Supplemental Materials for

Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks

Carla Candeias¹, Estela Vicente², Mário Tomé³, Fernando Rocha¹, Paula Ávila⁴, Célia Alves^{2*}

- ¹Geobiosciences, Geotechnologies and Geoengineering Research Centre (GeoBioTec), Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal
- ²Centre for Environmental and Marine Studies (CESAM), Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
- ³ School of Technology and Management (ESTG), Polytechnic Institute of Viana do Castelo, Avenida do Atlântico, nº 644, 4900-348 Viana do Castelo, Portugal
 ⁴ UNEC National Laboratory of Energy and Coology, São Mameda do Infesta, Portu
- ⁴LNEG, National Laboratory of Energy and Geology, São Mamede de Infesta, Portugal * Correspondence: celia.alves@ua.pt

Fig. S1. Location of the sampling sites. Street 1 (S1) – suburban - Rua Alto Xisto, street with cobbled pavement made of granite cubes in a residential area; Street 2 (S2) - urban - road surrounding the campus of the Higher School of Technology and Management; Street 3 (S3) – urban - Avenida Combatentes da Grande Guerra, central artery connecting to the train station.

• Parameters used in the calculations of sections 2.3 and 2.4

Earth's crust individual elemental composition from Riemann and de Caritat [20]:

Al 77440 mg kg⁻¹; As 2 mg kg⁻¹; Ba 668 mg kg⁻¹; Br 1.6 mg kg⁻¹; Ca 29,450 mg kg⁻¹; Cl 640 mg kg⁻¹; Cr 35 mg kg⁻¹; Cu 14.3 mg kg⁻¹; F 611 mg kg⁻¹; Fe 30,890 mg g⁻¹; Ga 14 mg kg⁻¹; K 28,650 mg g⁻¹; Mg 13,510 mg kg⁻¹; Mn 527 mg kg⁻¹; Mo 1.4 mg kg⁻¹; Na 25,670 mg kg⁻¹; Ni 18.6 mg kg⁻¹; P 665 mg kg⁻¹; Pb 17 mg kg⁻¹; Rb 110 mg kg⁻¹; S 953 mg kg⁻¹; Sb 0.31 mg kg⁻¹; Si 30,3480 mg kg⁻¹; Sn 2.5 mg kg⁻¹; Sr 316 mg kg⁻¹; Ti 3117 mg kg⁻¹; V 53 mg kg⁻¹; W 1.4 mg kg⁻¹; Zn 52 mg g⁻¹; Zr 237 mg kg⁻¹.

Values of reference doses (R_fD_{route}), cancer slope factors (CSF), gastrointestinal absorption factors (ABS_{gi}) and inhalation unit risk (IUR) were taken from RAIS [24]:

 $R_{\rm f} D_{\rm route} - R_{\rm f} D_{\rm ing} \ ({\rm mg} \ {\rm kg}^{-1} \ {\rm d}^{-1}) - {\rm As} \ 3 \times 10^{-4}; \ R_{\rm f} D_{\rm drm} - R_{\rm f} D_{\rm ing} \times ABS_{\rm gi}; \ R_{\rm f} D_{\rm inh} \ ({\rm mg} \ {\rm m}^{-3}) - {\rm As} \ 1.5 \times 10^{-5}$

CSF - CSFing ((mg·kg⁻¹ d⁻¹)⁻¹) - As 1.50; Pb 8.5 x 10⁻³; CSFdrm - CSFing/ABSgi

ABSgi - ABSgi - As 1.00; Pb 1.00; ABSdrm - As 0.03

IUR - IUR ((µg m⁻³)⁻¹) - As 4.3 × 10⁻³; Pb 1.2 x 10⁻⁵

Fig. S2. Cluster analysis of the XRF results of road dust samples (S1 suburban environment influenced by agricultural activities; S2 and S3 urban streets).

Fig. S3. Enrichment index for elements detected in road dust fractions (F1 – below 74 μ m, F2 – between 74 μ m and 1 mm). Below detection limit concentrations of Sb and W are represented in grey colour.