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Abstract: The solidification/stabilization (S/S) method is the usual technique for the remediation
of soils polluted by heavy metal in recent years. However, freeze–thaw cycles, an important
physical process producing weathering of materials, will affect the long-term stability of engineering
characteristics in solidified contaminated soil. In addition, it is still questionable whether using large
dosages of binders can enhance the engineering properties of solidified/stabilized contaminated soils.
In this study, the three most commonly used binders (i.e., cement, quicklime, and fly ash), alone and
mixed in different ratios, were thus added to lead-contaminated soil in various dosages, making a
series of cured lead-contaminated soils with different dosages of binders. Afterward, unconfined
compression strength tests, direct shear tests, and permeability tests were employed on the resulting
samples to find the unconfined compressive strength (UCS), secant modulus (E50), internal friction
angle (ϕ), cohesion (c), and permeability coefficient (k) of each solidified/stabilized lead-contaminated
soil after 0, 3, 7, and 14 days of freeze–thaw cycles. This procedure was aimed at evaluating the
influence of freeze–thaw cycle and binder dosage on engineering properties of solidified/stabilized
lead-contaminated soils. Results of our experiments showed that cement/quicklime/fly ash could
remediate lead-contaminated soils. However, it did not mean that the more the dosage of binder,
the better the curing effect. There was a critical dosage. Excessive cementation of contaminated
soils caused by too much binder would result in loss of strength and an increase in permeability.
Furthermore, it was found that UCS, E50, ϕ, c, and k values generally decreased with the increase
in freeze–thaw cycle time—a deterioration effect on the engineering characteristics of solidified
lead-contaminated soils. Avoiding excessive cementation, 2.5% cement or quicklime was favorable
for the value of E50 while a 2.5% fly ash additive was beneficial for the k value. It is also suggested
that if the freeze–thaw cycle continues beyond the period supported by excessive cementation, such
a cycle will rapidly destroy the original structure of the soil and create large cracks, leading to an
increase in permeability. The results also showed that the contaminated soils with a larger dosage of
binders exhibited more significant deterioration during freeze–thaw cycles.

Keywords: solidification/stabilization; freeze–thaw cycles; dosage; lead-contaminated; excessive
cementation; engineering characteristics; deterioration

1. Introduction

Over the past 30 decades, the rapid development of industry and agriculture have led to soils
contaminated by heavy metals worldwide [1–6]. An investigation performed by Wei and Yang [7]
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found that approximately 65% of cities had high or extremely high levels of contamination with heavy
metals in urban soils. Likewise, Fan et al. [8] reported that in some contaminated sites, the heavy
metal content reached as high as 50~7000 mg·kg−1, in particular, the lead content in some sites was as
high as 424,000 mg·kg−1, and the strontium content was as high as 1,700,000 mg·kg−1. These reports
demonstrated that heavy metal pollution has become the key factor in soil pollution in China.

If heavy metal contaminated soils remain untreated over time, heavy metal contaminants likely
will percolate down to groundwater or discharge to rivers [9]. As such, heavy metals could enter health
systems through the food chain [10] due to accumulation in plants, a process relatively unaffected by
beneficial microorganism action [11], which might result in adverse effects on the environment [12] and
human health [13,14]. Such contamination can also affect the basic physical properties and engineering
mechanical properties of the foundation soil, such as the void ratio, compressibility, shear strength,
and bearing capacity, etc. [10,15–18]. Therefore, the effective treatment of heavy metal contaminated
soils is urgently needed in terms of protecting the environment, improving the engineering properties
of the foundation soil, and realizing the reuse of contaminated industrial sites [19].

Among the existing remedial measures for heavy metal contaminated soils, the
solidification/stabilization (S/S) technique stands out as being low-risk, relatively cost-effective, simple
to operate, and widely applicable to engineering, as well as increasing comprehensive soil strength,
and offering good resistance to biodegradation [20,21].

S/S is a remediation technology that reduces the toxicity of pollutants, by using physical or chemical
methods to either immobilize harmful pollutants contained in the soil or to convert such pollutants
into chemically inactive forms, preventing their migration and diffusion into the environment [22,23].
Solidification is defined as a process in which materials are added to waste to come into stable solids,
while stabilization, on the other hand, refers to a chemical remediation process that uses chemical
reaction to reduce the solubility and migration of pollutants in soils or converts them into chemically
inert substances, reducing the hazards level of such wastes [24,25].

Du et al. [26] confirmed that the main mechanisms of S/S technology are the chemical interaction of
hydration reaction products (such as calcium silicate hydrate, CSH) with pollutants or their adsorption,
which physically retains contaminants through the surfaces of various hydrates. These products are
closely related to the binders [20,27], mainly involving cement, slag, fly ash, quicklime, modified clay
(such as organic clay), lime, and some waste [27–29]. For example, Wang et al. [30] found that when the
dosage of magnesium phosphate cement added to the soils increased from 30% to 70%, the leaching
amount of lead seen in subsequent leaching was significantly reduced. Wang et al. [31] further proved
that an increase in the dosage of binders caused the integrity of a GMC (GGBS-MgO-CaO) mixture to
be improved after several drying and wetting cycles. However, it remains inconclusive whether the
engineering characteristics of the solidified contaminated soil will continue to improve if the dosage of
the binder increases further.

