than the other HFS and RFFS based baseline models.
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Table 4. Statistical significance test of the area under the curve results for predictive models in
the KNHANES and NHANES datasets.

Feature
Selection Classifier

KNHANES Dataset NHANES Dataset

AUC CI 95% p-Value AUC CI 95% p-Value

SVM-RFE

LR 0.7675 0.7474–0.7896 <0.001 0.7922 0.7731–0.8088 <0.001
RF 0.7987 0.7869–0.8118 <0.001 0.8355 0.8254–0.8668 <0.001

KNN 0.7170 0.7094–0.7390 <0.001 0.8020 0.7818–0.8210 <0.001
MLP 0.7864 0.7703–0.8001 <0.001 0.7965 0.7851–0.8180 <0.001
NN 0.8239 0.8017–0.8405 <0.001 0.8028 0.7981–0.8447 <0.001

XGBoost 0.8209 0.8097–0.8327 <0.001 0.8110 0.8041–0.8315 <0.001

RFFS

LR 0.7397 0.7713–0.7971 <0.001 0.7927 0.7806–0.8197 <0.001
RF 0.7519 0.7683–0.8111 <0.001 0.8464 0.8359–0.8637 <0.001

KNN 0.7395 0.7570–0.8037 <0.001 0.8176 0.8070–0.8308 <0.001
MLP 0.7602 0.7721–0.8267 <0.001 0.7996 0.7872–0.8135 <0.001
NN 0.8887 0.8659–0.9005 <0.001 0.8327 0.8206–0.8492 <0.001

XGBoost 0.8383 0.8245–0.8567 <0.001 0.8943 0.8757–0.9013 <0.001

HFS

LR 0.7901 0.7812–0.8253 <0.001 0.8386 0.8234–0.8539 <0.001
RF 0.8151 0.7947–0.8286 <0.001 0.8647 0.8564–0.8859 <0.001

KNN 0.7571 0.7401–0.7796 <0.001 0.8459 0.8284–0.8653 <0.001
MLP 0.7909 0.7846–0.8243 <0.001 0.8335 0.8195–0.8506 <0.001
NN 0.8338 0.8249–0.8494 <0.001 0.8491 0.8310–0.8588 <0.001

XGBoost 0.8402 0.8384–0.8635 <0.001 0.9233 0.9073–0.9345 <0.001

Highest scores are marked in bold.

The results of the KNHANES dataset reported in Table 4 and Figure 6 indicate the enhanced
performances of not only the XGBoost classifier, but also the RFFS based NN considered as a computable
model during the comparison task.

3.4. Interpretability of Predictive Model

Prediction performance concerns the ability of the best predictive model to make correct decisions.
Meanwhile, predictive model interpretability concerns the understanding of model decisions by
humans. Interpretability methods can be categorized into three types: explain data, build an inherently
interpretable model (in modeling), and allow to explain it after building the models [43]. In practice,
there have been some needs for using machine learning models to ensure which factors are used
to make key decisions with boosted trees [44]. Model inherent interpretability is important to get
a reasoning behind the predictive models. However, model interpretability tends to be ignored in
previous studies [15,16].

