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Abstract: This study aimed to find a potential biomarker that can be used to diagnose prediabetic
condition by comparing the salivary bacterial microbiomes between Thai dental patients with
normoglycemia (NG) and those with potential prediabetes (PPG) conditions. Thirty-three subjects
were randomly recruited. Demographic data were collected along with oral examination and
unstimulated salivary collections. The salivary bacterial microbiomes were identified by high-
throughput sequencing on the V3–V4 region of the bacterial 16S rRNA gene. Microbiomes in this
study were composed of 12 phyla, 19 classes, 29 orders, 56 families, 81 genera, and 184 species. To
check the validity of the selection criterion for prediabetes, we adopted two separate criteria to divide
samples into PPG and NG groups using glycated hemoglobin A1c (HbA1c) or fasting plasma glucose
(FPG) levels. Using the HbA1c level resulted in the significant reduction of Alloprevotella, Neisseria,
Rothia, and Streptococcus abundances in PPG compared with those in NG (p-value < 0.05). On the
other hand, the abundance of Absconditabacteriales was significantly reduced whereas Leptotrichia,
Stomatobaculum, and Ruminococcaceae increased in the PPG group when the samples were classified
by the FPG level (p-value < 0.05). It is implied that the group classifying criterion should be carefully
concerned when investigating relative abundances between groups. However, regardless of the
criteria, Rothia is significantly dominant in the NG groups, suggesting that Rothia might be a potential
prediabetic biomarker. Due to the small sample size of this study, further investigation with a
larger sample size is necessary to ensure that Rothia can be a potential biomarker for prediabetes in
Thai people.

Keywords: prediabetes; oral microbiome; saliva; 16S rRNA; HbA1c; FPG

1. Introduction

The prevalence of type 2 diabetes mellitus (T2DM) is increasing globally [1,2]. In
2019, the prevalence of diabetes mellitus (DM) in adults aged 20–79 years old was 9.3%
or 463 million people worldwide. It is predicted to rise to 10.2% or 578 million in 2030 [1].
Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) conditions signify a
risk of future development of T2DM [3,4]. The incidence of T2DM progression five years
after diagnosis of IGT and IFG was estimated to be 26% and 50%, respectively [3]. T2DM
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has complications and co-morbidities along with neuropathy, nephropathy, retinopathy,
micro-macrovascular, and periodontal diseases [1,5,6]. Early hyperglycemia detection is a
key to control and prevent T2DM [7].

The Liverpool declaration: promoting oral health in the 21st century stated that
countries should provide supports to prevent and reduce oral and general diseases [8].
The statement emphasized the role of dentists in oral health promotion but also in general
health promotion. Dental checkup or treatment provides an opportunity for dentists to
meet their patients more regularly than the annual physical examination that is usually
once a year. Tantipoj et al. (2018) reported that around 80 % of dental patients in Thailand
are willing to have diabetes screening from saliva/oral fluid collection [9]. The prevalence
of undiagnosed hyperglycemia in Thai dental patients was 33.8%, suggesting a high
percentage of undiagnosed hyperglycemia in the Thai population [10].

The hyperglycemic diagnosis is currently based on fasting plasma glucose (FPG)
and HbA1c levels [1]. These two methods have different pros and cons. For example,
the HbA1c level can determine the chronic hyperglycemia, but FPG cannot. However,
HbA1c strongly depends on ethnography, leading to different and complicated diagnosis
criteria [11]. Using FPG requires fasting prior to the assessment. In addition, both levels
are determined from a blood sample, which is invasive and unpleasant for some patients.
An alternative approach for primary diagnosis of hyperglycemia is desirable.