On the other hand, researches, done by Aldaood et al. [32], Du et al. [33], Li et al. [34], Zaimoglu [35],
and Xu et al. [36], showed that extreme environmental changes, such as freeze–thaw cycles, high-salt
groundwater, acid rain infiltration, or dry-wet alternation, could result in changes in the properties of
solidified contaminated soils and even cause the S/S to fail. Regions in China subjected to freezing are
widely distributed: For example, permafrost regions accounts for approximately 21.5% of the total
land area, seasonal frozen soil regions about 53.5%, transient frozen soil regions approximately 23.9%,
and frozen soil-free regions only 1.1% according to the report by Xia [37]. Apparently, freeze–thaw
alternation is an important abiotic force that affects the soil environment in China.

Under the action of freeze–thaw cycles, changes in liquid water cause changes in the three-phase
composition ratio of the soil as well as changes in the size and stability of soil aggregates, leading
to increases in permeability and decreases in soil stability. In addition, freezing and thawing causes
aggregates to release a large amount of inorganic substances, which enhances the organic mineralization
of soil, adsorption, and desorption of organics. The freezing and thawing also affect morphological
transformation, microbial activity, and the free energy stored in the soil. These changes in the physical
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and chemical properties of the soil inevitably affect the occurrence, form, and migration of heavy metal
pollutants, adsorbed within the soil and the particles of the solidifying agent or colloidal surface [38–40],
leading to changes in the structure and the physical and mechanical properties of solidified polluted
soils. This causes the engineering mechanical properties of contaminated soil in such regions to differ
from those seen in non-freeze–thaw regions and thus affects the reconstruction of sites abandoned due
to pollution [18,41]. For instance, Roustaei et al. [42] reported that the undrained triaxial compressive
strength of both unreinforced and reinforced soil decreased as the number of freeze–thaw cycles
increased. According to Wang et al. [43], the dynamic modulus decreased significantly, and the
damping ratio increased with an increase in the number of freeze–thaw cycles. However, there are
few studies on how the secant modulus (E50) and shear index (ϕ and c) of solidified contaminated soil
change when this is subjected to freeze–thaw cycles.

Based on the above evidences, taking the cement/quicklime/fly ash commonly used in soil S/S
into consideration [44], the aim of the present study was to systematically investigate the effects
of the freeze–thaw cycle and binder dosage on the engineering properties of solidified/stabilized
lead-contaminated soils remediated with cement/quicklime/fly ash alone or some mixture of these
additives. For comparison purposes, the engineering properties of lead-contaminated soils without
solidified/stabilized were also tested. A series of experiments, including unconfined compression
strength (UCS) tests, direct shear tests, and permeability tests, were performed on soil samples subjected
to freeze–thaw cycles for 0, 3, 7, or 14 days to investigate the effect of these freeze–thaw cycles and
various binder dosages (0%, 2.5%, and 5%) on the values of UCS secant modulus (E50), internal
friction angle (ϕ), cohesion (c), and permeability coefficient (k) in compound solidified/stabilized
lead-contaminated soils. And combining with the direct trend chart of influencing factors, the dosage
of binder in the solidified lead-contaminated soil under the freeze–thaw cycle, which could make
engineering properties (UCS, E50, ϕ, c, and k) better, was further studied.

2. Materials and Methods

2.1. Materials

Undisturbed soils used in this work were taken from an industrial site in Chongqing, China,
being reddish-brown in color. The collected soil samples were air-dried in the laboratory for about two
weeks, and afterward, they were sieved through a 16-mesh polyethylene screen (<1 mm) to remove
stones, branches, coarse materials, and other debris. Subsequently, the sieved soil samples were
subjected to conventional soil tests in accordance with the Standards for Geotechnical Test Methods
(GB/T 50123-1999). The physical property parameters of the soil samples are shown in Table 1. The
soils passed through a 1 mm sieve were subjected to sieving treatment with an electric sifter to obtain a
particle gradation curve (as shown in Figure 1. According to the Engineering Classification Standard
for Soil (GB/T 50145-2007), the soils were classified as fine-grained soil containing coarse grain, and
with a liquid-low limit. The main chemical component of the tested soils is SiO2, determined by the
X-ray fluorescence (XRF) technique (as shown in Table 2).

Table 1. Basic physical properties of undisturbed soil samples.

Physical
Property Index

Liquid
Limit/%

Plastic
Limit/% Plasticity Index (Ip) Optimum Moisture

Content/% Maximum Dry Density/g/cm3

soil sample 28.6 16.7 11.9 13.65 1.842



Int. J. Environ. Res. Public Health 2020, 17, 1077 4 of 20Int. J. Environ. Res. Public Health 2020, 17, x 4 of 21 

 

 
Figure 1. Gradation curve of undisturbed soil. 

Table 1. Basic physical properties of undisturbed soil samples. 

Physical 
Property 

Index 

Liquid 
Limit/% 

Plastic 
Limit/% 

Plasticity 
Index ൫𝐈𝐩൯ 

Optimum 
Moisture 

Content/% 

Maximum Dry 
Density/𝐠/𝐜𝐦𝟑 

soil sample 28.6 16.7 11.9 13.65 1.842 

Table 2. Main chemical components of tested soil (expressed as oxides). 

Chemical Components 𝐒𝐢𝐎𝟐 𝐀𝐥𝟐𝐎𝟑 𝐅𝐞𝟐𝐎𝟑 𝐂𝐚𝐎 𝐌𝐠𝐎 𝐒𝐎𝟑 𝐊𝟐𝐎 𝐓𝐢𝐎𝟐 𝐍𝐚𝟐𝐎 PbO 
Contents (%) 65.24 17.27 5.14 3.32 3.46 0.04 3.47 0.74 0.83 ND 

Note: ND means not detected. 

