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Abstract: In this paper, we compare the performance between systems of ordinary and (Caputo)
fractional differential equations depicting the susceptible-exposed-infectious-recovered (SEIR) models
of diseases. In order to understand the origins of both approaches as mean-field approximations
of integer and fractional stochastic processes, we introduce the fractional differential equations
(FDEs) as approximations of some type of fractional nonlinear birth and death processes. Then,
we examine validity of the two approaches against empirical courses of epidemics; we fit both of
them to case counts of three measles epidemics that occurred during the pre-vaccination era in
three different locations. While ordinary differential equations (ODEs) are commonly used to model
epidemics, FDEs are more flexible in fitting empirical data and theoretically offer improved model
predictions. The question arises whether, in practice, the benefits of using FDEs over ODEs outweigh
the added computational complexities. While important differences in transient dynamics were
observed, the FDE only outperformed the ODE in one of out three data sets. In general, FDE modeling
approaches may be worth it in situations with large refined data sets and good numerical algorithms.

Keywords: fractional SEIR stochastic model; caputo fractional order differential equations; measles;
parameter estimation

1. Introduction

Modeling the spread of infectious diseases before the introduction of vaccines, as well as the
validation of these models, has been widely studied since the works of Reference [1–10]. See Bailey [11]
and Anderson [12] for more details about the history of disease modeling. Deterministic models using
ordinary differential equations (ODEs) have received great attention [12–16] and wide assimilation by
health sciences [17]. Other deterministic models, such as difference equations, are also used to model
the spread of diseases; for instance, see Fisman et al. [18]. However, fractional differential equations
(FDEs) have been used in the last decade to model the course of epidemics [19–24].

Fractional differential equations are usually used to involve the memory of the process in the
dynamics of the systems. There is more than one type of fractional order derivative, most notably,
Caputo, Grünwald-Letnikov, and Riemann-Liouville [25]. Here, we study the Caputo fractional order
derivative. Integer order derivatives of ordinary differential equations are special cases of fractional
order derivatives. It was noted in more than one paper, e.g., Reference [26], that FDEs give a better
depiction of the courses of epidemics and natural phenomena than ODEs. Few researchers have also
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fitted their FDE models to data, e.g., Reference [26,27]. This motivated us to compare systems of ODEs
and FDEs by fitting them to some actual epidemic data.

Measles is a marker disease for virological, epidemiological, clinical, statistical, geographical,
mathematical, and humanitarian reasons [28] (pp. 16–21). Mathematical modeling of measles epidemics
dates back as far as 1888 by D’Enko and then by Hamer; see Haggett [28] (p. 19). Regularity and a large
number of cases of measles epidemics with major peaks in the pre-vaccination era (before 1964) support
the choice of testing models on measles data. Many other researchers formulated measles models and
fit them to data, as in Bjørnstad et al. [29], where a time scale of two weeks is recommended fitting the
number of cases, and in Yingcun Xia et al. [30], where a model is used to examine a spatial network.
In this paper, we choose to use data of measles infections in the USA and UK in two decades of the
pre-vaccination era (1944–1964) to compare the goodness of fit of ODEs and FDEs to those epidemics.

While ODEs are well-established as deterministic models of the spread of diseases [31,32],
FDE models are sometimes used. However, often these approaches lack mathematical basis or
physical interpretation except for exchanging integer differentiation with fractional ones [26,33].
Angstmann et al. [34] and Sardar et al. [35] provided a valid variation by considering the memory of
the non-Markovian infection process. The result is a mixed system of integer and fractional derivatives
of the Riemann-Liouville type. Saeedian et al. [36] showed how another memory functional of the
process can lead to replacing the integer derivatives with Caputo fractional derivatives. In this paper,
we show how Caputo fractional differential equations follow naturally from fractional stochastic
processes like those introduced in literature [37–46]. We then compare transient and long term
dynamics between the FDE and ODE models while fitting them to three different data sets. The Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used to compare between the
fits of the two models to three data sets. For completeness, we will cover all the required background
and the relevant definitions in Section 2. That includes a synopsis of Caputo’s fractional calculus and
fractional stochastic SEIR processes. Section 2 will also include the derivation of the fractional order
differential equation depicting the SEIR model from the fractional stochastic SEIR process. It will be
followed by the stability analysis of the equilibria of the system of fractional differential equations,
which will be then fitted to measles data and simulated.

2. Methods

In this section, we provide a background for fractional differentiation and a fractional birth and
death process. We also introduce the integer and fractional differential equations for the SEIR model
and analyze the stability of the FDEs’ equilibria.

2.1. Preliminaries

2.1.1. Fractional Calculus

Let Dn be the Leibniz integer-order differential operator given by

Dn f =
dn f
dtn = f (n),

and let Jn be an integration operator of integer order given by

Jn f (t) =
1
n!

∫ t

0
(t− τ)n−1 f (τ)dτ, (1)

where n ∈ Z+. Let us use D = D1 for the first derivative. We will use ∂αx F :=
∂αF
∂xα

and use ∂xF :=
∂F
∂x

.
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For fraction-order integrals, we use

Jn−α f (t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ, (2)

where n− 1 < α ≤ n. Now, define the Caputo fractional differential operator Dα
∗ to be

Dα
∗ f (t) = Jn−αDn f (t),

where n− 1 < α ≤ n, for n ∈ N. It is also known that

lim
α→n

Dα
∗ f (t) = f (n)(t),

lim
α→n−1

Dα
∗ f (t) = f (n−1)(t)− f (n−1)(0)

(3)

for any n ∈ N. We will consider n = 1 in this work; that is 0 < α ≤ 1. In that case,

J1−α f (t) =
∫ t

0
f (τ)dgt(τ), (4)

where gt(τ) =
1

Γ(2−α)

(
t1−α − (t− τ)1−α). That is, for each t, the integral J1−α f (t) is an area under

f (τ), while above the curve of gt(τ) that works as a deformed or slowed time-scale, as illustrated
by Podlubny [47].