The glucose level in saliva and gingival crevicular fluid is found to be associated with
hyperglycemic conditions [12–14]. Many studies reported that the salivary pH in adults
and adolescents with diabetes is lower than in those with healthy condition [15–17]. Both
glucose level and pH of saliva affect the oral bacterial community. The high level of saliva
glucose could be a supplementary source of nutrition for certain bacterial species [18].
Acidification of saliva could interfere with bacterial reproduction, leading to an increase
of Firmicute and decrease of Bacteroidetes, for instance [19]. Salivary acidification could
also alter the oral microbiomes that develop dental caries, such as Bifidobacterium dentium,
Bifidobacterium longum, and S. mutans [20]. Investigating the bacterial microbiome in saliva
can be an alternative, noninvasive approach in diagnosing prediabetes and diabetes in the
early state.

Recently, high-throughput sequencing of 16S rRNA genes methods have been devel-
oped to study the oral microbiome profile. This technique provides insight into the bacterial
diversity and community structure of healthy people and those with diseases [21–23]. Us-
ing 16s rRNA sequencing, many studies reported a clear change in bacterial diversity in
subgingival plaque, supra gingival plaque, and saliva of patients with T2DM [24–26]. In
other words, obese individuals with T2DM showed a lower level of Bifidobactera than that
of healthy participants [27], while Leptotrichia, Staphylococcus, Catonella, and Bulleidia are
the genera whose abundances increased in the diabetes group [28]. To date, the studies
of bacteria association have focused on the extreme cases of the disease condition, i.e.,
healthy or already having T2DM. The bacteria mentioned above might not be used as a
biomarker to screen the prediabetes condition. Early diagnosis of diabetes with a non-
invasive approach may provide a great chance to reduce the severity of the disease. It
is thus important to examine the condition at the earliest state of potential prediabetes.
Although many studies have already reported the association of relative abundances and
the glycemic level in various countries [28,29], different demographics, genetics, and foods
may affect the bacterial diversity.

In this work, we study the diversity of the saliva bacterial microbiome in Thai dental
patients using 16S rRNA amplification sequencing. We compare the resulting bacterial di-
versity found in healthy patients with that of patients who are potentially in the prediabetic
state in an attempt to find a plausible biomarker that can be used to screen or diagnose
diabetes in its early state.
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2. Materials and Methods
2.1. Human Subjects

This study was conducted from May to December 2018 under the approval of the ethics
committees of the Faculty of Dentistry/Faculty of Pharmacy, Mahidol University Bangkok,
Thailand under the process number of MU-DT/PY-IRB 2017/047.2308. The primary criteria
were that participants must be older than 32 years old, provide written informed consent,
and be willing to comply with study procedures. It is found that the T2DM occurrence
significantly increases at ages around 30–35 years old [30]. Thirty-four adult participants
from the primary and emergency unit at the Faculty of Dentistry, Mahidol University,
Bangkok, Thailand voluntarily participated in this study. We excluded participants who
had one or more of the following conditions: diabetes, conditions that cause secondary
diabetes (i.e., pancreatic cancer, Cushing’s syndrome, and acromegaly), pregnant, on steroid
drugs or taking glucose-lowering medication or on chemotherapy, some systemic diseases
(renal failure, hepatitis, immunodeficiency, severe anemia, and polycythemia), and taking
antibiotic prophylaxis within 3 months and smoking within 5 years. Eventually, we had 33
participants who satisfied the selection criteria. The glycemic condition of all participants,
including HbA1c and FPG, was examined by using hospital-based laboratory methods
at the Faculty of Tropical Medicine, Mahidol University. The participants were classified
into two groups, normoglycemia group (NG) and potential prediabetes group (PPG), by
using the levels of either HbA1c or FPG independently. The participants were identified
as a PPG if they had either the HbA1C level of 5.7–6.4% (PPGHbA1c) or the FPG level of
100–125 mg/dL (PPGFPG). The remaining participants were classified as normoglycemia;
i.e., those with HbA1C less than 5.7% (NGHbA1c) or those with FPG less than 100 mg/dL
(NGFPG) [31].

2.2. Data Collection

Participants needed to complete all three parts of the research procedure, consisting
of demographic data collection and physical examination, oral examination, and saliva
collection.