In this experiment, Pbଶା was selected as the contaminating ion. In view of the high solubility of 
nitrate (high cation mobility) and its minimal interference to the S/S process [45,46], analytical-grade Pb(NOଷ)ଶ  was used as a heavy metal contaminant. The quality indicators for analytical-grade Pb(NOଷ)ଶ, as purchased from Sinopharm Group Reagent Co., Ltd., are shown in Table 3. 

Table 3. Quality index for Pb(NOଷ)ଶ. 

Molecular Formula 𝐏𝐛(𝐍𝐎𝟑)𝟐 
Molecular Weight 331.21 

Content ≥99.0% 
Cu ≤0.0005% 
Fe ≤0.001% 
Cl ≤0.001% 

Hydrocarbon that does not precipitate (based on sulfate) ≤0.05% 
Clarity experiment qualified 

pH value (50g/L,25 °C) ≤0.003% 

Three binders (i.e., cement, quicklime, and fly ash) were selected to remediate lead-
contaminated soils in the current research. The cement selected was ordinary Portland cement 
(OPC325); the main component of quicklime is calcium oxide (here of an analytical grade); while the 

Figure 1. Gradation curve of undisturbed soil.

Table 2. Main chemical components of tested soil (expressed as oxides).

Chemical Components SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O TiO2 Na2O PbO

Contents (%) 65.24 17.27 5.14 3.32 3.46 0.04 3.47 0.74 0.83 ND

Note: ND means not detected.

In this experiment, Pb2+ was selected as the contaminating ion. In view of the high solubility of
nitrate (high cation mobility) and its minimal interference to the S/S process [45,46], analytical-grade
Pb(NO3)2 was used as a heavy metal contaminant. The quality indicators for analytical-grade
Pb(NO3)2, as purchased from Sinopharm Group Reagent Co., Ltd., are shown in Table 3.

Table 3. Quality index for Pb(NO3)2.

Molecular Formula Pb(NO3)2

Molecular Weight 331.21
Content ≥99.0%

Cu ≤0.0005%
Fe ≤0.001%
Cl ≤0.001%

Hydrocarbon that does not precipitate (based on sulfate) ≤0.05%
Clarity experiment qualified

pH value (50 g/L,25 ◦C) ≤0.003%

Three binders (i.e., cement, quicklime, and fly ash) were selected to remediate lead-contaminated
soils in the current research. The cement selected was ordinary Portland cement (OPC325); the main
component of quicklime is calcium oxide (here of an analytical grade); while the fly ash was obtained
from the Chongqing Power Plant (secondary). As the total SiO2, Al2O3, and Fe2O3 content in the fly
ash exceeded 70%, the fly ash used could be classified as Class F. All the three binders were passed
through a 0.075 mm sieve to develop uniformity and the underlying chemical compositions of the
cement, quicklime, and fly ash were obtained by X-ray fluorescence (XRF) testing, as shown in Table 4.
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Table 4. Chemical composition of binders (expressed as oxides).

Chemical Components CaO MgO SiO2 Al2O3 Fe2O3 SO3 TiO2 Na2O

Content (%)
Cement 49.18 1.62 26.01 10.67 2.83 3.76 0.51 0.13

Quicklime 84.23 4.32 3.10 3.10 0.29 ND ND ND
Fly Ash 5.73 3.68 39.65 21.42 9.17 ND ND 2.03

Note: ND means not detected.

2.2. Specimen Preparation

In this research, heavy metal pollutants of predetermined weights (mass ratio of Pb2+ to dry
soils or a Pb2+ concentration value was 10,000 mg/kg) were dissolved in deionized water. Then these
solutions were thoroughly blended with the dry soils using a magnetic stirrer for about 10 min, and
each solution-soil mixture was sealed in a humidity box (temperature of 22 ◦C and relative humidity
of 95%) for three months to obtain man-made lead-contaminated soils.

To investigate the effect of binder dosage on engineering characteristics, some of the polluted
soils made in this way were divided into nine portions. One of each of nine kinds of different binders,
made of cement (0%, 2.5%, or 5%), quicklime (0%, 2.5%, or 5%) and fly ash (0%, 2.5%, or 5%) alone
or mixed, were respectively added into these, and the mixtures of contaminated soils with binders
were all mechanically stirred for more than 10 min with a magnetic stirrer. For comparison, specimens
without any binder added were also prepared.

For the sake of achieving optimal moisture content (OMC), as shown in Table 1, a certain amount
of deionized water was added into the soil specimens. Under this OMC, UCS, and other mechanical
properties of the soils were at their best conditions [47].

Mass of prepared mixtures required for each test, calculated based on this OMC, 95% of the
maximum dry density and specimen size, was weighed and transferred into a Φ39.1× 80 mm cylindrical
mold. Next, the mold was placed onto a vibrating stand with the frequency and amplitude of 48
Hz and 0.5 mm to obtain specimens of a diameter of 39.1mm, a height of 80mm for the UCS tests
and permeability coefficient tests. Similarly, the weighed mixtures were transferred into a sample
container with a ring knife and were statically compacted to acquired direct shear tests sample with a
diameter of 61.8 mm, and a height of 20 mm. After extracting from the molds by using a hydraulic
jack, all specimens were sealed with a plastic film to prevent loss of moisture before being placed into a
standard curing room (temperature of 22 ◦C and relative humidity of 95%) for 56 days.

