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Abstract: Background: We present a systematic review of studies assessing the association between
ambient particulate matter (PM) and premature mortality and the results of a Bayesian hierarchical
meta-analysis while accounting for population differences of the included studies. Methods: The
review protocol was registered in the PROSPERO systematic review registry. Medline, CINAHL
and Global Health databases were systematically searched. Bayesian hierarchical meta-analysis was
conducted using a non-informative prior to assess whether the regression coefficients differed across
observations due to the heterogeneity among studies. Results: We identified 3248 records for title
and abstract review, of which 309 underwent full text screening. Thirty-six studies were included,
based on the inclusion criteria. Most of the studies were from China (n = 14), India (n = 6) and the
USA (n = 3). PM2.5 was the most frequently reported pollutant. PM was estimated using modelling
techniques (22 studies), satellite-based measures (four studies) and direct measurements (ten studies).
Mortality data were sourced from country-specific mortality statistics for 17 studies, Global Burden
of Disease data for 16 studies, WHO data for two studies and life tables for one study. Sixteen studies
were included in the Bayesian hierarchical meta-analysis. The meta-analysis revealed that the annual
estimate of premature mortality attributed to PM2.5 was 253 per 1,000,000 population (95% CI: 90, 643)
and 587 per 1,000,000 population (95% CI: 1, 39,746) for PM10. Conclusion: 253 premature deaths per
million population are associated with exposure to ambient PM2.5. We observed an unstable estimate
for PM10, most likely due to heterogeneity among the studies. Future research efforts should focus
on the effects of ambient PM10 and premature mortality, as well as include populations outside Asia.
Key messages: Ambient PM2.5 is associated with premature mortality. Given that rapid urbanization
may increase this burden in the coming decades, our study highlights the urgency of implementing
air pollution mitigation strategies to reduce the risk to population and planetary health.

Keywords: Bayesian hierarchical meta-analysis; particulate matter; PM2.5; PM10; premature mortality

1. Introduction

Environmental pollution is a global public health problem [1,2]. Despite various
preventive strategies, air pollution continues to be a significant contributor to adverse
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health outcomes, particularly premature mortality [2,3]. Particulate matter (PM) is an
important contributor to all air pollutants, with PM2.5 and PM10 identified as two of the
key components. Of the two, PM2.5 has been reported to reach into deep tissues, such
as lungs, thereby leading to the majority of health-related impacts [4,5]. In the lungs,
PM2.5 corrodes the alveoli, which may lead to chronic obstructive pulmonary disease
(COPD) [5,6]. PM2.5 can also lead to peripheral vascular system damage and can directly
damage the myocardium leading to arrhythmias, atherosclerosis and stroke [7,8]. The
effects of PM10 lead to more acute responses, such as wheeze or hyperreactive airways and
bronchitis [9]. However, there is evidence that PM10 increases cardiovascular mortality [10].
Taken together, evidence indicates that PM may increase the risk of cardio-respiratory
morbidity and mortality [11].

There is a growing body of literature on the role of PM in premature mortality [3,12].
Controversy surrounds this area, in part because no synthesis of the evidence has been
undertaken that specifically accounts for inconsistencies among studies, especially study
population differences. Hence, to date, no research has assessed the association between
PM and premature mortality adjusting for the potential influence of the heterogeneity of
the findings across multiple studies. This may have led to a biased estimation of health
impacts due to PM exposure [13].

In the hierarchy of evidence, randomized controlled trials are the preferred research
design upon which to generate evidence. Given it is difficult to apply such methods to
the study of air pollution, almost all studies apply observational approaches; such studies
have limitations making it difficult to draw precise inferences. Synthesizing evidence
from multiple observational studies, however, can strengthen the conclusions that can be
drawn. In this study we aim to systematically review the available evidence on PM and
its impact on the years of life lost, measured as premature mortality. We also conduct a
Bayesian hierarchical meta-analysis to account for the likely heterogeneity between the
studies selected for review.

2. Methods

Medline, CINAHL and Global Health electronic databases were systematically searched
(last accessed January 2020) using keywords and Boolean/phrase terms based on particu-
late matter and premature mortality (Table S1: Search strategy). The search was augmented
from the reference lists of the included articles. The review was registered in the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO), systematic review registry
(CRD42019134760). The inclusion criteria of our systematic review were:

1. Studies that measured PM2.5 or PM10;
2. Outcome measured as premature mortality;
3. Studies based on any study design;
4. From any population group (no ethnic groups were excluded);
5. Published in English in a peer reviewed journal;
6. Available in Medline, CINAHL and Global Health electronic databases from inception

to January 2020.

The exclusion criteria were:

1. Studies which assessed pollutants other than PM2.5 and PM10, or measured these
pollutants in combination with other pollutants;

2. Literature reviews;
3. Conference papers, abstracts and editorials.

For the purpose of the Bayesian hierarchical meta-analysis, we also included three
further selection criteria, namely, (i) Studies that showed log normality of data; (ii) Studies
that did not derive PM based on satellite observations; and (iii) Studies providing point
estimates with 95% confidence intervals. We excluded studies using solely satellite observa-
tions due to the uncertainties linked to satellite-based PM, namely, poor satellite coverage
in specific regions, cloud contamination and year-to-year variability as such observations
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can substantially impact the estimates of premature mortality when compared to global
models [14].