The generalized mean-value theorem for the Caputo fractional derivative is given as

f (x) = f (a) +
1

Γ(α)
Dα
∗ f (c)(x− a)α for some a ≤ c ≤ x

and for all x ∈ (a, b] whenever f , Dα
∗ f ∈ C([a, b]); see, e.g., Özalp and Demirci [48].

The Mittag-Leffler is a function that generalizes the exponential function. That function can be
written as follows:

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α ∈ R+, z ∈ C, (5)

or, more generally using two parameters,

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α,β ∈ R+, z ∈ C. (6)

The general Mittag-Leffler has the following important property for any α,β > 0:

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
. (7)

Two important differential properties of the Mittag-Leffler function are that

Dα
∗ eλt = t−αE1,1−α(λt) (8)

and
Dα
∗ Eα,1(λtα) = λEα,1(λtα) (9)

for any λ > 0.
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2.2. Fractional Stochastic Process

Fix 0 < α ≤ 1. Following Earn et al. [49], we consider a compartmental susceptible-exposed-
infected-recovered (SEIR) model to depict the measles transmission dynamics in a closed population.
Let X(α)

1 , X(α)
2 , X(α)

3 , and X(α)
4 be the number of susceptible, exposed, infected, and recovered

individuals, respectively, such that X(α)
1 + X(α)

2 + X(α)
3 + X(α)

4 = N, the population size. Figure 1
shows how the disease is progressing from one sub-population to another.

Figure 1. Schematic diagram of the susceptible-exposed-infectious-recovered (SEIR) model depicting
transitions between different compartments.

Here, µ is the recruitment and per capita death rate, β is the transmission rate, δ is the rate at
which exposed individuals become infectious, and σ is the recovery rate.

A stochastic SEIR model can be depicted using a continuous time Markov chain (CTMC) like
the birth and death process with non-linear rates of transition as those given in Table 1; see Allen [50]
(p. 22) and [51] (p. 321). Bartlett, M.S. [9] and Greenwood and Gordillo [31] introduced (integer)
stochastic SIR model using CTMC with rates similar to those in the first six rows in Table 1 to show
a deterministic SIR model of the ODE type depicting the approximate dynamics of the means of the
processes. Here, we introduce a fractional SEIR model using a CTMC of fractional birth and death
process on triplets (i, j, k) with rates provided by Table 1.

Table 1. Transitions and their rates for a birth and death process depicting a stochastic SEIR model.

Transition Rate

X(α)
1 → X(α)

1 + 1 µN

X(α)
1 → X(α)

1 − 1 βX(α)
1

X(α)
3
N

+ µX(α)
1

X(α)
2 → X(α)

2 + 1 βX(α)
1

X(α)
3
N

X(α)
2 → X(α)

2 − 1 (µ+ δ)X(α)
2

X(α)
3 → X(α)

3 + 1 δX(α)
2

X(α)
3 → X(α)

3 − 1 (µ+ σ)X(α)
3

X(α)
4 → X(α)

4 + 1 σX(α)
3

X(α)
4 → X(α)

4 − 1 µX(α)
4

An α-fractional SEIR stochastic process {(X(α)
1 (t), X(α)

2 (t), X(α)
3 (t)) : t ≥ 0} for 0 < α ≤ 1 with

state probabilities

p(α)
(i,j,k)(t) = P((X(α)

1 (t), X(α)
2 (t), X(α)

3 (t)) = (i, j, k)|(X(α)
1 (0), X(α)

2 (0), X(α)
3 (0)) = (i0, j0, k0))

for i, j, k = 0, 1, . . ., such that 0 ≤ i + j + k ≤ N and P((X(α)
1 (0), X(α)

2 (0), X(α)
3 (0)) = (i0, j0, k0)) = 1,

has a fractional forward Kolmogorov equation of the stochastic SEIR model similar to Equation (A1)
and is given by

Dα
∗ p(α)

(i,j,k)(t) = µNp(α)
(i−1,j,k)(t) + β(i + 1) k

N p(α)
(i+1,j−1,k)(t) + µ(i + 1)p(α)

(i+1,j,k)(t)

+ δ(j + 1)p(α)
(i,j+1,k−1)(t) + µ(j + 1)p(α)

(i,j+1,k)(t) + (σ+ µ)(k + 1)p(α)
(i,j,k+1)(t)

−(µN + βi k
N + µi + (δ+ µ)j + (σ+ µ)k)p(α)

(i,j,k)(t)

, (10)
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with p(α)
(i,j,k)(t) = 0 if either i, j, or k are negative or i + j + k > N (see Di Crescenzo et al. [45]).

