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Abstract: The South African mining industry is one of the largest producers of platinum (Pt) in the
world. Workers in this industry are exposed to significant amounts of dust, and this dust consists
of particles sizes that can penetrate deep inside the respiratory region. A cross-sectional study was
conducted to evaluate dust exposure risk at two Pt mine waste rock crusher plants (Facility A and
B) in Limpopo, South Africa. Workers’ demographic and occupational information was collected
through a structured questionnaire, a walk-through observation on facilities’ processes, and static
dust sampling for the collection of inhalable and respirable dust particles using the National Institute
for Occupational Safety and Health (NIOH) 7602 and the Methods for Determination of Hazardous
Substance (MDHS) 14/4 as guidelines. Only 79% of Pt mine workers, used their respiratory protective
equipment (RPE), sixty-five percent were exposed to work shifts exceeding the recommended eight
hours and 8.8% had been employed for more than ten years. The mean time-weighted average (TWA)
dust concentrations between Facility A and B showed a significant difference (p < 0.026). The Pt mine’s
inhalable concentrations (range 0.03–2.2 mg/m3) were higher than the respirable concentrations (range
0.02–0.7 mg/m3), however were all below the respective international and local occupational exposure
limits (OELs). The Pt mine’s respirable crystalline silica (SiO2) quartz levels were all found below the
detectable limit (<0.01 mg/m3). The Pt miners had increased health risks due to accumulated low
levels of dust exposure and lack of usage of RPE. It is recommended that an improved dust control
program be put in place which includes, but is not limited to, stockpile enclosures, tire stops with
water sprays, and education on the importance of RPE usage.

Keywords: South Africa; platinum mining; crusher plants; dust; inhalable; respirable; risk assessment

1. Introduction

In response to the demand the mining industry has expanded by 3.7% in 2017, with platinum (Pt)
comprising 26% of mineral exports [1]. The Pt industry became the major contributor to the South
African (SA) mining sector after the decline of gold production [2]. According to the Chamber of Mines
of SA (2018), the Pt industry generated 8 billion rand in sales in 2017 [3]. Furthermore, the SA Chamber
of Mines indicated that more than 175,000 people were employed in the sector in 2018 [3].

Haque et al. (2014) defined Pt mining as the process of extracting the mineral from the Earth’s
crust and the removal of the economic ore [4]. Pt mining categories include underground and opencast
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operations, with the latter presenting exposure of mine workers to dust particles [4]. Pt mining
activities generate residues such as waste rock, which are materials that are not valuable economically.
The mine waste generated during the course of Pt mining activities is regulated by the SA Mining
Residues Regulations [5] published under National Environment Management Amendment Waste Act
(NEMWA, Act 26) of 2014 [6]. The innovative methods currently used in managing Pt mine waste
include crusher plants that turn underground mine waste rock into various construction products.
The crusher plants perform opencast mining activities which are part of the growing small-scale mining
sector [7]. However, these facilities’ mining processes involve crushing and screening of the mine
waste rock, which inevitably produces dust particles. These dust particles are classified into coarse
and fine particles and exposure occurs when these particles are inhaled during mining operations and
pose various respiratory risks depending on the size of the particle [8].

There are major health challenges in the mining industry such as pulmonary tuberculosis (PTB).
The other challenge is silicosis as most mineral rocks have crystalline free silica (also known as
quartz). Surface Pt mining is a leading cause of exposure to excessive dust particles that are harmful to
health and are associated with various causes of silicosis and pneumoconiosis [9], with the respirable
crystalline silica (SiO2) quartz generated during stone crushing linked to increased occurrences of
pulmonary tuberculosis and chronic lung disease. Ndaba’s (2017) study also found the existence of
silicosis in Pt miners in 544 out of 6662 certified cases in 2004 [10]. This is attributed to exposure
to dust particles, specifically silica dust, which is considered a risk factor for the development of
PTB [3]. The Department of Mineral Resources reported 2838 TB cases in 2012, with the Pt mining
sector contributing the second-highest number (895) [3]. Phillips et al. (2014) mentioned that workers
with the disease or the potential to develop disease from silica dust exposure might be working in the
Pt mining sector due to cross-recruitment, which often occurs from gold to Pt mines [11]. To explore
the potential Pt risk in mine workers who had never had worked in another mining sector aside from
Pt mining, Nelson and Murray (2013) conducted a descriptive case-series study in SA from 1975 to
2009, which showed an autopsy crude prevalence of 0.06% and 0.30% potential silicosis in the case of
Pt miners [12].