Two authors independently reviewed study titles and abstracts for detailed review
of the full text (NTW and AC). All duplicates were removed after the initial search. Any
disagreements were resolved by consulting with a third, senior author (MS). Studies were
excluded after full-text review if they did not meet the inclusion criteria. Data extracted for
analysis included the first author’s name, publication year, country, exposure estimates
and the method of exposure ascertainment, outcome definitions, the method of outcome
ascertainment and key results.

The working definitions for exposures was PM. PM is the particle pollutant component
in the atmosphere and is a mixture of solid particles and liquid droplets that can only be
seen microscopically. Based on the size of the particles, PM is categorized as PM10 and
PM2.5, defined as follows:

• PM10: inhalable particles, with diameters that are 10 micrometers and smaller; and
• PM2.5: fine inhalable particles, with diameters that are 2.5 micrometers and smaller.

Our outcome, premature mortality, was defined as death that occurs before the average
age of death in the specific population group. It is defined as potential years of life lost.

Quality of the included studies: We assessed study quality by using the Newcastle–
Ottawa scale (NOS) for observational studies [15]. This scale is comprised of three elements:

(i) Four stars are allocated to study group selection (the first element);
(ii) Two stars are allocated to comparability of the groups (the second element); and
(iii) Three stars are allocated to ascertainment of the exposure and outcome (the final

element).

The NOS score ranges from 0–9 and a methodologically robust paper can achieve a
total of nine stars; a perfect score. Based on the total number of stars achieved, a study was
categorized as good (a total of seven or more stars), fair (five or six stars) or poor (four stars
or less) quality.

Statistical analysis: We conducted a Bayesian hierarchical meta-analysis [16,17]. We
conducted two analyses; a meta-analysis for PM2.5 and a meta-analysis for PM10, in which
we used as a non-informative prior an improper uniform distribution over the positive
real number line, followed by a heterogeneity analysis. The basic steps followed were
(i) Checking for log normality of the data; (ii) Removing studies that had not achieved log
normality; (iii) Transformation of log normal to the normal distribution; (iv) Meta-analysis;
and (v) Converting the estimates to their original scale.

Prior to conducting the Bayesian hierarchical meta-analysis, we adjusted for differ-
ences among the baseline population characteristics of the studies included for analysis. In
the original studies, the numbers exposed to PM in each country varied. To avoid consider-
able disparity across studies, we calculated the premature mortality rate for each respective
study year by dividing the country specific number of premature deaths by the popula-
tion for the same year. Log normality of the mortality rates was assumed and checked
using properties of the log normal distribution (Supplementary Material S1, S2, S3). Two
studies did not satisfy the properties of the log-normal distribution and were excluded
from the meta-analysis [18,19]. The transformations between the corresponding log nor-
mal and normal distributions were undertaken with the usual conversion equations in
conjunction with exploiting properties of the log normal distribution in order to calcu-
late the variances of the log normally distributed mortality rates [20,21], as detailed in
Supplementary Material S4&S5 (Figure S1). The meta-analysis estimates were then trans-
formed back to their original scale.

The analysis was carried out in freeware R, version 2019 [22] using the bayesmeta pack-
age version 2019 [17] [https://cran.rproject.org/web/packages/bayesmeta/bayesmeta.
pdf] (accessed on 30 January, 2020). The bayesmeta package derives the posterior distribu-
tions of the synthesized mean and heterogeneity parameter and their posterior joint distri-
bution. The code used to carry out this analysis is available in Supplementary Material S5.

https://cran.rproject.org/web/packages/bayesmeta/bayesmeta.pdf
https://cran.rproject.org/web/packages/bayesmeta/bayesmeta.pdf
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The forest plots that were generated from the Bayesian analysis demonstrate the log normal
mortality rates with 95% credible and prediction intervals mapped to the normal distri-
bution. Heterogeneity plots were generated to display the posterior joint density of the
log normal mortality rate and heterogeneity (τ) parameters, with a darker shading area
corresponding to a higher probability density.

We used a non-informative prior as opposed to an informative prior. In the absence
of clear prior evidence for mortality rates, we chose this conservative option because
non-informative priors have a minimal effect on the analysis [23]. Furthermore, we chose
a random effect meta-analysis instead of fixed effect meta-analysis (a more conservative
approach) which assumes the potential for the original study samples to arise from different
populations. In Bayesian hierarchical meta-analysis, if the number of studies is less than 20,
the random effect model is the analysis of choice [23].

3. Results

The systematic search revealed 3248 papers. Following the removal of duplicates, 2849
remained for title and abstract screening. Once the title and the abstracts were screened,
309 papers were available for full text review. Of those, 36 published papers met the
inclusion criteria and reported estimates on premature mortality (Figure 1). Sixteen of
these papers were included in the Bayesian hierarchical meta-analysis.