The testing procedure of compound lead-contaminated soils treated with binder mixtures of
various dosages (0%, 2.5%, or 5%) is shown in Table 5, which also lists the concentration of each binder
in the various formulations. Here, “Pbi” denotes a specimen with a Pb concentration of i% based on its
oven-dried soil weight. Analogously, “C j”, “Sk”, and “Fm” denote samples with cement concentrations
of j%, quicklime concentrations of k%, or fly ash concentrations of m%, respectively.

Table 5. Experimental scheme.

Freeze–Thaw Cycles Time Freeze–Thaw Strength Test Program Specimen Number

0,3,7,14 −10 ◦C~20 ◦C UCS test Direct shear test
Permeability test

Pb1(for comparison)
C2.5Pb1; S2.5Pb1;

F2.5Pb1 C2.5F2.5Pb1;
C2.5S2.5Pb1 C5S5Pb1;

C5S2.5F2.5Pb1; C5F5Pb1

2.3. Testing Methods

2.3.1. Freeze–Thaw Cycle Test

The cured samples were put into an alternating high- and low-temperature test chamber (TC401,
Chongqing Taisite Test Instrument Co. Ltd.; temperature range: −40 ◦C~100 ◦C) at Chongqing
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University for the freeze–thaw cycle tests. The freeze–thaw cycles were set to 0 days, 3 days, 7 days,
and 14 days, respectively. The one-day freeze–thaw cycle is shown in Figure 2. And as shown, after the
sample was placed into the freeze–thaw cycle test chamber, the temperature was dropped from room
temperature to −10 ◦C in one hour. After maintaining this temperature for 11 h, it was then increased
to 20 ◦C within one hour, and this temperature was then maintained for a further 11 h.
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2.3.2. Unconfined Compression Strength (UCS) Test

Following the Chinese standard for soil test methods (GB/T 50123-2019), the unconfined
compressive strength (UCS) was tested using the YYW-2 strain-controlled unconfined controller
(Manufacturer: Nanjing Ningxi Soil Instrument Co., Ltd., Nanjing, China). The test was carried out by
the displacement control method (1 mm/min) loading, which defined the secant modulus E50 as the
ratio of stress and strain when the on the sample is half of its peak stress.

The axial strain rate should be in the range of 1% to 3% strain per minute. The lifting device for
testing was raised by turning the handle. When the axial strain was less than 3%, the data were read at
every 0.5% of strain (0.4 mm); when the axial strain was equal to or greater than 3%, the data were
read at every 1% of strain (0.8 mm). Each test was completed in under 10 min. When the reading of
dynamometer peaked, the test ceased after continuing the strain of 3% to 5%; when there was no peak
in the reading, the test continued until the strain reached 20%.

2.3.3. Direct Shear Test

The shear strength was tested with a ZJ-2 strain-controlled direct shear instrument (Manufacturer:
Nanjing soil instrument factory Co., Ltd., Nanjing, China). The shear rate was 0.8 mm/min. When
the sample showed a displacement of 0.2 to 0.4 mm, the measurement of the proving ring and the
shear displacement of the box were recorded. When the peak value of the proving ring dial gage was
reached, the instrument continued to shear until the displacement reached 4 mm, at which point the
damage value was recorded. Where the machine stopped during the shearing process, the damage
value was also recorded. If the maximum value of the dial indicator reading was reached during the
shearing process, the instrument continued to apply shear stress until the displacement reached 6
mm [48,49].

2.3.4. Permeability Test

The permeability coefficient (k) was tested using an automatic environmental, geotechnical
penetration meter (GDSPERM, GDS Instruments Ltd., Hook, UK). A specimen that had been subjected
to vacuum saturation for 24 h was loaded into a pressure chamber, and the confining pressure, back
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pressure, and reaction force difference were set to determine its permeability coefficient. As the
permeability coefficient of clay increases with the increase in hydraulic slope drop, its value approaches
a constant [49] when the hydraulic slope was large. After testing, it was found that when the hydraulic
head pressure exceeded 50 kPa, the instrument pressure tended to become unstable, and the samples
were damaged internally. Therefore, the confining pressure was set at 100 kPa, and the osmotic pressure
changed from 10 kPa to 20 kPa and then to 30 kPa, 40 kPa, and 50 kPa before dropping to 40 kPa and
thence, to 30 kPa, 20 kPa, and finally, 10 kPa. The relationship between the permeability rate of the
clay soil and the hydraulic gradient (shown as in Figure 3) [49] was thus utilized to obtain a stable
permeability coefficient for the sample.
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It can be clearly seen from Figure 4 that the UCS of lead-contaminated soil without binder
treatment (Pb1) was the lowest, at only 398.361 kPa. However, among the samples with total binder
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additions of 2.5%, cement-treated lead-contaminated soil (C2.5Pb1) had the highest value of UCS,
886.388 kPa, an increase of 124%; the UCS of lead-contaminated soil after 2.5% quicklime treatment
(S2.5Pb1) reached 619.055 kPa, an improvement of 55.4%, while the UCS of lead-contaminated soil
(F2.5Pb1) with 2.5% fly ash reached 499.331 kPa, an increase of only 25.3%. This indicates that the
addition of cement, quicklime, and fly ash all improve the UCS of lead-contaminated soil, in agreement
with Kogbara [47] and Du et al. [26]. This occurs because, when cement is added to water, the main
minerals in the cement, such as C3S (3CaO·SiO2), C2S (2CaO·SiO2), and C3A (3CaO·Al2O3), undergo a
hydration reaction (as shown in Table 6), generating calcium silicate hydrate gel (C-S-H) and calcium
aluminate hydrate(C-A-H), which in turn fill and close the pores of specimens and encapsulate soil
particles [29,47,50]. There is also a large amount of CaO and a small amount of MgO in the cement,
which undergo ion exchange, reducing the thickness of the combined water film on the surface of the
soil particles and aggregating the fine-grained soil to form large particles; hardening and carbonation
reactions also occur, which form insoluble crystalline materials between the soil particles, while calcium
carbonate precipitation fills the pores between the soil particles and makes the soil particles denser.
Furthermore, the cement hydration reactions also produce a lot of Ca(OH)2, which reacts with SiO2