2.2.1. Demographic Data and Physical Examination

The demographic data of the participants were collected by using a standardized
questionnaire. This contained questions on age, gender, marital status, sugar consumption,
frequency of sugar consumption, and family history of DM. Body weight and height of
the participants were recorded in order to determine the body mass index (BMI), which
was calculated as a weight in kilograms divided by the square of height in the unit of
squared meters. Overweight was normally defined with BMI higher than 23 kg/m2 [32].
Systolic and diastolic blood pressures (SBP and DBP) were also recorded. Hypertension
was defined as SBP and DBP higher than 140 mmHg and 90 mmHg, respectively [33].

2.2.2. Oral Examination

The number of dental caries teeth (D), missing teeth (M), and filling teeth (F) were
recorded and used to determine the decayed, missing, and filling teeth (DMFT) index. pH
of saliva was determined by using pH indicator strips (Merck). Periodontal examination
was performed following the process described by Tantipoj et al. (2017) [10]. Periodontal
status was categorized into three levels: severe, moderate, and mild/no periodontitis,
based on the criteria from the Centers for Disease Control (CDC) [34].

2.2.3. Saliva Collection

The participants were instructed not to intake any food or beverage for at least 1 h
prior to the oral examination and saliva collection. Then, they were asked to pool the
saliva in the mouth for 4 min and perform passive drool into the 50 mL conical sterile
polypropylene tube containing 2 mL of RNA later® (Qiagen, Valencia, CA, USA). The saliva
tube was then immediately stored at −35 ◦C until used.
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2.3. DNA Extraction and 16s rDNA Sequencing

One milliliter of the saliva sample was thawed at room temperature and homogenized
by vortex. QIAamp® DNA Minikit (Qiagen, Valencia, CA, USA) was employed for DNA
extraction. Extracted DNA samples were sent to Vishuo Biomedical in Singapore to perform
16S rDNA sequencing by Illumina Miseq. In short, a MetaVx™ Library Preparation kit
(Genewiz, South Plainfield, NJ, USA) was used in library preparation. A V3–V4 region
of rDNA was selected as a target. The amplicons were generated using forward primers
containing the sequence 5′-CCTACGGRRBGCASCAGKVRVGAAT-3′ and reverse primers
containing the sequence 5′-GGACTACNVGGGTWTCTAATCC-3′. DNA libraries were
multiplexed and loaded on Illumina MiSeq according to the manufacturer’s instructions
(Illumina, San Diego, CA, USA). Sequencing was performed using a 2 × 300 base pair. Raw
16s rRNA sequencing data are available with bioproject accession number PRJNA736207.

2.4. Sequencing Data Analysis

The sequencing analysis was performed with QIIME2 (version 2020.11) mainly based
on protocols published by Estaki et al. (2020) [35]. Raw sequencing reads were processed
using Cutadapt (version 1.9.1) to remove the primer sequences. The low-quality sequences
were removed using the denoising method via the QIIME2 DADA2 (q2-dada2) plugin,
which was found to be better than the traditional clustering method [35]. Taxonomy
affiliations from phylum to genus levels were assigned to the remaining high-quality
sequences by using the q2-feature-classifier plugin. The Naïve Bayes classifier was trained
on the 16S rRNA reference sequences obtained from the SILVA release 132 rRNA database at
99% sequence similarity (https://www.arb-silva.de/ accessed on 20 November 2020) [36].
Alpha and beta diversity indices were determined by QIIME2. The potential biomarker
of bacteria genera of each glycemic level was determined by linear discriminant analysis
effect size (LefSe) and the genus with linear discriminate analysis (LDA). A score more
than 2 was considered significantly different between group [37].