Our proposed XGBoost based framework incorporated with HFS provides important features in
order to enhance the interpretability of SiNCDs prediction model across KNHANES and NHANES
datasets as depicted in Figures 8 and 9. To ensure model interpretability, features were sorted in
descending order of their importance scores in XGBoost based model construction in each dataset.
For the KNHANES dataset, “monthly drinking rate”, “depression diagnosis”, “lifetime drinking
experience”, and “total cholesterol“ were maintained as the most useful features, with importance
scores of 0.2933, 0.2551, 0.1940, and 0.1763 to predict SiNCDs among the Korean population, as shown
in Figure 8. While with the NHANES dataset analysis, it is evidently shown that “doctor ever said you
were overweight”, “the number of people who smoke inside this home”, “general health condition”,
and “age” were determined as the most important scores with 0.2158, 0.1754, 0.1621, and 0.1492,
respectively, across the general population in the United States, as presented in Figure 9.
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overweight, cholesterol levels, and obesity, similarly. This result is similar to that study [47], where
high rates of overweight and obesity increased the burden of type 2 diabetes, coronary heart disease,
and stroke in most countries in the Middle East. According to Kinra et al. [48], the risks for severe
illness from NCDs increased with older adults in 1600 villages from 18 states in India. Moreover,
they identified that lower socioeconomic status is associated with smoking, alcohol use, low intake of
fruit (vegetables), and underweight, whereas, higher socioeconomic status is associated with greater
exposure to obesity, dyslipidemia, diabetes in men, and hypertension in women. In particular, authors
highlighted that the prevalence of cigarette smoking among men and obesity among women was
significantly higher in rural India. Dan et al. [49] examined the main (and interaction) effects of age,
gender, body mass index (BMI), and dietary intake among Korean hypertensive patients. Their analysis
has found that BMI, energy intake, and cholesterol intake decreased in the older-aged group compared
to the middle-aged group. In addition, their findings interpreted that both genders considered weight
and dietary management for reducing the incidence of hypertension. In one study, Maimela et al. [50]
determined the prevalence of risk factors of NCDs among rural communities in the Limpopo Province
of South Africa. Their results defined that tobacco prevalence, alcohol consumption, and being
overweight has consistently higher association with NCDs among adults.

Otherwise, most of the notable risk factors for NCDs in each dataset were represented as modifiable.
It is well known that modifiable risk factors are behaviors and exposures that are highly associated
with the risk of developing various diseases. In order to prevent and correct these modifiable risk
factors, it required actions, such as smoking cessation, alcohol reduction, and exercise in public health.
The highly scored features enhance rational decisions in smoking-related health concerns and should
be collected in SiNCDs prediction data. In addition, this analysis is expected to compare the similarities
and differences between populations of two different countries for SiNCDs prediction.

4. Conclusions

In this study, we proposed extreme gradient boosting (XGBoost) based framework incorporated
with a hybrid feature selection (HFS) method for SiNCDs prediction, using real-world National
Health and Nutrition Examination Survey (NHANES) datasets of South Korea and the United States.
The proposed framework consisted of three main steps: first, a three-stage hybrid feature selection
method to select important features, then built the XGBoost predictive model to accomplish the task
of predicting SiNCDs, and, finally, the framework provided the XGBoost based feature importance
scores to enhance the understanding of the reasoning behind the predictive models. The model
under the proposed framework was compared against various existing baselines and it has shown
superior performance in terms of accuracy measures across each dataset. We also determined the most
representative features for SiNCDs in the general populations of South Korea and the United States.
Although the study has successfully demonstrated that smoking induced serious health hazards, it has
certain limitations in terms of interpretability of deep learning, known as the black-box. In the future,
this study can be extended by addressing the problem of global and local interpretability of black-box
models and causal effect in the scenario of predictive models.
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Appendix A

Table A1. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) Checklist: Prediction Model Development
and Validation.

Section/Topic Item Checklist Item Page

Title and abstract

Title 1 D; V Identify the study as developing and/or validating a multivariable
prediction model, the target population, and the outcome to be predicted. 1

Abstract 2 D; V Provide a summary of objectives, study design, setting, participants, sample
size, predictors, outcome, statistical analysis, results, and conclusions. 2

Introduction

Background and
objectives

3a D; V
Explain the medical context (including whether diagnostic or prognostic)
and rationale for developing or validating the multivariable prediction
model, including references to existing models.

2–3

3b D; V Specify the objectives, including whether the study describes
the development or validation of the model or both. 3–5

Methods

Source of data

4a D; V
Describe the study design or source of data (e.g., randomized trial, cohort,
or registry data), separately for the development and validation datasets, if
applicable.