Occupational health and safety (OHS) should remain the number one priority in mining. A research
study showed that mining operations were still the leading cause of exposures harmful to health and
associated with various causes of occupational accidents and diseases [7]. For example, in SA, Pt mining
contributed 25 fatalities and injuries between January and October 2017, with similar statistics for
2016 within the same period [13]. Pt mineworkers’ exposure variations are due to the different mining
activities, particle amounts, and the particle size’s ability to penetrate a specified respiratory region.

Pt mining in SA is under-researched, which hinders the publication of information in line with
dust particles exposure and associated health effects. A study by Nelson and Murray (2013) indicated
that most Pt miners’ medical records were not complete; thus, not enough evidence was available to
make conclusive findings with regard to dust production and exposure to dust particles during Pt
mining [12]. Another challenge was that the migration of miners from one mine to another makes it
difficult to find conclusive evidence of dust particle exposure in Pt mining. To minimize the chance
of including miners that had been exposed to dust particles outside of the Pt mining sector, Nelson
and Murray (2013) conducted a descriptive case series study in SA from 1975 to 2009 [12]. This study
included miners who had never worked in any mining sector other than the Pt industry. The results
showed evidence of health effects as a result of exposure to dust particles, for example, silicosis in
some of the miners. The probable health effects that may occur due to exposure to any amount of dust
are determined by the chemical properties of such dust particles.

There are several standards to manage production of dust particles and exposure during Pt
mining, but there is little evidence that these standards are sufficiently addressing the problem of dust
production and the exposure of mine workers to this dust. Therefore, when protective occupational
exposure limits (OELs) are set for mining, a large number of workers will be protected.
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This study was conducted at two pre-selected mine waste rock crusher plants (named Facility A
and B) situated in the Limpopo Province of SA, which is known as the Bushveld Igneous Complex.
The methodologies used in this study were selected to confirm the dust particle exposure of Pt mine
workers in the crusher plants by characterizing dust into size, mass concentration, and hazardous
pollutants through exposure monitoring conducted over the standard eight-hour day using a
time-weighted average (TWA), with a comparison made with what is acceptable in terms of local
and international occupational health standards. The first stage was to identify and evaluate the
workplaces (i.e., mine waste rock crusher plants) through a walk-through survey and followed by
a self-administered questionnaire. The third stage was conducted using area (static or fixed) dust
sampling in the chosen mine waste rock crusher plants.

2. Materials and Methods

2.1. Study Design and Sample

This is a descriptive cross-sectional study using quantitative measures to gather information
on occupational dust particle exposure. A stratified sampling method was used with an inclusion
criterion predefined by homogeneous exposure group or based on work-task, and the Pt mine workers’
were divided into occupations to establish the difference in exposure. Office workers and security
guards were excluded as they were not involved in the production or handling of the waste rock.
The target sample size to complete the questionnaire included the existing 100 permanent Pt mine
workers. However, out of the 100 total Pt mine workers in the inclusion criteria of both facilities, only 34
respondents (34%) were reached for this study due to low production and facilities process schedules.

This methodological approach involved identifying of the characteristics of a population at one
point in time and presenting the situation in the facilities as it is, in order to confirm or investigate the
Pt mine workers’ dust exposure phenomenon through dust sampling.