2.5. Statistical Analyses

Descriptive statistics were applied to examine the distributions of sociodemographic,
medical history, clinical, and oral characteristics. Specifically, Fisher’s exact test was used to
analyze the association of dichotomous and multiple categorial variables. The differences
of continuous variables among the participants in NG and PPG groups, including the
relative abundance of salivary microbiome, were examined by either the independent t-test
or the Mann–Whitney U test depending on whether the distributions of those variables are
normal or not. The statistical analyses were conducted by SPSS (SPSS statistical software,
version 18.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Demographic and Oral Characteristics

As mentioned in Section 2.1, the final number of participants who satisfied all selection
criteria was 33. Using the HbA1c level, we could classify 11 participants as PPGHbA1c,
while the remaining 22 volunteers were classified as NGHbA1c. In contrast, only six par-
ticipants were classified as PPGFPG when applying the FPG level. It is noteworthy that
the participants who were classified as PPGFPG were not always PPGHbA1c and vice versa.
Two volunteers in PPGFPG were from NGHbA1c, whereas seven PPGHbA1c participants were
classified as NGFPG. The demographic and physical characteristics of all participants are
summarized in Table 1. The statistical comparison between NG and PPG samples was
examined using the Fishers’ exact test. Regardless of the method used to classify the PPG
sample, no significant difference of demographic and physical characteristics has been
found between NG and PPG groups.

Oral characteristics of participants in NG and PPG groups were investigated and are
listed in Table 2. The mean DMFT indices of both PPG groups (PPGHbA1c and PPGFPG)
seem to be higher than those of the NG groups, but they are actually not statistically

https://www.arb-silva.de/
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different. Likewise, the distributions of saliva pH and periodontal status of the PPG sample
are not significantly different from those of the NG group.

Table 1. Demographic and physical characteristics of 33 participants divided into NG and PPG groups according to either
HbA1c or FPG levels.

Factor Total n (%)

HbA1c FPG

NGHbA1c
(<5.7%)
n (%)

PPGHbA1c
(5.7–6.4%)

n (%)
p-Value

NGFPG
(<100)
n (%)

PPGFPG
(100–125)

n (%)
p-Value

Age (year) 0.57 0.84
<50 6 (18.2) 3 (13.6) 3 (27.3) 5 (18.5) 1 (16.7)

50–60 12 (36.4) 8 (36.4) 4 (36.4) 9 (33.3) 3 (50.0)
>60 15 (45.5) 11 (50.0) 4 (36.4) 13 (48.2) 2 (33.3)

Gender 0.28
Male 4 (12.1) 4 (18.2) 0 (0.0) 4 (14.8) 0 (0.0) 1.00

Female 29 (87.9) 18 (81.8) 11 (100.0) 23 (85.2) 6 (100.0)
Marital status 0.81 0.86

Single 13 (39.4) 8 (36.4) 5 (45.5) 10 (37.0) 3 (50.0)
Married 11 (33.3) 7 (31.8) 4 (36.4) 9 (33.3) 2 (33.3)
Divorced 9 (27.3) 7 (31.8) 2 (18.2) 8 (29.6) 1 (16.7)

Sugar consumption 0.64 0.06
No 6 (18.2) 5 (22.7) 1 (9.1) 3 (11.1) 3 (50.0)
Yes 27 (81.8) 17 (77.3) 10 (90.9) 24 (88.9) 3 (50.0)

Frequency of Sugar
consumption 1.00 1.00

<3 times/day 24 (72.7) 16 (72.7) 8 (72.7) 20 (74.1) 4 (66.7)
≥3 times/day 9 (27.3) 6 (27.3) 3 (27.3) 7 (25.9) 2 (33.3)

Family history of DM 0.71 1.00
No 18 (54.6) 11 (50.0) 7 (63.6) 15 (55.6) 3 (50.0)
Yes 15 (45.5) 11 (50.0) 4 (36.4) 12 (44.4) 3 (50.0)

Hypertension 0.37 1.00
No 27 (81.8) 19 (86.4) 8 (72.7) 22 (81.5) 5 (83.3)
Yes 6 (18.2) 3 (13.6) 3 (27.3) 5 (18.5) 1 (16.7)

Overweight 0.70 0.34
No 10 (30.3) 6 (27.3) 4 (36.4) 7 (25.9) 3 (50.0)
Yes 23 (69.7) 16 (72.7) 7 (63.6) 20 (74.1) 3 (50.0)

BMI (kg/m2) 0.67 1.00
Normal (<23) 14 (42.4) 12 (54.6) 2 (18.2) 11 (40.7) 3 (50.0)
Obese (≥23) 19 (57.6) 10 (45.5) 9 (81.8) 16 (59.3) 3 (50.0)

Note: NG and PPG represent normoglycemia and potential prediabetes groups, respectively. FPG means the fasting plasma glucose level
in the unit of mg/dL.