The classical forward Kolmogorov equation of the stochastic SEIR model follows when α = 1 with
state probabilities p(1)

(i,j,k)(t), [51] (p. 321). Equation (10) can be used to find the probability generating

function G(α)(u, v, w, t) = E(uX(α)
1 (t)vX(α)

2 (t)wX(α)
3 (t)) of the state probabilities, as the solution of the

Cauchy problem

Dα
∗ G(α) = µN(u− 1)G(α) + µ(1− u)∂uG(α) + (δw + µ− (δ+ µ)v)∂vG(α)

+ (σ+ µ)(1− w)∂wG(α) + β w
N (v− u)∂uwG(α) (11)

for t > 0 and G(α)(u, v, w, 0) = ui0 vj0 wk0 , for −1 < u, v, w < 1.
Note that the integer or classical stochastic SEIR process is (X(1)

1 (t), X(1)
2 (t), X(1)

3 (t)) which is
simply the case when α = 1. Interestingly, the fractional stochastic SEIR process is a random-time
subordination of the integer stochastic SEIR model, as established for other fractional processes like the
fractional Poisson process [37,45,52], and the fractional birth and/or death processes [39,40,42,43,53].
In Mandelbrot and Taylor [54], the stochastic time process T2α is called the operational time, and t is
the physical time.

Theorem 1. The fractional stochastic SEIR process (X(α)
1 (t), X(α)

2 (t), X(α)
3 (t)) has the same distribution as

the random-time subordinated integer stochastic SEIR process

(X(1)
1 (T2α(t)), X(1)

2 (T2α(t)), X(1)
3 (T2α(t)))

for t > 0 and 0 < α ≤ 1.

The proof is provided in Appendix A.

2.3. Measles Model via Fractional Differential Equations (FDE)

The means of the three discrete-marginal processes X(α)
1 (t), X(α)

2 (t), and X(α)
3 (t) can be

found using ∂uG(α)(1, 1, 1, t), ∂vG(α)(1, 1, 1, t), and ∂wG(α)(1, 1, 1, t), respectively. Let S(α)(t) :=
1
NE(X(α)

1 (t)), E(α)(t) := 1
NE(X(α)

2 (t)), and I(α)(t) := 1
NE(X(α)

3 (t)), where N is the total
population size and E(x) is the expected value of x. Thus, using Equation (11) and approximating
E(X(α)

1 (t)X(α)
3 (t)) by E(X(α)

1 (t))E(X(α)
3 (t)), we reach the fractional order version of the system of

equations that was used by Bartlett, M.S. [9] to model measles:

Dα
∗ S(α) = µ− βS(α) I(α) − µS(α)

Dα
∗ E(α) = βS(α) I(α) − (µ+ δ)E(α)

Dα
∗ I(α) = δE(α) − (µ+ σ)I(α)

(12)

where S(α), E(α), and I(α) be the proportion of susceptible, exposed, and infected individuals,
respectively. With proportion of recovered individuals given by R(α) = 1− (S(α) + E(α) + I(α)),
we reach the fractional α order SEIR model

Dα
∗ S(α) = µ− βS(α) I(α) − µS(α)

Dα
∗ E(α) = βS(α) I(α) − (µ+ δ)E(α)

Dα
∗ I(α) = δE(α) − (µ+ σ)I(α)

Dα
∗ R(α) = σI(α) − µR(α)

(13)

with 0 < α ≤ 1. The non-negative parameters β, µ, δ, and σ—denoting them by θ, for brevity—have
dimensions given by 1

timeα . By construction of the FDE model as a mean field approximation of the
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α-fractional stochastic SEIR process which, in its turn, is a subordination of an integer stochastic SEIR
process by Theorem 1, those parameters could be interpreted as the rates measured by an independent
observer of the process or calculated based on a cosmic time flow [47]. We replace those parameters
with a power α of new parameters; that is, θα∗ in place of θ so the parameters θ∗ will have the dimension
of 1

time , and the system becomes the following form:

Dα
∗ S(α) = µα

∗ − βα
∗ S(α) I(α) − µα

∗ S(α)

Dα
∗ E(α) = βα

∗ S(α) I(α) − (µα
∗ + δα∗ )E(α)

Dα
∗ I(α) = δα∗ E(α) − (µα

∗ + σα
∗ )I(α)

Dα
∗ R(α) = σα

∗ I(α) − µα
∗ R(α).

(14)

By replacing θ by θα∗ , the system of integer order differential equations with its epidemiological
parameters follows directly from the system of fractional order differential equations when α = 1.

2.4. Measles Model via Ordinary Differential Equations (ODE)

The following system of differential equations represents the ordinary differential equation
representation of the SEIR model and is the FDE model when α = 1 in Equation (14).

DS = µ− βSI − µS

DE = βSI − (µ+ δ)E

DI = δE− (µ+ σ)I

DR = σI − µR

, (15)

where µ,β, δ, and σ are the model parameters described above. They all have dimensions given by
1

time . The last Equation in (15) is redundant since R = 1− (S + E + I).

2.5. Measles Model via α-Dependent Ordinary Differential Equations

We are interested in comparing the FDE versus ODE modeling approaches. It is important to note
that the basic ODE case considers α = 1; however, in the FDE case, α appears in the derivative, as
well as the parameter, values. In order to better compare these two approaches, here, we develop an
ODE analogue to the FDE that incorporates α in the parameter values. We call this new system the
α-dependent ODE. By dropping the α order derivative from the left side and α power from S(α), E(α),
and I(α) of Equation (14), our α-dependent ODE takes the following form:

DS = µα
∗ − βα

∗ SI − µα
∗ S

DE = βα
∗ SI − (µα

∗ + δα∗ )E

DI = δα∗ E− (µα
∗ + σα

∗ )I

DR = σα
∗ I − µα

∗ R.

(16)

Here, the above systems may differ from the classical ODE (Equation (15)) if α 6= 1. In this case,
the α value used in the above α-dependent ODE are obtained from data fitting procedures using the
FDE model (Equation (14)).

2.6. Model Analysis

Analysis of the ODE is almost the same as of the FDE, so we include the FDE one here. We start
by proving the positive invariance of the region of solutions of the FDE model. Henceforth, we drop
the α from S(α), E(α), and I(α), for brevity.