2.2. Data Collection Instruments

In this study, data collection was divided into three stages, which included a walkthrough
observation, a close ended self-administered questionnaire, and static dust sampling.

2.2.1. Walk-Through Observations

The first stage was to identify and evaluate the workplaces’ (waste rock crusher plants) handling
processes by means of a walk-through survey along with the site manager of each facility. This process
was necessary to provide the basis for the quantitative dust assessment.

2.2.2. Self-Administered Questionnaire

The second stage was conducted using a previously validated questionnaire (Table S1) from
the British Medical Research Council. It was then developed with specificity to this study by the
authors and the University of Johannesburg’s statistician using close-ended questions to acquire the
Pt mine workers’ biographic and occupational details. The questionnaires were distributed to the 34
respondents on site during lunch breaks, and all participants accepted the English version and did not
request copies translated to any other languages which, prior to the study, were planned to be made
available upon request.

2.2.3. Area Dust Sampling

The third stage entailed using area static dust sampling in the crusher plants conducted in October
2018, following the guidelines of the international standards of National Institute for Occupational
Safety and Health (NIOH) 7602 [14] and the Methods for Determination of Hazardous Substance 14/4
(MDHS) [15] over eight working hours.
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The nine work stations, (five in Facility A and four in Facility B) were based on the facilities’
scheduled process flow on the date of sampling, and contributed to the collected 18 dust samples (nine
inhalable and nine respirable). The workstations were identified during the walk-through survey in
the two waste rock crusher plants (Facility A and Facility B). In Facility A, five workstations were
identified, namely: the feeder, screener, twister crusher, excavator, and front end loader (FEL). Facility
B had four workstations, namely: the feeder station, screening station, multi-stages crusher station,
and excavator.

The dust collection instruments used were multi-fraction Institute of Occupational Medicine
(IOM) samplers, which concurrently collected inhalable and respirable dust particles and meets the
international standards. The larger inhalable (<100 µm) dust particles were drawn through a filter
paper, which was placed between a cassette and a support grid to trap dust particles. The smaller
respirable (<10 µm) dust particles were sampled by a cyclone using the polyvinyl chloride filter
enclosed in a cassette to separate smaller particles from larger ones.

The flow of the calibration method using a rota-meter was 2.2 Liters per minute for the multi-fraction
IOM samplers [14,15], and was checked before and after every sampling to avoid errors in reporting.
The sample filter cassettes were covered and stored in cases when transported to the sampling location.
To ensure that the outcome of samples were traceable, information such as facility identity, sampling
area, the sample identification, and pump start time and end time were recorded on an exposure
assessment field sheet adopted from the Department of Minerals and Energy of SA [16]. The collected
dust sample for this study is communicated as mass of dust per cubic meter (mg/m3) of air.

2.3. Statistical Analysis

A quantitative analysis method was followed for this research for analysis of the numerical data.
Statistical analysis was conducted using Statistical Package for the Social Sciences (SPSS) version
25 [17] for all questionnaire data. Descriptive analyses such as frequencies, percentages, and means
were used to summarize data as appropriate. Gravimetric analysis according to MDHS 14/4 was used
for the dust samples collected. The analysis of this study further used Fourier Transform Infrared
Spectroscopy with potassium bromide for analysis of silica particles [15]. The gravimetric method used
the TWA dust concentration over an eight-hour work shift, which was calculated using the following
formula [18]:

Sample volume (m3) : Flow rate (1/min) × time (min)
Correction filter mass (mg) : Post filter mass − Pre filter mass
Sample mass (mg) : Post weight sample mass − Pre weight sample mass
Corrected sample (mg) : Corrected sample mass − Correction factor.
Concentration (mg/m3) : Mass ÷ Volume (mg/m3).
TWA dust concentration : Concentration × Total sample time (min)

The independent sample t-test was conducted with SPSS to determine if the TWA dust
concentrations from the two facilities were significantly different, with a significance level considered
at α = 0.05.