Table 2. Oral characteristics of 33 participants divided into NG and PPG groups according to either HbA1c or FPG levels.

Factor Total n (%)

HbA1c FPG

NGHbA1c
(<5.7%)
n (%)

PPGHbA1c
(5.7–6.4%)

n (%)
p-Value

NGFPG
(<100)
n (%)

PPGFPG
(100–125)

n (%)
p-Value

DMFT (mean) 13.45 12.05 16.27 0.08 t 12.81 16.33 0.24 t

pH of Saliva 0.84 0.29
Acid (<7) 23 (69.7) 16 (72.7) 7 (63.6) 17 (63.0) 6 (100.0)

Neutral (=7) 6 (18.2) 4 (18.2) 2 (18.2) 6 (22.2) 0 (0.0)
Base (>7) 4 (12.1) 2 (9.1) 2 (18.2) 4 (14.8) 0 (0.0)

Periodontal status 0.38 0.83
No/mild 17 (51.5) 12 (54.6) 5 (45.5) 13 (48.2) 4 (66.7)
Moderate 6 (18.2) 5 (22.7) 1 (9.1) 5 (18.5) 1 (16.7)

Severe 10 (30.3) 5 (22.7) 5 (45.5) 9 (33.3) 1 (16.7)

Note: NG and PPG represent normoglycemia and potential prediabetes groups, respectively. FPG means the fasting plasma glucose level
in the unit of mg/dL. t indicates the use of the independent t-test.
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3.2. Global Sequencing Data

We acquired a set of 9,752,494 raw reads after sequencing the 16S rRNA V3–V4
hypervariable region from 33 DNA samples used in the study. The number of sequences
per sample ranged from 202,498 to 390,570 reads with an average of 286,838 sequences per
sample. After joining the paired-end sequences for each sample, the sequences underwent
quality and size filtering. The final number of total sequences was 4,482,746. The number of
sequences per sample ranged from 94,082 to 185,137 with an average of 131,845 sequences
per sample. The average sequence length was 348 bps, with maximum length of 438 bps
and the shortest length of 249 bps.

3.3. Bacterial Abundance and Distribution

Alpha diversity indices were determined to investigate the diversity differences, if
existing, between NG and PPG groups. Chao1 index was used to examine the species
abundances, while Shannon’s and Simpson’s indices were used to evaluate diversity of
oral microbiota in each group of samples (Figure 1). As seen in the left and middle panels
of Figure 1, the PPGFPG sample had the oral microbial abundance and diversity higher
than those of the NGFPG group. The independent t-test results show that the mean values
of the abundance and diversity of the PPGFPG are statistically different from those of
NGFPG with p = 0.001 (Chao1 index) and p = 0.03 (Shannon’s index), respectively. Using
Kolmogorov–Smirnov (KS) test, we can reject the null hypothesis that the distributions
of the Chao1 and Shannon’s indices of PPGFPG are drawn from the same distribution as
compared to those of the NGFPG group at significance level of 0.005 and 0.009, respectively.
In contrast, no significant difference of both abundance and diversity was found in case of
using the HbA1c level to divide the PPG and NG groups. Mean and standard deviation of
Chao1, Simpson’s, and Shannon’s indices are listed in Table S1.
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The principal component analysis (PCoA) was performed based on unweighted and
weighted UniFrac distance matrices to evaluate the beta diversity between the PPG and NG
groups. In unweighted PCoA analysis (top panels of Figure 2), the first principal coordinate
(PC1) explained 18.45% of the total microbiome variations, while the second and third
coordinates (PC2 and PC3) explained 11.58% and 9.10%, respectively. In weighted PCoA
analysis (bottom panels of Figure 2), PC1, PC2, and PC3 explained 28.10%, 17.00%, and
13.52% of the total variations, respectively. No correlation or well-separated cluster is
seen in all cases regardless of the criteria we used to classify the PPG and NG groups
(Figure 2). It is suggested that the structures of bacterial community in PPG and NG groups
were similar.
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Figure 2. Principle coordinate analysis (PCoA) based on the unweighted (top panels) and weighted (bottom panels) UniFrac
distance matrices. The red and green dots represent the PPG and NG groups, respectively. The colored symbols are shaded
according to their positions on the 3D plot. The top panels (a,b) show the PCoA of unweighted UniFrac indices, while the
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groups, whereas those in the right panels (b,d) are based on the HbA1c level.