6–7

4b D; V Specify the key study dates, including start of accrual; end of accrual; and, if
applicable, end of follow-up. 6–7

Participants

5a D; V Specify key elements of the study setting (e.g., primary care, secondary care,
general population), including number and location of centers. 6–7

5b D; V Describe eligibility criteria for participants. 6–7
Figures 3 and 4

5c D; V Give details of treatments received, if relevant. n/a

Outcome
6a D; V Clearly define the outcome that is predicted by the prediction model,

including how and when assessed. 8–12

6b D; V Report any actions to blind assessment of the outcome to be predicted. 9–12
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Table A1. Cont.

Section/Topic Item Checklist Item Page

Predictors
7a D; V Clearly define all predictors used in developing the multivariable prediction

model, including how and when they were measured. 7–8

7b D; V Report any actions to blind assessment of predictors for the outcome and
other predictors. 7–8

Sample size 8 D; V Explain how the study size was arrived at. 7–8

Missing data 9 D; V
Describe how missing data were handled (e.g., complete-case analysis,
single imputation, multiple imputation) with details of any imputation
method.

7

Statistical
analysis
methods

10a D Describe how predictors were handled in the analyses. 7–8

10b D Specify type of model, all model-building procedures (including any
predictor selection), and method for internal validation.

4–5, 8
Figure 1

10c V For validation, describe how the predictions were calculated. 8

10d D; V Specify all measures used to assess model performance and, if relevant, to
compare multiple models.

8
Figure 2

10e V Describe any model updating (e.g., recalibration) arising from the validation,
if done. 8

Risk groups 11 D; V Provide details on how risk groups were created, if done. 7

Development vs.
validation 12 V For validation, identify any differences from the development data in

setting, eligibility criteria, outcome, and predictors. 8

Results

Participants

13a D; V
Describe the flow of participants through the study, including the number of
participants with and without the outcome and, if applicable, a summary of
the follow-up time. A diagram may be helpful.

Figures 3 and 4

13b D; V
Describe the characteristics of the participants (basic demographics, clinical
features, available predictors), including the number of participants with
missing data for predictors and outcome.

Figures 3 and 4

13c V
For validation, show a comparison with the development data of
the distribution of important variables (demographics, predictors, and
outcome).

Tables A2 and A3
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Table A1. Cont.

Section/Topic Item Checklist Item Page

Model
development

14a D Specify the number of participants and outcome events in each analysis. 7–8

14b D If done, report the unadjusted association between each candidate predictor
and outcome. 8–9

Model
specification

15a D
Present the full prediction model to allow predictions for individuals (i.e., all
regression coefficients, and model intercept or baseline survival at a given
time point).

10

15b D Explain how to use the prediction model. 8–12

Model
performance 16 D; V Report performance measures (with CIs) for the prediction model. 11

Table 4

Model-updating 17 V If done, report the results from any model updating (i.e., model
specification, model performance). 12–13

Discussion

Limitations 18 D; V Discuss any limitations of the study (such as non-representative sample, few
events per predictor, missing data). 15

Interpretation

19a V For validation, discuss the results with reference to performance in
the development data, and any other validation data. 13–14

19b D; V Give an overall interpretation of the results, considering objectives,
limitations, results from similar studies, and other relevant evidence. 14–15

Implications 20 D; V Discuss the potential clinical use of the model and implications for future
research. 14–15

Other information

Supplementary
information 21 D; V Provide information about the availability of supplementary resources, such

as study protocol, web calculator, and datasets. 16–18

Funding 22 D; V Give the source of funding and the role of the funders for the present study. 15

Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both
are denoted D; V.
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Appendix B

Table A2. Bivariate and Multicollinearity analysis for KNHANES dataset.