3. Results

3.1. Workers Demographic and Occupational Characteristics

The highest number of Pt mine workers was found at the cleaning activity group, at 20.6%,
followed by the crushing activity group, at 17.6% (Table 1). Literature has proven that that all workers
are at risk of developing health effects due to dust exposure; however, the risk level could differ
per worker due to demographic characteristics such as age and gender [13,19]. The Safety in Mines
Research Advisory Committee (2001) handbook explains the relationship between gender, age, personal
protective equipment (PPE) usage, length of service, and the cumulative dust exposure as being closely
related [19]. The results showed 85.3% males as compared to 14.7% females (Table 1).
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Table 1. Distribution of platinum mine workers’ demographic and occupational characteristics
by facility.

Facility A Facility B Total

N % N % n %

Age Groups (Years)

Mean/average
age 36.8 N/A 36.9 N/A 36.8 N/A

Maximum 68 N/A 58 N/A 68 N/A
Minimum 23 N/A 28 N/A 23 N/A

20–29 6 30 2 14.3 8 23.5
30–39 7 35 7 50 14 41.2
40–49 5 25 4 28.6 9 26.5
50–59 0 0 1 7.1 1 2.9

60 or more 2 10 0 0 2 5.9
Total 20 100.0 14 100.0 34 100.0

Gender

Males 15 75 14 100 29 85.3
Females 5 25 0 0 5 14.7

Total 20 100.0 14 100.0 34 100.0

Occupational (Activity) Groups

Crushing 4 25.0 2 14.3 6 17.6
Loading and

offloading 3 10.0 2 14.3 5 14.7

Screening 2 10.0 2 14.3 4 11.8
Final storage 2 10.0 1 7.1 3 8.8
Transporting 1 5.0 1 7.1 2 5.9

Cleaning 3 15.0 4 29.0 7 20.6
Water

sprayer 1 5.0 1 7.1 2 5.9

Diesel
attendant 1 5.0 0 0.0 1 2.9

Supervising/foreman 1 5.0 1 7.1 2 5.9
Weighing

bridge 1 5.0 0 0.0 1 2.9

Welding 1 5.0 0 0.0 1 2.9
Total 20 100.0 14 100.0 34 100.0

Length of Employment

Less than 1
year 5 25.0 1 7.1 6 17.6

1 to 5 years 9 45.0 8 57.1 17 50.0
6 to 9 years 4 20.0 4 28.6 8 23.5
10 years or

more 2 10.0 1 7.1 3 8.8

Total 20 100.0 14 100.0 34 100.0

%: percentages; n = number of samples; N/A = not applicable.

Referring to this study’s demographic information, which could affect the significance of exposure,
the Pt mine workers’ average age, was found to be 37 years (range 23 to 68 years). The largest age
group was 30–39 years (41.2%) with similar numbers of workers in each facility. The smallest age group
was found to be the 50–59 year olds (2.9%) which existed only in Facility B. The oldest individuals
(above 60 years of age) were from Facility A alone (Table 1). Out of the 34 Pt mine workers, most of the
workers (38.2%) had working experience of one to four years, while few Pt mine workers (5.9%) had
worked ten years or more (Table 1).
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There was inconsistency or inadequacy in PPE usage, with 3% of participants revealing that they
were not being provided with PPE and, for those provided, 21% admitted to not using their PPE at all
times (Table 2). It was found that the 66.7% of the Pt mine workers who admitted to not wearing PPE at
all times were working for longer than the recommended eight-hour work shift (Table 2). Analysis of
occupational characteristics such as duration of exposure by work shift (Table 2) and length of service
(Table 1) showed that 65% of the participants from both facilities were working for longer than the
recommended eight-hour shifts, and 8.8% of participants had performed ten or more years of service.

Table 2. Cross tabulation of personal protective equipment (PPE usage (with % within usage) and
work shift (with % within each work shift) for each facility.