3.4. Bacterial Community Structure

The bacterial distribution was characterized in terms of the relative taxonomic abun-
dances. We found a total of 12 phyla, 19 classes, 29 orders, 56 families, 81 genera, and
184 species in the salivary samples. Ninety-nine percent of bacteria in all samples were
from seven phyla. Firmicutes and Fusobacteria are the largest abundances of phyla in all
samples, occupying roughly 80% of the total abundance (Figure 3a). The other five phyla
with less abundance are Bacteroidetes, Epsilonbacteraeota, Proteobacteria, Patescibacteria,
and Actinobacteria. In PPGHbA1c and NGHbA1c, Firmicutes was found at 70.68% ± 12.35%
and 70.59% ± 11.05%, respectively. In PPGFPG and NGFPG groups, Firmicutes was found at
66.21% ± 10.48% and 71.60% ± 11.43%, respectively. We did not find any difference among
the relative abundances at the phylum level between PPG and NG groups regardless
of the group classifying criteria. Mean and standard deviation of all detected phyla are
summarized in Table S2.
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between two groups (PPG and NG) in cases of using the HbA1c and FPG levels as criteria, respectively.

At the genus level, we found 81 genera of bacteria in total. In case of using the
HbA1c level as a criterion, we found 56 common genera in PPGHbA1c and NGHbA1c groups,
while 5 and 22 genera were identified only in PPGHbA1c and NGHbA1c, respectively. In
case of FPG, 48 genera were found in common, whereas 4 and 29 genera were found
only in the PPGFPG and NGFPG, respectively. The numbers of overlapping and unique
genera found in all samples are illustrated in Figure S1. As seen in Figure 3b, the majority
(80%) of bacteria were classified into 15 genera, of which average relative abundances
and standard deviation are summarized in Table S3. The genus with the highest relative
abundance in both PPG and NG groups was Oribacterium (PPGHbA1c = 21.31% ± 16.56%,
NGHbA1c = 21.75% ± 17.34%, PPGFPG = 13.73% ± 17.23%, and NGFPG = 23.35% ± 16.5%).
From the top 15 genera, Rothia, Neisseria, and Streptococcus in PPGHbA1c were significantly
lower than those in NGHbA1c with p-values of p = 0.006, p = 0.036, and p = 0.001, respectively.
In case of using the FPG level, PPGFPG has lower abundances of Ruminococcaceae (p = 0.007)
and Leptotrichia (p = 0.043) than NGFPG does. Meanwhile, Stomatobaculum was found to
show higher abundance in PPGFPG as compared with NGFPG (p = 0.034). Moreover, we
also found two additional genera that are not in the top 15 genera but show significant
differences in their relative abundances. Alloprevotella found in PPGHbA1c has lower abun-
dance than in NGHbA1c (p = 0.043), whereas the relative abundance of Absconditabacteriales
is found to be higher in PPGFPG than in NGFPG (p = 0.030).