The following two lemmas of asymptotic behavior of FDEs are given here and their proof in
Appendix A for completeness.
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Lemma 1. The closed simplex region M = {(S, E, I) ∈ R3
+ : 0 ≤ S + E + I ≤ 1} is a positive invariant set

for the FDE model in Equation (14).

We can find the model’s equilibrium points by setting Dα
∗ S = 0, Dα

∗ E = 0, and Dα
∗ I = 0. Thus,

there are two equilibria to the measles SEIR model (14). They are:

1. the disease free equilibrium DFE ≡ (1, 0, 0) and
2. the endemic equilibrium

EE = (s∗, e∗, i∗) ≡
(

1
R0

,
µ

δ+ µ

(
1− 1

R0

)
,
µ

β
(R0 − 1)

)
, (17)

where the basic reproduction number is R0 := βδ
(µ+σ)(µ+δ)

. EE exists only when 1 < R0 < 1 + β
µ .

Remark 1. An equilibrium is locally asymptotically stable if the eigenvalues of the Jacobian matrix of
the n-dimensional system, namely λ1, λ2, . . . , λn, have the property that | arg(λi)| > απ

2 , for i =

1, 2, . . . , n, [25] (p. 158).

Thus, in general, the stability of the ordinary differential equations model implies stability of
its fractional counter model of order α. But, here, they are equivalent due to the following lemma,
in which the solution could be found in Appendix A.

Lemma 2. The Disease-Free Equilibrium DFE is locally asymptotically stable if R0 < 1. The endemic
equilibrium EE is is locally asymptotically stable if R0 > 1.

Therefore, they have the same asymptotic behavior. Yet, the transient behavior differs, as will be
seen by simulations below.

Moreover, a very important difference is their oscillation behavior is not similar. Let λ` and u` for
` = 1, 2, . . . , n be the eigenvalues and their respective eigenvectors of an n× n matrix A. The general
solution of initial value problem consisting of a system of n linear fractional differential equations
Dα
∗ x(t) = Ax(t), such that x(0) = x0, can be found to be

x(t) =
n

∑
`=1

c`u`Eα(λ`tα) (18)

for certain constants c` ∈ C for ` = 1, 2, . . . , n, such that ∑n
`=1 c`u` = x0, [25] (Theorem 7.13). In case

that α = 1, we recover the known solution of the system of ODEs given by

x(t) =
n

∑
`=1

c`u` exp(λ`t).

If n = 3 and A is not a symmetric matrix, then at least one of the eigenvalues is a real-valued
number and the other two eigenvalues , say λ2 and λ3, are conjugate complex-valued. In that situation,
x(t) would oscillate with inter-peak periods, called inter-epidemic period in disease modeling, given by
2π(Im(λ2))

−1 [14]. If Re(λ`) < 0 for all `, then the oscillations will be damped to zero. That damped
oscillation is straightforward in the case of α = 1 due to the exponential damping in the superposition
of the sine and cosine functions. That behavior, however, is not straightforward for 0 < α < 1.

2.7. Numerical Simulations

Since the mean of the subordinator process is E(Tα(t)) =
tα

Γ(α+ 1)
, we use a method similar to

that which was introduced in Demirici and Özalp [55] to find approximate solutions to initial value
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FDE problems. We use that method here to simulate the solution of the FDE measles SEIR model.
Consider the initial value problem:

Dα
∗ x(t) = f (t, x(t)), for 0 < t ≤ T,

x(0) = x0,
(19)

for some T > 0. A solution of Equation (19) is approximated by the deterministic time subordination

x(t) = y
(

tα

Γ(α+ 1)

)
, (20)

of y(s), the solution of the ordinary differential equation

dy(s)
ds

= g(s, y(s)), for 0 < s ≤ tα

Γ(α+ 1)

y(0) = x0.
, (21)

where

g(s, y(s)) = f (t− (tα − sΓ(α+ 1))
1
α , x(t− (tα − sΓ(α+ 1))

1
α )) (22)

for all 0 < t ≤ T, [55].
We use the subordination of the solution of ODEs to FDEs represented in Equations (20) and (21)

to numerically simulate solutions of FDEs; see Algorithm 1.

Algorithm 1 Numerical solution of Dα
∗ x(t) = f (t, x(t)) for 0 < t < T with x(0) = x0.

Input: α, T, f (t, x(t)), m, n Output: x(t)
begin

Divide the interval [0, T] into n sub-intervals using

0 = t0 < t1 < . . . < tn = T.

for i = 1, 2, . . . , n

Divide the interval [0,
tαi

Γ(α+ 1)
] into further m sub-intervals using

0 = s0 < s1 < . . . < sm =
tαi

Γ(α+ 1)
.

Solve the system Dy(s) = f (ti − (tαi − sΓ(α+ 1))
1
α , y(s)) with y(0) = x0 using Euler or

Runge-Kutta methods on s0, s1, . . . , sm.
Retain x(ti) = y(sm).

end
Return [x0, x(t1), x(t2), . . . , x(tn)].

end

2.8. Fitting FDE and ODE Models to Measles Data

We use the method of ordinary least squares (OLS) to fit the FDE model to the data by minimizing
the objective function

L(α,β,µ, δ,σ) =
n

∑
i=1

(Ii − Îi)
2
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for α ∈ (0, 1], and β,µ, δ,σ ∈ (0, ∞), where {Ii, i = 1, . . . , n} is the data of actual proportion of
infections and { Îi, i = 1, . . . , n} is the simulated proportion of infections. The values Îi approximating
I(ti) are found by solving the FDE model using Algorithm 1.