Facility
Personal Protective Equipment (PPE) Usage

TotalNever Use Almost Every Time At All Times

A 1 (100.0%) 3 (50.0% 16 (59.3% 20 (58.8%)
B 0 (0.0%) 3 (50.0%) 11 (40.7%) 14 (41.2%)

Total 1 (100.0%) 6 (100.0%) 27 (100.0%) 34 (100.0%)

Work Shift

<8 hours 8 hours >8 hours

A 1 (16.7%) 2 (33.3%) 17 (77.3%) 20 (58.8%)
B 5 (83.3%) 4 (66.7%) 5 (22.7%) 14 (41.2%)

Total 6 (100.0%) 6 (100.0%) 22 (100.0%) 34 (100.0%)

3.2. Dust Particle Concentration (Mass)

In SA, the OELs are published by the Department of Mineral Resources, under the Mining, Health,
and Safety (MHS) Act of 1996 (Table 3) [20]. The Pt mine dust respirable particulates were compared
to the SA’s MHS Act OELs, which are the only relevant OELs that exist for this particular hazard
(Pt mine dust respirable particulates). Table 3 reflects high respirable TWA dust concentrations in
Facility B when compared to Facility A. The highest levels of TWA respirable dusts for both facilities
were found at the feeder stations (Facility A at 0.6 mg/m3 and Facility B at 0.7 mg/m3). The lowest
levels of respirable TWA concentrations for each respective facility were found at FEL A (0.022 mg/m3)
and excavator B (at 0.03 mg/m3).

Table 3. Workstations’ Pt mine dust respirable particulate in comparison with the TWA OELs.

Workstation Facility
Time-Weighted Average

(TWA) Concentration
(mg/m3)

OEL Comparison

Hazard: Pt Mine Dust Respirable Particulates (<5% Crystalline Silica Quartz) (<10 µm)
OEL: 3.0 mg/m3

OEL Type: TWA-OEL
Reference: MHS Act, 1996

Feeder station
A 0.586 BL

B 0.081 BL

Screening station
A 0.169 BL

B 0.051 BL

Crusher station
A (twister) 0.432 BL

B (multi-stages) 0.697 BL

Excavator
A 0.028 BL

B 0.026 BL

Front end loader A 0.022 BL

BL: Below limit. MHS: Mining, Health, and Safety; TWA: time-weighted average; OEL: occupational exposure limit.
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Pt mine dust respirable particulates from the facilities were further characterized into Sio2

quartz. This characterization was important as probable health effects may occur due to exposure
as determined by the chemical properties of such dust particles. The international OELs used for
comparison purposes were from United States Department of Labor under the Occupational Safety
and Health Administration (OSHA) as shown in Tables 4 and 5 [21]. Other countries such as Australia,
Belgium, Denmark, France, Greece, Sweden, and the United Kingdom have OELs for respirable SiO2

quartz set at the same amount as SA (0.1 mg/m3), and Italy and Finland have OELs similar to that of
the OSHA OEL, which is set at 0.05 mg/m3. The respirable SiO2 quartz concentrations were found to
be below the respective local and international OELs of 0.1 mg/m3 and 0.05 mg/m3 at all work stations
(Table 4).

Table 4. Respirable crystalline silica (SiO2) quartz OELs of workstations in comparison to other
established OELs.

Workstation Facility

Respirable
Crystalline

Silica (SiO2)
Quartz (mg/m3)

OEL Comparison

Hazard: Pt Mine Dust Respirable Particulates (>5% SiO2) (<10 µm)

MHS Act, 1996 OSHA (2016)

OEL: 0.1 mg/m3

OEL TYPE: TWA
OEL: 0.05 mg/m3

OEL TYPE: PELs

Feeder
station

A <0.01

BL BL BL BL

B <0.01

Screening
station

A <0.01

B <0.01

Crusher
A (twister) <0.01

B
(multi-stages) <0.01

Excavator
A <0.01

B <0.01

Front end
loader A <0.01

<0.01: Below detectable limit; PEL: Permissible exposure limit.