3.5. Differential Microbiota Compositions

We examined possible biomarkers in the potential prediabetes sample using LEfSe
analysis. The LEfSe results are illustrated by cladograms in Figure 4. Names of bacterial
taxa appearing in the figure are those with significantly different abundances between
prediabetes and normoglycemia groups. The Rothia genus in Actinobacteria phylum was
enriched in both NGHbA1c and NGFPG groups as compared to their respective PPGs. An-
other genus with higher abundance in NGHbA1c is Streptococcus in Firmicutes phylum
(Figure 4a). On the other hand, Campylobacter in Epsilonbacteraeota phylum was more
abundant in PPGHbA1c than in NGHbA1c. Compared with NGFPG, PPGFPG has more abun-
dance in five genera, such as genus Atopobium in Actinobacteria and Flexilinea in Chloroflexi
phylum (Figure 4b).
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4. Discussion

We investigated the oral microbiome of patients with normal glycemic level and those
who have a chance to develop hyperglycemia in the future. The ultimate goal of this study is
to find a potential biomarker that we can use to diagnose the patients with high risk prior to
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the T2DM condition. The participants are divided into normoglycemia (NG) and potential
prediabetes (PPG) groups based on their glucose level, determined by either HbA1c or
FPG level. Regardless of the criteria used to divide the sample, the species richness of
the PPG group was higher than that of NG. This increasing trend in microbial diversity is
consistent with that found in T2DM patients [38–40]. In contrast, Saeb et al. (2019) found the
opposite trend when comparing the impaired glucose tolerance and diabetes group with
the normoglycemic group [29]. Chao1 and Shannon’s diversity indices of oral microbiome
in PPGFPG were higher than those in NGFPG, which is well in agreement with other studies
of T2DM patients [40–42]. It is found that the oral microbiomes are potentially influenced
by various factors such as oral health and host characteristics [43,44]. In this study, we
found no significant difference of demographic, physical, and oral characteristics between
the PPG and NG groups (Tables 1 and 2). It is suggested that the differential abundances
between PPG and NG groups found in this study are rarely due to demographics and
characteristics of patients.

Firmicutes was the most abundant phylum found in both PPG and NG groups, which
is similar to other studies [28,45]. It is indicated that Firmicute is the most abundant
phylum in saliva and oral cavity microbiome [46]. Chen et al. (2020) found higher ratio of
Firmicutes to Bacteroidetes (F/B ratio) in T2DM compared with healthy control [40]. The
same trend of F/B ratio is found in our study as well, where the F/B ratio of PPGHbA1c and
NGHbA1c was 22.55 and 16.83, respectively.

Oribacterium is a strictly anaerobic bacteria that can be used as a biomarker for saliva
microbiome [46]. It was the most abundant genus in our samples. However, Streptococcus
was the most abundant genus in the study in China [28], and Prevoltella was most abundant
in patients in Saudi Arabia [29]. It is suggested that oral microbiome dysbiosis does not
only depend on health condition, but also on host genetics, geography, diet, age, and
habitat. Streptococcus, which is potentially associated with diabetes [28,40,42], was found
within the top ten most abundant genera in our sample (Table S3). In fact, we even found
higher abundance of Streptococcus in NGHbA1c compared with that in PPGHbA1c. The
result is consistent with Tantipoj et al. (2020) [47], who investigated the prevalence of
Streptococcus in Thailand and found that Streptococcus abundance in normoglycemic group
was marginally higher than that in hyperglycemic group. In contrast, Kampoo et al. (2014)
showed that saliva Streptococcus was more abundant in diabetic patients as compared with
the healthy participants from the southern part of Thailand [26]. Although all studies were
carried out in Thailand, different methods have may affected the Streptococcus abundances.
It is still skeptical to conclude whether or not Streptococcus might be a good biomarker
for prediabetes.