Parameter estimation was conducted using MATLAB MultiStart and fmincon functions.
The MultiStart function carries out the optimization procedure using initial points within the
parameters’ spaces. It generates some initial points depending on a converging algorithm. The fmincon
function finds a local minimum for the constrained nonlinear multivariable function. The MultiStart,
together with fmincon functions, does the global optimization of a nonlinear multivariable function.
The MultiStart function uses parallel processing, which drastically reduces the running time.

3. Results

We solve the system of FDE (Equation (14)) using Algorithm 1 and the systems of ODE
(Equations (15) and (16)) using the Runge-Kutta method.

In order to study the qualitative aspects of the FDE and its numerical solution, we carried out
a number of simulations. Simulations of the classical ODE (Equation (15)) and FDE (Equation (14)),
Figure 2, shows that the system of fractional differential equations is very sensitive to its order of
differentiation α. For smaller α, the peak number of cases of the epidemic is larger but the duration of
the outbreak is shorter. The solution of the FDE model converges to the solution of the classical ODE
as α→ 1. To further compare the two modeling approaches, we consider the analogue ODEs derived
for specific α values; see Equation (16). These comparisons are shown in Figure 3. During transient
dynamics both models exhibit several peaks in the number of cases. The number of these peaks
and their respective amplitudes are similar between models; however, there are differences in the
timing of these peaks. The transient oscillations of the FDE model are more stretched out than its ODE
analogue, and its solutions experience longer inter-epidemic times. Both models approach the same
equilibria solutions.

Simulations of Equation (18), Figure 4, shows that disease models of fractional order equations
lack the same oscillatory behavior exhibited by systems of ODEs with conjugate complex eigenvalues
of the Jacobian matrices calculated at endemic equilibrium.

Figure 2. Number of cases using classical ordinary differential equation (ODE) model and fractional
differential equation (FDE) model with different fractional orders α. The simulations are done using
µ = µ? = 0.0027, β = β? = 119.2257, δ = δ? = 16.7301,σ = σ? = 10.1873, and N = 7781984.
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Figure 3. Number of cases using FDE model and its analogous α-dependent ODE with different
fractional orders α. The simulations are done using µ? = 0.0027,β? = 119.2257, δ? = 16.7301,
and σ? = 10.1873.

Figure 4. Simulations of solutions of the SEIR FDE centered about the endemic equilibrium (EE) for α = 1,
0.95, 0.85, and 0.75 using Equation (18) shows a suppression of damped oscillations as α decreases.
The simulations are done using µ? = 0.0027,β? = 119.2257, δ? = 16.7301, and σ? = 10.1873.

The models were fitted to three measles epidemics in the pre-vaccination era in three different
cities: New York, London, and Portsmouth. Simulations of the fitted ODE and FDE models are shown
in Figure 5. See Appendix B for the data and the parameter estimates, as well.
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Figure 5. Simulations of ODE and FDE fitted to measles epidemics in the pre-vaccination era for
(a) New York, (b) London, and (c) Portsmouth using the parameter values from Table A4. ODE and
FDE models give similar fitting in (a) and (b) but FDE model performs better than ODE model in (c).

The estimates of α are 0.999999999524, 0.999999999614, and 0.875784505546 for New York, London,
and Portsmouth, respectively. The values obtained for α for the New York and London data
sets are very close to one, where the FDE model converges to the ODE model (Equation (15)).
Statistical measurements on the data fittings are presented in Table A4, found in Appendix B.4.
The Akaike information criterion (AIC), Bayesian information criterion (BIC), and Sum squared error
(SSE) are very similar between the two models for all three data sets. However, the biggest differences
between the two models are found with the Portsmouth data fittings where the FDE performs slightly
better than the ODE.

4. Discussion

Replacing first order derivatives with Caputo fractional derivatives has been the practice for
many studies using fractional order modeling of diseases. In this paper, we show how these models
follow from an approximation to the dynamical system governing the means of fractional stochastic
SEIR processes. Moreover, we study ordinary and fractional order systems of differential equations
of SEIR models using three data sets of measles epidemics in three different cities selected from
the pre-vaccination era. Two of the data sets fits resulted in α values of extremely close to one,
with differences appearing in the ninth decimal digit. In these two cases, the two models are equivalent,
apart from round off errors potentially from the numerical methods. We suspect these round off error
are also causing the extremely slight differences in the statistical measures (AIC, BIC, SSE) of the data
fittings. In the third case, the data for Portsmouth, where α = 0.88 the FDE model outperformed the
ODE model; see Figure 5 and Appendix B.4.

Angstmann et al. [34] use the master equation of a continuous-time random walk to derive an
FDEM involving Riemann-Liouville fractional derivatives. Power laws are postulated to model time of
infectiousness and recovery. That extension from exponential times in ordinary differential equations
is a different approach from the mean field approximation of a stochastic process. Saeedian et al. [36]
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introduced the Caputo fractional differential equations through a memory of the whole process of
infection and disease recovery. In our paper, we have considered, for the first time, fractional stochastic
SEIR model and have shown how the Caputo fractional differential equations follows as mean-field
approximation of the process.

Fractional stochastic SEIR model introduced here turns out to be a random-time subordination
of a classical stochastic SEIR model. Other real-life systems are modeled using a subordination of a
stochastic process. A subordinated process was introduced by Mandelbrot and Taylor [54] to model
the logarithm of market prices where the original process is a Brownian motion subordinated by a
stochastic time process T2α, which is the same random time process we have found here.