Features p-Value Multicollinearity
Coefficient

1 Gender <0.01 1.081
2 Age <0.01 1.523
3 Household income <0.01 2.901
4 Education <0.01 1.125
5 Occupation <0.01 2.016
6 Marital status <0.01 3.553
7 Subjective health status <0.01 1.778
8 Depression diagnosis <0.01 1.286
9 Health checkup status <0.01 1.047
10 Athletic ability <0.01 1.124
11 Self-management 0.16 ~
12 Daily activities 0.58 ~
13 Pain/discomfort <0.01 2.229
14 Anxious/Depressed <0.01 4.345
15 EQ-5D index <0.01 2.473
16 Economic activity status 0.50 ~
17 Weight control: exercise <0.01 3.329
18 Lifetime drinking experience <0.01 1.171
19 Start drinking age <0.01 1.003
20 Frequency of drinking for 1 year <0.01 1.532
21 Monthly drinking rate <0.01 3.152
22 Stress level <0.01 3.033
23 Indoor indirect smoking exposure <0.01 1.221
24 The usual time spent sitting (day) <0.01 1.096
25 Walk duration (hours) <0.01 1.114
26 Family history of chronic disease <0.01 1.087
27 Body mass index (kg/m2) <0.01 1.048
28 Obesity prevalence <0.01 2.675
29 Fasting blood sugar <0.01 2.536
30 Total cholesterol <0.01 1.151
31 Flexible exercise days per week <0.01 1.038
32 Residence area <0.01 1.547

Table A3. Bivariate and Multicollinearity analysis for NHANES dataset.

Features p-Value Multicollinearity
Coefficient

1 Gender <0.01 2.005
2 Age <0.01 1.008
3 Body mass index (kg/m2) <0.01 3.005
4 Pulse regular or irregular? 0.19 ~
5 Systolic: blood pressure <0.01 2.015
6 Diastolic: blood pressure <0.01 1.875
7 Education level <0.01 1.076
8 Marital status <0.01 3.092
9 Total number of people in the household 0.32 ~
10 Annual household income <0.01 5.312
11 Health risk for diabetes (among family history) <0.01 3.533
12 Taking insulin or not <0.01 1.453
13 Number of healthcare counseling over past year <0.01 2.027
14 Salt usage level 0.12 ~
15 Total sugars (gm) <0.01 1.298
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Table A3. Cont.

Features p-Value Multicollinearity
Coefficient

16 Alcohol (gm) <0.01 2.479
17 Frequency of alcohol usage <0.01 2.204
18 High cholesterol level <0.01 1.340
19 General health condition <0.01 1.199
20 #times receive healthcare over past year <0.01 1.249
21 Received hepatitis A vaccine <0.01 2.012
22 Family monthly poverty level category <0.01 1.004
23 Doctor ever said you were overweight <0.01 1.012
24 Doctor told you to exercise <0.01 1.004
25 Feeling down, depressed, or hopeless <0.01 1.012
26 Feeling tired or having little energy <0.01 1.004
27 Poor appetite or overeating <0.01 5.005
28 Trouble concentrating on things <0.01 2.292
29 Description of job/work situation 0.13 ~
30 Ever told doctor had trouble sleeping? <0.01 1.012
31 Number of people who live here smoke tobacco? <0.01 1.035
32 Number of people who smoke inside this home? <0.01 1.424
33 Last 7-d worked at job not at home? <0.01 2.404
34 Last 7-d at job someone smoked indoors? <0.01 1.205
35 Last 7-d in other indoor area? <0.01 2.108

References

1. Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Cohen, A.J. Global,
regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and
metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study
2015. Lancet 2016, 388, 1659–1724. [CrossRef]

2. Kathirvel, S. Sustainable development goals and noncommunicable diseases: Roadmap till 2030–A plenary
session of world noncommunicable diseases congress 2017. Int. J. Noncommunicable Dis. 2018, 3, 3. [CrossRef]

3. World Health Organization. Action plan for the prevention and control of noncommunicable diseases in
the WHO European Region. In Proceedings of the Regional Committee for Europe 66th Session, Copenhagen,
Denmark, 12–15 September 2016.