There are no set OELs for Pt mine dust’s inhalable particulates in both local and international
organizations; hence, the OELs for inhalable particles not otherwise classified (PNOCs were used
for this study. The highest inhalable TWA concentration in both Facilities were found at the Feeder
stations (Facility A at 0.7 mg/m3 and Facility B at 2.2 mg/m3) and the lowest concentrations for each
facility were found to be at the excavators (Facility A at 0.1 mg/m3 and Facility B at 0.03 mg/m3).

Feeder B showed the total highest inhalable TWA concentration (2.2 mg/m3) as demonstrated in
Table 5. Table 5 further shows that the lowest TWA concentrations of inhalable dust were at excavator
B (0.03 mg/m3).
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Table 5. TWA concentration OEL comparisons of Workstations’ inhalable particles not
otherwise classified.

Workstation Facility
TWA

Concentration
(mg/m3)

OEL Comparison

Hazard: PNOCs Inhalable/Total Dust Particulates (<100 µm)

MHS Act, 1996 OSHA (2010)

OEL: 10 mg/m3

OEL TYPE: TWA
OEL: 15 mg/m3 OEL

TYPE: PELs

Feeder
station

A 0.672

BL BL BL BL

B 2.172

Screening
station

A 0.402

B 0.069

Crusher
station

A (twister) 0.579

B
(multi-stages) 0.904

Excavator
A 0.132

B 0.029

Front end
loader A 0.295

BL: Below Limit; PEL: Permissible exposure limit.

Combining the results of Tables 3 and 5, the mean time-weighted average (TWA) dust concentration
for both inhalable and respirable dust particles was found to be 0.4 mg/m3 (range from a minimum of
0.2 mg/m3 to a maximum of 2.2 mg/mg3), with a standard deviation of 0.5 mg/mg3. The mean inhalable
particle TWA concentration was found at 0.6 mg/m3 and respirable particle TWA concentration at
0.2 mg/m3 over an eight-hour work shift. There was a significant difference between the facilities
(p < 0.026), showing Facility B to have levels 0.2 times higher than Facility A.

3.3. Workstation Risk Profiling

Although exposure assessment is an integral component of environmental epidemiology and OHS,
risk profiling according to concentrations is vital in dust exposure assessments. Based on the TWA
concentration values obtained during the exposure assessment phase, the SA-OELs, and the health
effects of respirable and inhalable dust; the workstations were then risk-profiled (Table 6) according
to the guidelines in Table S2. Pt mine respirable dust (<5% SiO2) is associated with pneumoconiosis,
Pt mine respirable dust (>5% SiO2) is linked with silicosis, and inhalable mine dust is related to physical
irritation. The Pt mine respirable SiO2 quartz concentrations were not subjected to a risk rating as all
samples were found below the detectable limits. Out of 18 dust concentration results, the risk-analysis
matrix obtained showed a very high risk level at two stations, namely, feeder A and crusher B for
respirable dust, with the workstations of lowest risk being the screen, excavator, and FEL. However,
the inhalable dust particulates values in all stations were found to be below 30 as per the classifications,
showing that the risk of exposure to inhalable dust particles is acceptable or tolerable when compared
to respirable dust particles.
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Table 6. Workstation’s risk rating and classification (Table S2).

Very High (AA) 400 and Above
High (A) 200 to 399

Moderate (B) 70 to 199
Low (C) 20 to 69

LEVEL
OF RISK

Tolerable (D) <20

Workstation
Probability of
Exceeding the

OEL (P)
Exposure (E) Consequences (C) Risk Rating

(PXEXC)

Health Hazard: Pt mine respirable dust

A 3 10 15 450
Feeder station B 0.5 10 15 75

A 0.5 10 15 75Screening station
B 0.5 10 15 75
A 1 10 15 150

Crusher station B 3 10 15 450
A 0.5 10 15 75

Excavator B 0.5 10 15 75
FEL A 0.5 10 15 75

Health Hazard: Pt mine inhalable dust

A 3 10 1 30
Feeder station B 6 10 1 60

A 1 10 1 10Screening station
B 0.5 10 1 5
A 3 10 1 30

Crusher station B 3 10 1 30
A 0.5 10 1 5

Excavator B 0.5 10 1 5
FEL A 1 10 1 10

Red code: Very high risk level; Mustard code: High risk level; Yellow code: Moderate risk level; Green code: Low
risk level; Lime code: tolerable risk level.