In the previous section, we found the differences in the relative abundances of some
bacterial genera between PPG and NG groups. These differences changed when we used
different criteria in classifying PPG and NG groups. For example, Prevotella was found
more in NGHbA1c, while its abundance was lower in NGFPG compared to the respective
PPG groups (Table S3). Only Rothia showed the consistent trend of relative abundances
between PPG and NG classified by both HbA1c and FPG criteria. Therefore, Rothia might
be a potential prediabetic biomarker. As most of the resulting relative abundances between
PPG and NG strongly depend on the group classifying criteria, we further investigated the
samples by using both HbA1c and FPG levels as the criteria simultaneously to confirm if
Rothia is really a potential prediabetic biomarker or not. Figure 5 shows the distributions
of samples in the HbA1c–FPG space. The samples that were classified as PPG by using
both criteria are located in the top right corner of the figure, while in the bottom left corner
are those classified as NG. We found that 27.3 percent of participants were classified into
different groups when using a different criterion (the top left and the bottom right corners
of Figure 5). All of the participants younger than 50 years old were consistently classified
into the same groups regardless of using HbA1c or FPG criteria. Guo et al. (2014) found
that using only HbA1c to classify prediabetes increased the misdiagnosis rate in older
population, while using both HbA1c and FPG can reduce the misdiagnosis rate [48]. This
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point needs to be considered when comparing the oral microbiome composition among
different studies that may use different classifiers to separate prediabetes individuals from
the normoglycemic group.
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Figure 5. The distribution of blood sugar levels in studied population. The open and solid symbols
represent male and female, respectively. Sizes of the symbols are related to ages of the partici-
pants. The vertical line at HbA1c of 5.7% indicates the HbA1c criterion used to divide PPGHbA1c

and NGHbA1c groups. The horizontal line at FPG of 100 mg/dL is used to classify PPGFPG and
NGFPG groups.

We performed LefSe analysis of newly classified PPG and NG groups using both
HbA1c and FPG levels (Figure 6). Unfortunately, only four participants were classified
as PPG, whereas the rest were in normoglycemic group. Rothia still dominated in the NG
group. Rothia is known as a nitrate-reducing oral bacterium, which plays an important
role in balancing the oral cavity condition, such as producing alkali molecules to prevent
acidity condition [49]. Caries-associated genera and periodontitis-associated genera were
reported to reduce their growth under a nitrate condition [49]. Lundberg et al. (2018)
also found antidiabetic effects after consuming dietary nitrate [50]. The nitrate reductase
enzymes in the oral bacteria such as Rothia can metabolize nitrate into nitrite, which
is further reduced into bioactive nitrogen oxides (NO) in blood and muscles [50]. NO
synthesis is found to be an important mechanism to regulate the cardiovascular conditions
and metabolisms, including an increase in the insulin secretion and glucose uptake of
muscle [50]. As a result, a decrease in Rothia abundance can probably be a potential sign of
having prediabetic condition.

As seen in Figure 6, Campylobacter was predicted to be another potential biomarker.
We found higher abundance of Campylobacter in PPG samples compared with the NG group.
Campylobater rectus shows a positive association with increasing blood glucose level [42].
Some species of Campylobacter were found more frequently in patients with periodontal
disease compared with healthy control [51]. Periodontitis and diabetes condition can
influence the severity of each other [6]. The increase of glucose level in PPG samples might
thus promote growth of periodontitis-associated bacteria.

The limitation of this study is mainly the small sample size. The number of participants
in each group after being classified into NG and PPG are not equally distributed. Although
we have found potential biomarkers to diagnose the prediabetic condition, the larger
sample size is still desirable to confirm the association.
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5. Conclusions

We found that demographics and physical characteristics of the participants in the
potential prediabetes group (PPG) and those in the normoglycemia group are similar
regardless of the criterion (HbA1c or FPG). Meanwhile, the oral microbial abundance and
diversity of PPGFPG is statistically higher than those of NGFPG. The principal component
analysis (PCoA) showed no correlation or well-separated cluster between both groups.
According to LEfSe analysis, we found that using different criterion resulted in different
bacterial abundances in groups. This should be considered when comparing the oral
microbiomes among different studies. Rothia and Campylobacter are found to be the potential
prediabetes-associated genera for elderly population in Thailand. Unfortunately, the
sample size in this study was too small to declare a conclusive biomarker. Instead, Rothia
and Campylobacter can be used as a guideline to select the potential prediabetic biomarker
in future. Further studies with larger sample that can represent the entire Thai population
are desirable.
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