Further study of the fractional stochastic SEIR model might lead to interesting dynamical
behaviors. For instance, it can provide more insights into the stochastic oscillations of the disease in
a more flexible way than their classical counterparts. Thus, studying the fractional stochastic SEIR
model is the next step in this work.

5. Conclusions

In this paper, we compare two deterministic models of disease: ordinary differential equations
(ODE) and fractional differential equations (FDE). We use three different data sets of measles epidemics
from the pre-vaccination era. We also explain FDEs as the mean-field approximation of a fractional
stochastic SEIR model. To our knowledge, this is the first time such a fractional stochastic process is
introduced and connected to the fractional order differential equations.

We conclude that, depending on the specific data set, the FDE model either converges to the
ODE model and fits data similarly, or fits the data better and outperforms the ODE model. It is worth
asking whether the complexities introduced by FDE approach are worth pursuing, as the numerical
algorithms for solving FDEs are computationally expensive. Here, the FDE approach yielded better
results in only one of three data sets, and the results were still similar to those obtained by the ODE.
However, other data sets may yield larger differences between these two modeling approaches and
benefit more from an FDE approach. In particular, more refined and larger data sets may be more
appropriate for this approach. Here, oscillations can persist longer in the FDE solutions than those
of the ODE (Figure 3, α = 0.85), suggesting perhaps refined data set with seasonal variations may
be good candidates for the FDE modeling approach. It is also important to note that the numerical
methods for solving FDEs and data fitting procedures can be improved. Future studies, with good
empirical data sets, should consider the FDE approach to modeling epidemics, as well as improving
numerical algorithms.

Author Contributions: Conceptualization, M.R.I., A.P. and T.O.; Methodology, M.R.I., D.M. and T.O.; Software,
M.R.I. and T.O.; validation, M.R.I. and T.O.; Formal analysis, M.R.I. and T.O.; Investigation, M.R.I. and T.O.;
Data curation, M.R.I. and T.O.; Writing—Original draft preparation, M.R.I., D.M., A.P. and T.O.; Writing—Review
and editing, M.R.I., A.P. and T.O.; Visualization, M.R.I., A.P., D.M. and T.O.; Supervision, A.P. and T.O.;
Funding acquisition, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: A.P. was partially supported by NSF grant DMS-1815750.

Acknowledgments: We thanks Joshua Padgett for his valuable comments.

Conflicts of Interest: The authors declare that they have no competing interests. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

Appendix A. Some Definitions and Proofs

Laplace transform of a function f (t) is defined as

L( f )(s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.
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The inverse transform is defined by

L−1( f̂ )(t) =
1

2πi

∫
C

est f̂ (s)ds

where C is a contour parallel to the imaginary axis and to the right of the singularities of f̂ . The Laplace
transform of the Caputo fractional derivative is given by

L(Dα
∗ f )(s) = sα f̂ (s)− sα−1 f (0).

Fractional Birth and Death Process

An α-fractional nonlinear birth and death process {Nα(t) : t ≥ 0} for 0 < α ≤ 1 with
state probabilities

pαn (t) = P(Nα(t) = n|Nα(0) = 1)

for n ≥ 0 is defined through the forward Kolmogorov (difference-)differential equations

Dα
∗ pαn (t) = λn−1 pαn−1(t) + µn+1 pαn+1(t)− (λn + µn)pαn (t) (A1)

for n ≥ 0 [39,43,53]. The rates λn and µn are non-negative. The classical birth and death process
follows when α = 1 with state probabilities p1

n(t). When λn = λ and µn = 0 for all n, the α-fractional
nonlinear birth and death process becomes the α-fractional Poisson process [37,41,46]. There, it has
shown that Nα(t) has the same probability distribution as N(Tα(t)), where N(t) is the classical birth
and death process which is independent of a random time process Tα(t); that is, a birth and death
process subordinated by an α-stable time process.

The random time process Tα(t) has a distribution given by the folded solution of the fractional
diffusion equation ∂αt F = ∂2

xF for 0 < α ≤ 2, x ∈ R, t > 0, and subject to F(x, 0) = δ(x) for 0 < α ≤ 2
and ∂αt F(x, 0) = 0 for 1 < α ≤ 2, [43]. We will denote its measure by να,t(ds) := P(Tα(t) ∈ ds). It has
a Laplace transform

L(να,·(ds))(r) =
∫ ∞

0
e−rtνα,t(ds)dt = r

α
2 −1e−sr

α
2 ds

and moments E[(Tα(t))k] = Γ(k + 1)
tkα

Γ(kα+ 1)
for k = 1, 2, . . .; [46,56].

Note that, the absolute values of partial derivatives of G are finite; that is, |∂(i,j,k)u,v,w G| < ∞
for any i, j, k = 0, 1, 2, . . .. That is true since |u|, |v|, |w| < 1 and the population size is finite.
Thus, switching integrals with derivatives or summations below are valid.

Proof of Theorem 1. We are going to show that Laplace transform of the probability generating
function of the process

(X(1)
1 (T2α(t)), X(1)

2 (T2α(t)), X(1)
3 (T2α(t)))

is the same as Laplace transform Ĝ of G, that solves Equation (11). From there we will conclude
that the two probability distributions are the same since the probability generating function of
(X(α)

1 (t), X(α)
2 (t), X(α)

3 (t)), by construction, is also a solution to the Cauchy problem in Equation (11).
From Equation (11), the Laplace transform Ĝ is the solution of

sαĜ(α) − sα−1ui0 vj0 wk0 = µN(u− 1)Ĝ(α) + µ(1− u)∂uĜ(α) + (δw + µ− (δ+ µ)v)∂vĜ(α)

+ (σ+ µ)(1− w)∂wĜ(α) + β w
N (v− u)∂uwĜ(α) (A2)

Let H(α)(u, v, w, t) be the probability generating function of the state probabilities

q(α)
(i,j,k)(t) = P((X(1)

1 (T2α(t)), X(1)
2 (T2α(t)), X(1)

3 (T2α(t))) = (i, j, k)|
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(X(1)
1 (T2α(0)), X(1)

2 (T2α(0)), X(1)
3 (T2α(0))) = (i0, j0, k0)).