4. Vardavas, C.I.; Nikitara, K. COVID-19 and smoking: A systematic review of the evidence. Tob. Induc. Dis.
2020, 18. [CrossRef] [PubMed]

5. Berlin, I.; Thomas, D.; Le Faou, A.L.; Cornuz, J. COVID-19 and smoking. Nicotine Tob. Res. 2020. [CrossRef]
[PubMed]

6. Yoon, J.; Seo, H.; Oh, I.H.; Yoon, S.J. The non-communicable disease burden in Korea: Findings from the 2012
Korean Burden of Disease Study. J. Korean Med Sci. 2016, 31 (Suppl. 2), S158–S167. [CrossRef]

7. Chen, S.; Kuhn, M.; Prettner, K.; Bloom, D.E. The macroeconomic burden of noncommunicable diseases in
the United States: Estimates and projections. PLoS ONE 2018, 13, e0206702. [CrossRef]

8. Hu, X.; Wang, Y.; Huang, J.; Zheng, R. Cigarette Affordability and Cigarette Consumption among Adult and
Elderly Chinese Smokers: Evidence from A Longitudinal Study. Int. J. Environ. Res. Public Health 2019, 16,
4832. [CrossRef]

9. Davagdorj, K.; Yu, S.H.; Kim, S.Y.; Huy, P.V.; Park, J.H.; Ryu, K.H. Prediction of 6 Months Smoking Cessation
Program among Women in Korea. Int. J. Mach. Learn. Comput. 2019, 9, 83–90. [CrossRef]

10. Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Murray, C.J. Smoking
prevalence and cigarette consumption in 187 countries, 1980-2012. JAMA 2014, 311, 183–192. [CrossRef]

11. Davagdorj, K.; Lee, J.S.; Park, K.H.; Ryu, K.H. A machine-learning approach for predicting success in smoking
cessation intervention. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science
and Technology (iCAST), Morioka, Japan, 23–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

http://dx.doi.org/10.1016/S0140-6736(16)31679-8
http://dx.doi.org/10.4103/jncd.jncd_1_18
http://dx.doi.org/10.18332/tid/119324
http://www.ncbi.nlm.nih.gov/pubmed/32206052
http://dx.doi.org/10.1093/ntr/ntaa059
http://www.ncbi.nlm.nih.gov/pubmed/32242236
http://dx.doi.org/10.3346/jkms.2016.31.S2.S158
http://dx.doi.org/10.1371/journal.pone.0206702
http://dx.doi.org/10.3390/ijerph16234832
http://dx.doi.org/10.18178/ijmlc.2019.9.1.769
http://dx.doi.org/10.1001/jama.2013.284692


Int. J. Environ. Res. Public Health 2020, 17, 6513 21 of 22

12. Al-Obaide, M.A.; Ibrahim, B.A.; Al-Humaish, S.; Abdel-Salam, A.S.G. Genomic and bioinformatics approaches
for analysis of genes associated with cancer risks following exposure to tobacco smoking. Front. Public Health
2018, 6, 84. [CrossRef]

13. Kondo, K.; Ohfuji, S.; Watanabe, K.; Yamagami, H.; Fukushima, W.; Ito, K. Japanese Case-Control Study
Group for Crohn’s disease. The association between environmental factors and the development of Crohn’s
disease with focusing on passive smoking: A multicenter case-control study in Japan. PLoS ONE 2019, 14,
e0216429. [CrossRef] [PubMed]

14. Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken Jr, R.L.; Mandel, J.S. Association between Parkinson’s
disease and cigarette smoking, rural living, well-water consumption, farming and pesticide use: Systematic
review and meta-analysis. PLoS ONE 2016, 11, e0151841. [CrossRef] [PubMed]

15. Chen, R.; Lin, J. Identification of feature risk pathways of smoking-induced lung cancer based on SVM.
PLoS ONE 2020, 15, e0233445. [CrossRef] [PubMed]

16. Amaral, J.L.; Lopes, A.J.; Jansen, J.M.; Faria, A.C.; Melo, P.L. An improved method of early diagnosis of
smoking-induced respiratory changes using machine learning algorithms. Comput. Methods Programs Biomed.
2013, 112, 441–454. [CrossRef]

17. Piao, Y.; Piao, M.; Ryu, K.H. Multiclass cancer classification using a feature subset-based ensemble from
microRNA expression profiles. Comput. Biol. Med. 2017, 80, 39–44. [CrossRef]

18. Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]

19. Zihni, E.; Madai, V.I.; Livne, M.; Galinovic, I.; Khalil, A.A.; Fiebach, J.B.; Frey, D. Opening the black box of
artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 2020, 15,
e0231166. [CrossRef]