and Al2O3 in a pozzolanic reaction, to produce gel products, such as hydrated calcium silicate and
calcium hydrated aluminate.

Table 6. Hydrolysis hydration of cement.

Mineral Name Chemical Composition Hydration Reaction Process

C3S 3CaO·SiO2 2(3CaO·SiO2) + 6 H2O→ 3CaO·2SiO2·3H2O + 3Ca(OH)2

C2S 2CaO·SiO2 2(2CaO·SiO2) + 6 H2O→ 3CaO·2SiO2·3H2O + 3Ca(OH)2

C3A 3CaO·Al2O3 CaO·Al2O3 + 6H2O→ 3CaO·Al2O3·6H2O

C4AF 4CaO·Al2O3·Fe2O3
4CaO·Al2O3·Fe2O3 + 2Ca(OH)2 + 10H2O→

3CaO·Al2O3·6H2O + 3CaO·Fe2O3·6H2O

Similarly to cement-cured lead-contaminated soils, the mechanism of quicklime remediation of
contaminated soils has four main aspects: The ripening of quicklime, which occurs after quicklime
meets water, producing Ca(OH)2 and giving out heat, promotes the reactions with other substances
in the soils; the ion exchange actions electrolyze OH− in water, which precipitates with Pb2+ into
Pb(OH)2, achieving solidification and remediation of heavy metals; the carbonation reaction, in which
Ca(OH)2 is generated after quicklime and CO2 in the air react to form CaCO3, increases the strength of
specimens to a certain extent; and the pozzolanic reaction between Ca(OH)2 and soil minerals (such
as SiO2 and Al2O3) produces hydrated calcium silicate, calcium hydrated aluminate, and other gel
products that improve soil strength.

The UCS values of quicklime-cured lead-contaminated soils were lower than those of cement-cured
lead-contaminated soils, which may be partially attributed to the differences in SiO2 and Al2O3 content.
Although the addition of fly ash improved the UCS of specimens, such increases were significantly
lower than those seen in samples with cement or quicklime. This is likely to be because the main
components of fly ash are CaO, SiO2, and Al2O3, which are effectively hydrated only in an alkaline
environment, unlike alkaline activators, such as cement and lime. Additionally, the CaO in fly ash is
much lower than that in cement and quicklime (see Table 1), and thus gel-like hydration products,
such as calcium silicate hydrate (CSH), and calcium aluminate hydrate (CAH), were much lower in
volume. This may also explain why the UCS value of C2.5S2.5Pb1 was higher than that of C2.5F2.5Pb1
when the total amount of binder was 5%, and why the UCS value of C5S5Pb1 was higher than that of
C5F5Pb1 when the total amount of binder was 10%. Due to the action of CaO and water, the pozzolanic
activity of class F fly ash can be further activated to form additional gels, improving the UCS of
lime-based deposits [51]. The UCS of C5S2.5F2.5Pb1 was higher than that of C5S5Pb1, supporting the
studies by Dermatas and Meng [52] and Wang et al. [53]. The consensus is that the value of UCS in
lead-contaminated soils increases as the total dosage of added binder increases [54–56].
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The changes in UCS values of the nine samples based on extensions of the freeze–thaw cycle time
fall roughly within two trends, as seen in Figure 4. The first shows the UCS value increasing at the
beginning of the freeze–thaw cycle, and then decreasing and eventually stabilizing over the increase of
the freeze–thaw cycle time. The UCS of C5S2.5F2.5Pb1 showed this trend, and the increase stage may
have contributed to the action of CaO and water, activating the pozzolanic activity of the class F fly ash
and forming cementitious gels [51], leading to the observed improvement in the UCS of the specimens.
Alternatively, it may have attributed to the fact that the various reactions and ion exchanges may not
have been completed during the solidification/stabilization process, and the reinforcement effect of the
products they produced during the early freeze–thaw cycle on the lead-contaminated soil may have
offset the deterioration effect of the freeze–thaw cycle [47]. However, the change in UCS values of the
other eight samples showed a second trend, unlike in the first trend, there was no stage in which the
UCS value increased as the freeze–thaw cycle time increased: The UCS value simply decrease with
the increase in freeze–thaw cycle time before finally stabilizing. Despite this variation in trends, the
conclusion is thus that the freeze–thaw cycle generally reduced the UCS value of the samples [51,57,58].