4. Discussion

The risk of dust exposure from the mining industry depends on the specific activity, duration of
exposure, characteristics of dust, and workers demographic characteristics. There was exposure to dust
particles at all mine waste rock crusher facilities. These solid particles are classified as chemical hazards
which Pt mine workers come into to contact with, through inhalation over an eight-hour work shift.

The majority of the Pt mine workers were found to be cleaners (20.6%), with four females and three
males, which is not surprising as traditionally cleaning services have been dominated by women [22].
The crushing activity group was the second largest group, representing 17.6%.

Particle size and mass concentration are crucial factors for the characterization of dust. Most
mining activities have greater numbers of coarse particles as compared to fine particles. The inhalable
dust fraction TWA mean concentration (0.6 mg/m3) was higher than that of the respirable fractions (0.2
mg/m3). This study’s comparison of inhalable and respirable dust results is supported by a scientific
research conducted on three open cast mines in India which also showed that inhalable particulate
matter (PM) of 10 micrometers or more in diameter (>PM10) concentrations were between 22% and
36% higher than respirable fractions (<PM10) [23].

The OELs that apply to Pt mining have been set locally and internationally as a mitigating method
with respect to dust particles in the workplace. However, there are still struggles with compliance.
The findings from this study present TWA concentration levels that are much lower than the local
and international inhalable and respirable dust exposure limits set between 15 mg/m3 and 3 mg/m3,
which have been deemed unsafe by various studies. A relevant exposure response study conducted
among gold workers in SA showed that the OEL set at 0.1 mg/m3 was not sufficient to protect the
workers [22]. A scientific report on respirable dust concentration showed results of 0.018 mg/m3 to
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0.035 mg/m3, with values lower than SA’s OEL of 0.1 mg/m3; however, the same results were higher
than the American Conference of Governmental Industrial Hygienists’ limit of 0.025 mg/m3 [13,23].
Furthermore, the MHS report stated that 95% of exposure measurement should be below the Pt dust
respirable particulate level of 1.5 mg/m3 [24].

OHS studies have also proven increased risk of exposure due to demographic and occupational
characteristics such as age, gender, PPE usage, and duration of exposure by work shift and job service
length [8,10,18]. The British Medical Association (2016) stated that there is “an accelerated decline in
forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) with age and that
the respiratory system reaches maximal function between the ages of 20 to 27 years, thereafter lung
function decreases progressively” [19]. Furthermore, the SA mining industry reported a mean age of
54 years for 19,531 pneumoconiosis cases between 2004 and 2012 [10]. Ndaba (2017) further reported
specific Pt mining results that showed certified silicosis cases, with most of the affected miners being in
the age group of 40 to 59 years and the age group with the lowest rate aged 30 to 39 years, with no
cases found in individuals aged less than 30 years [10].

Comparing the findings of the present study to those of the British Medical Association (2016)
and Ndaba (2017) [10,19], the Pt mine workers aged between 20 and 39 years (65%; n = 17 males
and n = 5 females) wee a non-vulnerable group, whereas those aged between 40 and 68 years (35%;
n = 12 males and no females) were a vulnerable group, with a more than 20 milliliter FEV1 annual
decrease. The lower incidence amongst younger workers as compared to older workers is mostly due
to the scientific statistics of cumulative exposures or latency periods, which indicates increased health
risks among elderly workers [13]. The 36.8-year average indicates non-vulnerable Pt mine workers in
terms of health risks, which is supported by a SA mining industry occupational disease study [10].
However, the presence of different age-groups in the facilities selected for this study indicates variety
of the risk to health. The occupational characteristics such as duration of exposure by work shift and
job service length showed that 65% of the participants from both facilities worked for more than the
recommended eight hours, and that 8.8% of participants had performed 10 or more years of service
which is an indication of an increased health risk.