That means that
H(α)(u, v, w, t) = E(uX(1)

1 (T2α(t))vX(1)
2 (T2α(t))wX(1)

3 (T2α(t)))

= ∑i ∑j ∑k uivjwkq(α)
(i,j,k)(t)

= ∑i ∑j ∑k uivjwk ∫ ∞
0 p(1)

(i,j,k)(s)ν2α,t(ds)

=
∫ ∞

0 (∑i ∑j ∑k uivjwk p(1)
(i,j,k)(s))ν2α,t(ds)

=
∫ ∞

0 G(1)(u, v, w, s)ν2α,t(ds).

Thus, the Laplace transform of the probability generating function H(α) is given by

Ĥ(α)(u, v, w, r) =
∫ ∞

0 e−rt ∫ ∞
0 G(1)(u, v, w, s)ν2α,t(ds)dt

= rα−1
∫ ∞

0 G(1)(u, v, w, s)e−srαds
= rα−1Ĝ(1)(u, v, w, rα)

Now, the Laplace transform of the probability generating function of the process
(X(1)

1 (t), X(1)
2 (t), X(1)

3 (t)) also solves (A2) when α = 1 which is

sĜ(1) − ui0 vj0 wk0 = µN(u− 1)Ĝ(1) + µ(1− u)∂uĜ(1) + (δw + µ− (δ+ µ)v)∂vĜ(1)

+ (σ+ µ)(1− w)∂wĜ(1) + β w
N (v− u)∂uwĜ(1).

(A3)

If we substitute with s = rα in Equation (A3) and multiply both sides by rα−1 we get

rαĤ(α) − rα−1ui0 vj0 wk0 = µN(u− 1)Ĥ(α) + µ(1− u)∂u Ĥ(α) + (δw + µ− (δ+ µ)v)∂vĤ(α)

+ (σ+ µ)(1− w)∂w Ĥ(α) + β w
N (v− u)∂uw Ĥ(α) (A4)

which is the same as Equation (A2). This completes the proof.

Proof of Lemma 1. Note that the Mittag-Leffler function Eα,1(−µtα) ∈ (0, 1) for t > 0; see, e.g.,
Reference [46].

Starting on the S-axis when E(0) = I(0) = 0 and 1 ≥ S(0) = S0 ≥ 0, then

S(t) =
1
µ
+ (S0 −

1
µ
)Eα,1(−µtα) ≥ 0

since µ > 0 and t ≥ 0. Starting on the E-axis when S(0), I(0) = 0 and E(0) = E0 ≥ 0, then

E(t) = Eα,1(−(µ+ δ)tα)E0 ≥ 0

Starting on the I-axis when S(0), E(0) = 0 and I(0) = I0 ≥ 0, then

(t) = Eα,1(−(µ+ σ)tα)I0 ≥ 0

Thus, all axes are positive invariant, for S(0), E(0), I(0) ≥ 0.
If the solution of the system is leaving through the positive quadrant of the E-I plane, then S(te) = 0,

and E(te) and I(te) > 0 for some te > 0, such that S(t) ≤ S(te), for all t > te. But, Dα
∗ S|t=te = µ > 0.

By the generalized mean value theorem

S(t) = S(te) +
1

Γ(α)
Dα
∗ S(τ)(t− te)

α

for some te ≤ τ < t, then S(t) > S(te) contradicting the original statement. The same argument could
be used for the positive quadrant of the S-I plane with Dα

∗ E|t=te = βS(te)I(te) > 0 and for the positive
quadrant of the E-S plane with Dα

∗ I|t=te = αE(te) > 0.
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To show that S(t) + E(t) + I(t) ≤ 1 for all t > 0, if S(0) + E(0) + I(0) ≤ 1,

Dα
∗ (S + E + I) = µ− µ(S + E + I)− σI

≤ µ− µ(S + E + I)
(A5)

Thus,

S(t) + E(t) + I(t) ≤ tαEα,α+1(−µtα)µ+ Eα,1(−µtα)(S(0) + E(0) + I(0))

≤ tαEα,α+1(−µtα)µ+ Eα,1(−µtα) = 1
(A6)

by Equation (7).

Proof of Lemma 2. For the local stability of a disease-free equilibrium, we must evaluate the Jacobian
matrix at DFE ≡ (1, 0, 0)

J(DFE) =

−µ 0 −β
0 −(µ+ δ) β

0 δ −(µ+ σ)


The eigenvalues of the matrix J are,

λ1 = −µ,

λ2 =
−(δ+ 2µ+ σ)−

√
∆

2
,

λ3 =
−(δ+ 2µ+ σ) +

√
∆

2
,

where δ = δ2 + 4δβ− 2δσ+ σ2. From this it is clear that λ1 is negative and since

∆ = δ2 + 4δβ− 2δσ+ σ2 = (δ− σ)2 + 4δβ > 0

then λ2 and λ3 are real-valued numbers. Hence λ2 < 0. But, λ3 < 0 is true when

−(δ+ 2µ+ σ) +
√

δ2 + 4δβ− 2δσ+ σ2

2
< 0

which is equivalent to βδ < (µ+ σ)(µ+ δ), proving the first part.
The Jacobian matrix calculated at EE is given by

J(EE) =

 −µR0 0 −β 1
R0

µ(R0 − 1) −(µ+ δ) β 1
R0

0 δ −(µ+ σ)


which has a characteristic polynomial,

−λ3 − λ2[(µ+ δ) + (µ+ σ) + µR0]− λ[µR0(2µ+ δ+ σ)] + µ(R0 − 1)(µ+ σ)(µ+ δ).