Figure 5 shows how UCS deteriorates with increasing freeze–thaw cycles and is significantly
affected by different contents levels of all three binders, especially cement and quicklime. The influence
patterns on the UCS of the three binders were basically the same across the different freeze–thaw cycles.
The increase in dosage of cement and quicklime from 0% to 2.5% resulted in UCS increasing significantly,
while the increase of quicklime caused the largest increase in the UCS of lead-contaminated soil. When
the additions increased from 2.5% to 5%, the binder that most noticeably enhanced the UCS was cement,
but both cement and quicklime improved the UCS much less compared to the increased from 0% to
2.5%. This suggested that the effect of freeze–thaw cycles on the UCS of solidified lead-contaminated
soil with high binder dosages is more significant. UCS also improved with the continuous increase
in fly ash content, but this increase was less pronounced than that seen with the increase in cement
and quicklime. When freeze–thaw cycles were relatively short (less than 3 days), the UCS values of
lead-contaminated soils were most influenced by the cement content, and 5% was the best proportion
of cement for improving UCS level. However, with increasing the repetition of freeze–thaw cycles,
quicklime showed better performance, again being best at 5%. As a secondary factor, fly ash content
may also have a positive effect, depending on the actual situation.Int. J. Environ. Res. Public Health 2020, 17, x 10 of 21 
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3.2. Influence of Freeze–Thaw Cycles and Binder Dosage on E50

Figure 6 shows the E50 (secant modulus) of lead-contaminated soils treated with different types
and dosages of binders under various repetitions of freeze–thaw cycles.
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As presented Figure 6, the addition of binders generally improved the E50 value of
lead-contaminated soils, potentially due to the cementitious gels produced by hydration and pozzolanic
reactions, making the internal structures of the lead-contaminated soil more compact. For samples that
had not undergone freeze–thaw cycles, it was clear that the E50 value improved as the total dosage of
binders increased. When the total binder dosage was 10%, the E50 value of lead-contaminated soil,
treated with a binder consisting of cement, quicklime, and fly ash in a 2:1:1 ratio (C5S2.5F2.5Pb1),
was highest.

Based on Figure 6, the change patterns in the E50 values of these nine samples with the increase in
the freeze–thaw cycle time can be roughly divided into two types. The first one is where the E50 value
increases at the beginning of the freeze–thaw cycle, and then decreases, eventually stabilizing over the
increases in the freeze–thaw cycle time, which applied to C2.5Pb1, F2.5Pb1, C2.5S2.5Pb1, C5S5Pb1,
and C5S2.5F2.5Pb1. Some studies have also shown that lead is deposited as insoluble lead sulfate and
carbonate on the surface of calcium silicate and aluminum silicate, forming an impervious coating that
delays hydration action [59,60]. This physicochemical interaction between the hydrate and the soil
might still be in progress after 56 days of curing, which would explain why the strength of solidified
lead-contaminated soil would increase during early freeze–thaw cycles. However, the changing pattern
in the UCS values for C5F5Pb1, C2.5Pb1, and S2.5Pb1 demonstrated the second type of pattern with
no increase in the E50 value during early freeze–thaw cycles; the E50 values only decreased with the
increase in freeze–thaw cycle time and finally stabilized. In particular, the E50 value of C5F5Pb1 was
greatly reduced in the early stages of the freeze–thaw cycle, which might be due to the large dosage of
fly ash containing a greater amount of harmful substances (such as unburned carbon and heavy metals)
and fine particles, which would hinder the hydration reactions of cement [53]. The main conclusion
is that freeze–thaw cycles cause a reduction in the E50 value of stabilized lead-contaminated soils,
possibly due to the freeze–thaw cycles increasing the net soil volume, causing a looser soil structure
and thus inevitably leading to a decrease in the elastic modulus [61]. There was a particularly big drop
observed in the E50 value of C5S2.5F2.5Pb1, which might have been caused by highly or excessively
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cemented soil due to abundant cementitious gels being produced from the solidification/stabilization
process [62]. As early as in 1998, data from Viklander [63] prove that in very dense soils, porosity
might increase due to freezing and thawing, where soil particles did not completely return to their
original location after each stage, leading to an increase in the net soil volume and, and a looser soil
structure than before freezing. And it is clear from Figure 6 that the solidified lead-contaminated soils
with higher dosages of binders, such as C5S2.5Pb1 and C5F5Pb1, showed larger changes with the
increase in freeze–thaw cycle time, suggesting that the deterioration effect of freeze–thaw cycles is
more evident on solidified contaminated soils with larger dosages of added binders.

The intuitive trend chart of influencing factors for E50 (Figure 7) shows that the E50 value increased
approximately linearly with increases in the cement content when freeze–thaw cycle time was relatively
short (0 days, 3 days), but that, with increasing time of freeze–thaw cycles (7 days, 14 days), it reached
a maximum when the cement content was 2.5%. Under all conditions, E50 was noticeably increased by
increases in quicklime content from 0% to 2.5%, decreasing sharply as the content increased from 2.5%
to 5%. As seen in Figure 7, at 7 days and 14 days, when the dosages of cement and quicklime were
both 2.5%, their curves reached their highest points [64]. However, for the same longer freeze–thaw
cycles (7 days and 14 days), the E50 value reached its maximum value when the dosage of fly ash was
5%. The reason might be that the degree of hydration of fly ash was not as good as that of cement and
quicklime, making it harder to produce excessive cementation in the solidified lead-contaminated soils
and causing strength loss [29,62]. This is consistent with the phenomena (shown in Figure 6) where the
E50 value of C5S2.5F2.5Pb1 was higher than that of C5S5Pb1. E50 could thus be improved by using a
2.5% addition of quicklime. When considering the effect of long-term freeze–thaw cycles, Figure 7 also
suggests that the value of E50 was best when the addition dosages of cement and quicklime were both
2.5%, and the addition dosage of fly ash was 5%.Int. J. Environ. Res. Public Health 2020, 17, x 12 of 21 
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3.3. Influence of Freeze–Thaw Cycles and Binder Dosage on Shear Index