The SA mining industry has recorded occupational lung diseases such as silicosis, occupational
TB and workers pneumoconiosis as the key challenges of health. In terms of Pt mine health effects, a
recent SA mining industry study pertaining to lung diseases amongst male and female miners found
that 93% of the diagnoses of pneumoconiosis were in men and only 5% in females [10], which could
pose potential threat to males more than females.

The results showed further lack of legislation compliance with regard to simple dust mitigation
measures such as usage of PPE for an entire shift, even where management made such equipment
available to workers. The lack of RPE usage and longer duration of exposure has been associated with
the risk of pneumoconiosis; a scientific study found the risk of pneumoconiosis to be higher in people
that had been exposed to mineral dusts for long periods of time and in cases of the inconsistent use of
RPE [25]. The relationship between PPE usage and duration of work further shows that employees
wearing PPE continuously for longer than a normal shift tend to find it uncomfortable. The respirator,
based on laboratory-measured performance data, shows that the filtering face piece 2 (FFP) used in
both facilities deals with moderate levels of fine dust and can be used during sanding, cement, drilling,
and cutting. However, it must be noted that the use of FFP 3 is recommended in the mining sector,
where silica could be present.

The risk-profiling matrix (Table S2) showed two high-risk profiled workstations with respirable
dust (Table 4); this risk-rating evaluation indicated that measures should be implemented to reduce
the potential harm at the highest-risk stations.

In terms of long-term exposure, the facilities’ waste rock particles may also go through chemical
reactions during overtime storage, which may generate additional products that could be toxic human
health [26].
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It has been clearly shown in the literature for the past 40 years that static samplers (also called
area samplers) are not adequate when used without personal sampling for characterizing worker
exposure. However, they are excellent for determining the continuing adequacy of the process and
process controls. That means that in order to protect the Pt mine workers there should be methods
used for monitoring their health status.

5. Conclusions

The general conclusion that can be drawn from the present study is that Pt mine workers had
increased health risks with accumulated low levels of dust exposure due to lack of RPE usage. No
conclusions could be drawn on personal health due to the study not focusing on personal dust exposure
or medical examinations but rather on determining risks related to processes or workstation exposure
at each crusher plant.

Personal samples are generally higher in concentration when taken in the same area. The potential
limitation in the study is that personal sampling results are universally considered more appropriate
for the protection of workers. Therefore, further studies could extend the exposure monitoring by
including medical surveillance and personal dust sampling in order to further establish the impacts on
health of the concentrations found at Facility A and Facility B.

Pt mine workers in these crusher plants need to be protected from exposure through the use of
advanced technologies that are more efficient. Some measures could include the use of bag-houses
or collector dumps which can be placed at the machines stone deposition end, which discharge the
products close to the ground and reduce discarding of dust. Other measures include the use of wet
methods for stockpiles or road-dust haulage; tire stops with water sprays which reduce rollback
underneath vehicles and suppress dust at the stockpile deposit areas; use of enclosed hopper dumps;
limiting vehicle movements (such as clients’ collection trucks, or delivery trucks) during processing
hours and installing speed limits that can reduce dust production; limiting the magnitude and duration
of exposure through task rotations or rest periods for workers; provision of appropriate RPE approved
by national and/or international standards [8]; and encouraging usage of RPE amongst all persons
working in this sector. The most important measure is the training of employees to support a health
and safety culture that promotes zero tolerance to dust exposure.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/2/655/s1,
Table S1: Questionnaire. Table S2: Risk rating determination band table [18].
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