20. Salmerón Gómez, R.; García Pérez, J.; López Martín, M.D.M.; García, C.G. Collinearity diagnostic applied in
ridge estimation through the variance inflation factor. J. Appl. Stat. 2016, 43, 1831–1849. [CrossRef]

21. Meier, L.; Van De Geer, S.; Bühlmann, P. The group lasso for logistic regression. J. R. Stat. Soc. Ser. B
(Stat. Methodol.) 2008, 70, 53–71. [CrossRef]

22. Belloni, A.; Chernozhukov, V.; Hansen, C. High-dimensional methods and inference on structural and
treatment effects. J. Econ. Perspect. 2014, 28, 29–50. [CrossRef]

23. Ghosh, D.; Zhu, Y.; Coffman, D.L. Penalized regression procedures for variable selection in the potential
outcomes framework. Stat. Med. 2015, 34, 1645–1658. [CrossRef] [PubMed]

24. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd
International Conference on Knowledge Discovery and Data Mining, New York, CA, USA, 13–17 August
2016; pp. 785–794.

25. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Vanderplas, J. Scikit-learn:
Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

26. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of
the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010.

27. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90. [CrossRef]
28. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to

Build Intelligent Systems, 2nd ed.; Géron, A., Ed.; O’Reilly Media Inc.: Seastopol, CA, USA, 2019.
29. Bagley, S.C.; White, H.; Golomb, B.A. Logistic regression in the medical literature: Standards for use and

reporting, with particular attention to one medical domain. J. Clin. Epidemiol. 2001, 54, 979–985. [CrossRef]
30. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
31. Tan, P.N. Introduction to Data Mining, Pearson Education India; Indian Nursing Council: New Delhi, India, 2018.
32. Lisboa, P.J. A review of evidence of health benefit from artificial neural networks in medical intervention.

Neural Netw. 2002, 15, 11–39. [CrossRef]
33. Mazurowski, M.A.; Habas, P.A.; Zurada, J.M.; Lo, J.Y.; Baker, J.A.; Tourassi, G.D. Training neural network

classifiers for medical decision making: The effects of imbalanced datasets on classification performance.
Neural Netw. 2008, 21, 427–436. [CrossRef]

34. Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Xu, G. A support vector machine-recursive
feature elimination feature selection method based on artificial contrast variables and mutual information.
J. Chromatogr. B 2012, 910, 149–155. [CrossRef]

http://dx.doi.org/10.3389/fpubh.2018.00084
http://dx.doi.org/10.1371/journal.pone.0216429
http://www.ncbi.nlm.nih.gov/pubmed/31173593
http://dx.doi.org/10.1371/journal.pone.0151841
http://www.ncbi.nlm.nih.gov/pubmed/27055126
http://dx.doi.org/10.1371/journal.pone.0233445
http://www.ncbi.nlm.nih.gov/pubmed/32497048
http://dx.doi.org/10.1016/j.cmpb.2013.08.004
http://dx.doi.org/10.1016/j.compbiomed.2016.11.008
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1371/journal.pone.0231166
http://dx.doi.org/10.1080/02664763.2015.1120712
http://dx.doi.org/10.1111/j.1467-9868.2007.00627.x
http://dx.doi.org/10.1257/jep.28.2.29
http://dx.doi.org/10.1002/sim.6433
http://www.ncbi.nlm.nih.gov/pubmed/25628185
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/S0895-4356(01)00372-9
http://dx.doi.org/10.1016/S0893-6080(01)00111-3
http://dx.doi.org/10.1016/j.neunet.2007.12.031
http://dx.doi.org/10.1016/j.jchromb.2012.05.020


Int. J. Environ. Res. Public Health 2020, 17, 6513 22 of 22

35. Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012;
pp. 307–323.

36. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement. Circulation 2015, 131,
211–219. [CrossRef]

37. Korea Centers for Disease Control & Prevention. Available online: http://knhanes.cdc.go.kr (accessed on 7
September 2020).

38. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/nhanes (accessed
on 7 September 2020).

39. Davagdorj, K.; Lee, J.S.; Pham, V.H.; Ryu, K.H. A Comparative Analysis of Machine Learning Methods for
Class Imbalance in a Smoking Cessation Intervention. Appl. Sci. 2020, 10, 3307. [CrossRef]

40. Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146.
[CrossRef]

41. Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for
evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela,
Spain, 21–23 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359.

42. Altman, D.G.; Bland, J.M. Diagnostic tests. 1: Sensitivity and specificity. BMJ Br. MedJ. 1994, 308, 1552.
[CrossRef] [PubMed]

43. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and
metrics. Electronics 2019, 8, 832. [CrossRef]

44. Elshawi, R.; Al-Mallah, M.H.; Sakr, S. On the interpretability of machine learning-based model for predicting
hypertension. BMC Med. Inform. Decis. Mak. 2019, 19, 146. [CrossRef]

45. Wakabayashi, M.; McKetin, R.; Banwell, C.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.A. Thai Cohort
Study Team. Alcohol consumption patterns in Thailand and their relationship with non-communicable
disease. BMC Public Health 2015, 15, 1297. [CrossRef] [PubMed]

46. Kim, H.C.; Oh, S.M. Noncommunicable diseases: Current status of major modifiable risk factors in Korea. J.
Prev. Med. Public Health 2013, 46, 165. [CrossRef]

47. Kilpi, F.; Webber, L.; Musaigner, A.; Aitsi-Selmi, A.; Marsh, T.; Rtveladze, K.; Brown, M. Alarming predictions
for obesity and non-communicable diseases in the Middle East. Public Health Nutr. 2014, 17, 1078–1086.
[CrossRef]

48. Kinra, S.; Bowen, L.J.; Lyngdoh, T.; Prabhakaran, D.; Reddy, K.S.; Ramakrishnan, L.; Smith, G.D.
Sociodemographic patterning of non-communicable disease risk factors in rural India: A cross sectional
study. BMJ 2010, 341, c4974. [CrossRef]

49. Dan, H.; Kim, J.; Kim, O. Effects of gender and age on dietary intake and body mass index in hypertensive
patients: Analysis of the korea national health and nutrition examination. Int. J. Environ. Res. Public Health
2020, 17, 4482. [CrossRef]

50. Maimela, E.; Alberts, M.; Modjadji, S.E.; Choma, S.S.; Dikotope, S.A.; Ntuli, T.S.; Van Geertruyden, J.P.
The prevalence and determinants of chronic non-communicable disease risk factors amongst adults in
the Dikgale health demographic and surveillance system (HDSS) site, Limpopo Province of South Africa.
PLoS ONE 2016, 11, e0147926. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1161/CIRCULATIONAHA.114.014508
http://knhanes.cdc.go.kr
https://www.cdc.gov/nchs/nhanes
http://dx.doi.org/10.3390/app10093307
http://dx.doi.org/10.1007/s11222-009-9153-8
http://dx.doi.org/10.1136/bmj.308.6943.1552
http://www.ncbi.nlm.nih.gov/pubmed/8019315
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.1186/s12911-019-0874-0
http://dx.doi.org/10.1186/s12889-015-2662-9
http://www.ncbi.nlm.nih.gov/pubmed/26704520
http://dx.doi.org/10.3961/jpmph.2013.46.4.165
http://dx.doi.org/10.1017/S1368980013000840
http://dx.doi.org/10.1136/bmj.c4974
http://dx.doi.org/10.3390/ijerph17124482
http://dx.doi.org/10.1371/journal.pone.0147926
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials Methods 
	Proposed Framework 
	Three-Stage HFS 
	XGBoost Classifier 

	Experimental Setup 
	Experimental Environment 
	Baseline Models 


	Experimental Results and Discussion 
	Dataset 
	The Results of Hybrid Feature Selection (HFS) 
	The Results of the Comparative Analysis 
	Interpretability of Predictive Model 

	Conclusions 
	
	
	References