Figure 8 shows the shear index of lead-contaminated soils treated with different types and dosages
of binders under freeze–thaw cycles.
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Figure 8. The shear index of solidified lead-contaminated soils under freeze–thaw cycles: (a) The
internal friction angle (ϕ) of solidified lead-contaminated soils under freeze–thaw cycles; (b) The
cohesion (c) of solidified lead-contaminated soils under freeze–thaw cycles.

Values for unfrozen stabilized lead-contaminated soils are also included in Figure 8, showing
that there was almost no difference in the internal friction angle ϕ of the solidified lead-contaminated
soil with 2.5% fly ash addition (F2.5Pb1) from that of untreated the lead-contaminated soil, while the
cohesion, c, showed only a small increase compared to the lead-contaminated soil. This shows that a
simple addition of 2.5% fly ash dose not obviously improve the ϕ and c values of lead-contaminated
soils (Pb1), in agreement with Zhao and Yang [65]. Although the addition of 2.5% cement/quicklime
has been shown to increase the ϕ and c of lead-contaminated soil [66,67], these increases are not as
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good as those driven by the use of multiple binders [65]. Moreover, previous studies have shown that,
under the same dosage of binder, the shear index of clay stabilized with quicklime alone is not as good
as the shear index of clay stabilized with fly ash-quicklime [68,69], which could help explain why the
C5S2.5F2.5Pb1 had the largest ϕ and c values, about 1.5 times and 7 times of those of Pb1, respectively.
In general, when the total dosage of binder was increased to 5% then 10%, the ϕ and the c values were
significantly improved.

Figure 8 also presents that as freeze–thaw cycle time increases, the shear index of the nine samples
showed two trends overall. For the solidified lead-contaminated soil with a lower binder or absent
dosages (0% and 2.5%), the shear index decreased slightly with the increase in freeze–thaw cycle
time; however, overall, any change was very small. This implies that freeze–thaw cycles have little
effect on the shear index of lead-contaminated soil and of repaired lead-contaminated soils with
small dosages of binder. However, for solidified lead-contaminated soil with higher binder dosage
(5% and 10%), the value of the shear index increased during early freeze–thaw cycles and then
decreased as the effect of freeze–thaw cycles were extended. The reason for the increase in shear index
in the early stage is likely to be that the solidification/stabilization process was still ongoing after
56-days [67,69] and that the cementation of the contaminated soils’ structure caused by the products of
the solidification/stabilization process in the early stage of the freeze–thaw action was sufficient to
offset some deterioration caused by the freeze–thaw cycles. However, intensification of the freeze–thaw
cycles alongside an increase in hydration products causes the soil to become over cemented [62] means
that the subsequent shear strength is significantly reduced. Overall, the freeze–thaw cycle is not
favorable for the shear strength of solidified contaminated soil [70].

Figure 9a shows that the ϕ was affected to varying degrees by the dosages of cement, quicklime,
and fly ash. When the freeze–thaw cycle time was 0 days or 14 days, the influencing curves of cement
and quicklime were similar; as the dosages increase from 2.5% to 5%, the increase in ϕwas less than
where the dosages increase from 0% to 2.5%, and the trend for ϕ value was approximately linear as
the dosages of cement and quicklime increase when freeze–thaw cycle time was 3 days and 7 days.
The influencing curve of fly ash demonstrates a highest point at a 2.5% binder dosage under all four
freeze–thaw cycles; the optimum content of fly ash for ϕwas thus 2.5%. Considering the long-term
freeze–thaw effect, the addition of 5% cement and 5% quicklime are better for improving ϕ values.

Figure 9b also shows that c was noticeably improved by increasing the content of cement and
quicklime, except when the freeze–thaw cycle time was 3 days or 7 days. Further, the improvement
from cement or quicklime content increasing from 2.5% to 5% was minimal compared to the increase
seen when the addition was increased from 0% to 2.5%, especially with regard to quicklime. The
results indicate that the c of lead-contaminated soils can be immensely improved by adopting a 5%
cement, 5% quicklime, or 5% fly ash addition.

3.4. Influence of Freeze–Thaw Cycles and Binder Dosage on K

Figure 10 shows the k (permeability coefficient) of lead-contaminated soils treated with different
types and dosages of binders under various freeze–thaw cycles.
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The permeability coefficient k of samples without freeze–thaw cycles increased with the increase in
the dosage of binder, in contrast to the expected decrease in k with the increase in the dosage of binder.
A similar result was reported by Kogbara and Al-Tabbaa [71], who showed a significant increase in
permeability with increasing lime-slag mixed binder dosage. Elrawi and Awad [72] further showed
that the k of lime-stable sandy silty clay increased with increasing lime dosage, which could explain
why the k value of C5F5Pb1 was smaller than that of C5S5Pb1 and the k value of C2.5F2.5Pb1 was
smaller than that of C2.5S2.5Pb1. Quigley [73] indicated that the adsorption of Pb by soil particles
and the adsorption of both by cement occurs during solidification/stabilization, making the distance
between the soil particle layers smaller, resulting in further aggregation of soil particles; as a result,
the seepage distance increases and the k of the solidified/stabilized lead-contaminated soils increases
intensely. As the gel-like hydration products of fly ash are minimal compared to those of cement
and quicklime, the addition of fly ash did not significantly increase the k of lead-contaminated soils.
Nevertheless, the k value generally increased with an increase in the binder dosage [10].