Because that polynomial has a degree of 3, we choose to test the Routh-Hurwitz conditions to see
if EE is stable.

a1 = µR0 + (2µ+ δ+ σ) > 0

a3 = µ(R0 − 1)(µ+ σ)(µ+ δ) > 0

With these conditions we check that the determinant, D2 > 0.

D2 = a1a2 − a3 = (µR0 + 2µ+ δ+ σ)(µR0(2µ+ δ+ σ))− (µ(R0 − 1)(µ+ σ)(µ+ δ))
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= µ[µR2
0(2µ+ δ+ σ) + (2µ+ δ+ σ)2R0 − R0(µ+ σ)(µ+ δ) + (µ+ σ)(µ+ δ)]

= µ[µR2
0(2µ+ δ+ σ) + (µ+ σ)2R0 + (µ+ δ)2R0 + (µ+ σ)(µ+ δ)R0 + (µ+ σ)(µ+ δ)] > 0

From this, all Routh-Hurwitz conditions are met and all the eigenvalues of the Jacobian matrix at
EE are negative, meaning that Re(λk) < 0, k = 1, 2, 3.

Appendix B. Data Sets and Parameter Estimation

Appendix B.1. New York

Monthly reported infections of measles from September 1961 to January 1963 in New York City,
USA are given in Table A1. Parameter estimation of New York’s measles data from September 1961 to
January 1963 using both ODE model and FDE model. The estimated parameters values for the classical
ODE model are (µ,β, δ,σ) = (0.0028, 119.22, 16.73, 10.19) with the sum of square error, SSE = 1.29× 106

and for the FDE model are (α,µ,β, δ,σ) = (0.999999999524, 0.0029, 116.34, 19.39, 10.37) with the sum
of square error, SSE = 1.34× 106.

Table A1. Reported infections of measles from September 1961 to January 1963 in New York, USA [57].

Year Months Cases Year Months Cases Year Months Cases

1961 September 109 1962 March 5839 1962 September 58
1961 October 123 1962 April 7875 1962 October 86
1961 November 383 1962 May 6555 1962 November 125
1961 December 1043 1962 June 2866 1962 December 145
1962 January 1725 1962 July 1075 1963 January 184
1962 February 3056 1962 August 266

Appendix B.2. London

Biweekly reported infections of measles in 1961 in London, United Kingdom are given in Table A2.
Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE model.
The estimated parameters values for the classical ODE model are (µ,β,δ,σ) = (6.79× 10−4, 153.44, 1.99, 4.27)
with the sum of square error, SSE = 2.01 × 106 and for the FDE model are (α,µ,β,δ,σ) =

(0.999999999614, 0.0015, 122.68, 2.18, 8.75) with the sum of square error, SSE = 2.04× 106.

Table A2. Biweekly reported measles infections in 1961 in London, UK [57].

weeks 0 2 4 6 8 10 12 14 16 18 20 22 24 26
cases 1636 2700 2639 4805 6543 6389 5545 5374 4272 2322 1810 1409 1037 767

weeks 28 30 32 34 36 38 40 42 44 46 48 50 52
cases 514 375 265 199 121 86 76 89 87 73 70 59 45

Appendix B.3. Portsmouth

Biweekly reported infections of measles in 1961 in Portsmouth, United Kingdom are given in Table A3.
Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE model.
The estimated parameters values for the classical ODE model are (µ,β,δ,σ) = (10−6, 228.61, 0.46, 3.33)
with the sum of square error, SSE = 4.57× 104 and for the FDE model are (α,µ,β,δ,σ) = (0.875784505546,
2.56× 10−4, 278.72, 1.52,5.24) with the sum of square error, SSE = 3.22× 104.
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Table A3. Biweekly reported infections of measles in 1961 in Portsmouth, UK [57].

weeks 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
cases 4 30 58 174 310 407 640 847 555 523 337 242 144 91 29

weeks 32 34 36 38 40 42 44 46 48 50 52
cases 21 25 28 13 5 2 1 2 0 2 0

Appendix B.4. Parameter Estimations

Table A4. Parameter estimation and statistical measures of fittings for the classical ODE model and
FDE model using different data sets.

Data Model Estimated Parameters, (α,µ,β,δ,σ) SSE AIC BIC

New York ODE (NA, 0.0028, 119.22, 16.73, 10.19) 1.29× 106 250.54 253.87
FDE (0.999999999524, 0.0029, 116.34, 19.39, 10.37) 1.34× 106 255.36 259.53

London ODE (NA, 6.79× 10−4, 153.44, 1.99, 4.27) 2.01× 106 389.36 394.54
FDE (0.999999999614, 0.0015, 122.6849, 2.18, 8.75) 2.04× 106 393.34 398.85

Portsmouth ODE (NA, 10−6, 228.61, 0.46, 3.33) 4.57× 104 277.94 282.98
FDE (0.875784505546, 2.52× 10−4, 278.72, 1.52, 5.24) 3.22× 104 271.92 278.21
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