The broken line in Figure 10 highlights the four types of changes in k seen with the extension of
the freeze–thaw cycle time. The first is where the value of k was not greatly affected by the freeze–thaw
cycle, as in F2.5Pb1 and S2.5Pb1. The second one is where the k value continuously decreased with
the increase in the freeze–thaw cycle time, as in C5S5Pb1 and C5F5Pb1. As mentioned earlier, an
excessive binder dosage can result in too many hydration products occurring, which leads to excessive
cementation and compaction of solidified contaminated soil, widening the seepage channels and thus
eventually increasing k [62,73]. The freezing and thawing cycle then destroys the big aggregates, though
the frozen and thawed soil particles might not completely return to their original positions, causing
excessive cementation and making the compact soil become loose and split into small aggregates,
causing seepage channels to be blocked and making k decrease [61,63,74].

The third pattern is where the value of k. decreased during early the freeze–thaw cycle, and then
increased as the duration of the freeze–thaw cycle increased, as seen in C2.5S2.5Pb1, C5S2.5F2.5Pb1,
and C2.5Pb1. The reason for the decline is as seen in the second trend with the reason for the subsequent
increase being that the freeze–thaw cycle relieved the excessive cementation of the soil before continuing
to destroy the original structure of the soil particles, causing the formation of polygonal shrinkage
cracks and a reduction in the volume of fine powder in the pores of the coarse fraction, which eventually
appeared as an increase in k [74,75]. The reason why the k values of C5S5Pb1 and C5F5Pb1 did not
appear to rise was that their binder contents were higher, and thus, their degrees of cementation were
higher. It can thus be predicted that if the freeze–thaw cycle was continued, the k value would increase.
The final pattern is where the k values of Pb1 and C2.5F2.5Pb1 increased continuously with the increase
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in the freeze–thaw cycle time, suggesting that the freeze–thaw cycle destroyed the cementite structure
of the solidified contaminated soil, making the over-solidified contaminated soil structure looser as,
the large cementite structure split into smaller aggregates. This makes the k value smaller, and as long
as the freeze–thaw cycle continues, the structure of the solidified contaminated soil continues to be
damaged, causing large fissures and reducing the levels of fine particles in the larger pores, leading to
further increases in permeability [76,77].

Intuitively from Figure 11, the k value continued to increase as the dosages of cement or quicklime
increased, while it decreased rapidly with increases in fly ash dosage [78]. A better level of k may thus
be achieved by adopting a 5% fly ash, while the dosage of cement/quicklime should be reduced as far
as possible.
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4. Conclusions

In this work, unconfined compressive strength tests, direct shear tests, and permeability tests
were performed to investigate the values of UCS, E50, ϕ, c, and k in compound solidified/stabilized
lead-contaminated soils under various freeze–thaw cycles and different binder dosages (0%, 2.5%,
5%). By adding an intuitive trend graph method to examine the influencing factors, this article further
explored the issue of the best binder dosage for improving the properties of solidified/stabilized
lead-contaminated soil under the action of short-term freeze–thaw cycles. The main conclusions are
as follows:

Generally, the unconfined compressive strength (UCS), the secant modulus (E50), and the shear
index (ϕ and c) increased with increased dosages of binders, which confirmed the remediation effect of
all tested binders on lead-contaminated soil.

The permeability coefficient (k) increased with the increase in binder to a certain extent, which
suggesting that it is incorrect to think that the higher the dosage of binder, the better the curing effect;
there appears to be a critical dosage of added binder for contaminated soils with certain heavy metal
content, and excessive cementation of contaminated soil caused by adding too much binder can result
in loss of strength and an increase in permeability.

The freeze–thaw cycle had an adverse effect on the engineering characteristics of solidified
lead-contaminated soils, shown by decreases in UCS, E50, ϕ, and c values and k value increases with
increases in freeze–thaw cycle time. For the solidified lead-contaminated soils with higher binder
dosages, this degradation effect was even more obvious.
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However, as the solidification/stabilization process was still in process, further reinforcement of
the contaminated soil by the products of hydration reactions and adsorption sedimentation appeared
to offset the deterioration caused by the freeze–thaw cycles, so that degradation was not severe in the
early stage of the freeze–thaw cycle, and UCS, E50, ϕ, and c values appeared to increase.

As excessive solidification and over cementation of the solidified contaminated soil was caused by
an excess of binder, where the freeze–thaw cycle time was relatively short, the damage to the structure
by the freeze–thaw cycle actually caused the solidified contaminated soil to cease being over cemented;
similarly, the k value consistently decreased with the increase of freeze–thaw cycle time.

Under the long term action of freeze–thaw cycles, adding 5% cement and 5% quicklime could
show the better results for the UCS and shear index in lead-contaminated soils (1% lead), while the
value of E50 was best when the addition dosage of fly ash was 5%. However, to avoid excessive
cementation of solidified contaminated soil, 2.5% fly ash and 2.5% cement/quicklime were sufficient to
improve the permeability and E50 of lead-contaminated soils to an excellent condition, respectively.
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