1 

 

 
Figure 1. PRISMA flow chart.
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The 36 published papers came from various countries; six were from India [4,24–28],
three from the USA [29–31], 14 from China [19,32–44] and one each from Korea [45], Czech
Republic [46], Canada [47], France [48], Yugoslavia [49], Japan [18] and Sweden [50]. There
were four global studies [1,51–53] and two studies from the Asian region [54,55] (Tables 1
and 2, Figure 2). Figure 2 shows the geographic distribution of the included studies, with
the exception of the global and the Asian region studies.

Although the exposure assessed was PM, the size of the particles differed among the
studies. Most studies assessed PM2.5 [1,4,24,25,29–35,37,39,41–45,51–56], some measured
PM10 [19,36,38,40,46], while a number of studies included both [26–28,48–50]. Only one
study specifically mentioned particles between PM2.5 and PM10 [18] (Table 1) and this
paper was not included in any of the meta-analyses.
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Table 1. Studies that were not eligible for meta-analysis.

Researcher,
Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data
to Calculate
Premature
Mortality:

Results: Study
Quality

Chowdhury
2018

India [25]

PM2.5 annual average
Estimate up to 2100 by applying changes in PM2.5

from baseline period (2001–2005) derived from
Coupled Model Inter-comparison Project 5

(CMIP5) models to the satellite-derived baseline
PM2.5

Global Burden
of Disease data

Time Estimated premature deaths
Annual mean for 1,000,000 population

Good2031–2040 18.1 ± 4.6
2061–2070 10.5 ± 3.5
2091–2100 6.5 ± 2.6

Guttikunda
et al., 2012 [27]

India
Delhi and its

satellite cities—
Gurgaon,

Noida, Greater
Noida,

Faridabad, and
Ghaziabad

PM2.5 and PM10
Annual average

Calculated using Atmospheric Transport
Modelling System (ATMoS)

2010 mortality
data India Estimated premature deaths for the year 2010 is between 7350–16,200 Good

Jain et al. 2017
India [4]
Holy city
Varanasi

PM2.5
Annual average

Measured using Satellite-retrieved AOD

Global Burden
of Disease data

5700 (2800; 7500) annual premature deaths were estimated due to PM2.5
(0.16% of the population) Fair

Buleiko et al.
2017

Czech
Republic [46]

PM10 annual average
Automatic and gravimetric sampling methods

Health Statistic
Yearbook data
for the country

Year PM10 annual average (SD)
Premature deaths: annual (SD)

Good
T1 (Traffic,

Urban,
Residential)

T2 (Traffic,
Urban, Trade)

B1 (Background,
Urban,

Residential)

B2 (Back-
ground,

Urban, Res-
idential,
Trade)

2009 30.13 ± 8.66
22 ± 16

33.19 ± 15.35
32 ± 21

24.43 ± 5.71
15 ± 12

34.52 ±
8.81

31 ± 14
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Table 1. Cont.

Researcher,
Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data
to Calculate
Premature
Mortality:

Results: Study
Quality

2010 34.33 ± 11.52
29 ± 19

33.84 ± 17.26
48 ± 14

27.00 ± 7.57
22 ± 14

31.43 ±
9.21

24 ± 17

2011 30.90 ± 12.28
28 ± 19

30.33 ± 15.92
35 ± 22

26.97 ± 9.70
21 ± 17

29.58 ±
12.74

26 ± 20

2012 30.32 ± 8.33
27 ± 14

27.98 ± 13.03
31 ± 17

24.15 ± 4.27
13 ± 9

33.30 ±
9.04

28 ± 16

2013 27.29 ± 8.26
27 ± 11

34.87 ± 12.03
35 ± 18

22.48 ± 6.76
19 ± 7

27.13 ±
7.20

22 ± 12

Li et al. 2018
China [34]

PM2.5 annual mean
GEOS-Chem chemical transport model by

Satellite data

Direct
follow-up data

1,765,820 people aged 65 years and older in China in 2010 had premature deaths related to
PM2.5 exposure Fair

Lu et al. 2019
China [35]

PM2.5
annual satellite-retrieved

Global health
data exchange For the year 2017: 962,900 Fair

Ma et al. 2016
China [36]

PM10 annual average
Directly measured

China
statistical
yearbook

2004 to 2013, annual premature deaths attributable to
China’s outdoor air pollution ranged from 350,000 to

520,000
Good

Nie et al. 2018
China [39]

PM2.5 hourly and daily and annually
Directly measured

China Public
Health and

Family
Planning
Statistical
Yearbook

In 2014, the AFs (%) for COPD, LC, IHD, and stroke were 23% (95% CI: 12, 32%), 29% (95%
CI: 11, 40%), 30% (95% CI: 21, 48%), and 46% (95% CI: 17, 57%), respectively. In 2015, with
the decrease of PM2.5, the AFs had fallen to 20% (95% CI: 10, 29%), 25% (95% CI: 8, 35%),

28% (95% CI: 19, 44%), and 44% (95% CI: 15, 55%).

Good

Zhao et al.
2016

China [40]

PM10
Directly measured daily calculated for the year

Health statistic
yearbook

Air pollutant Disease causing premature deaths Dose response coefficient
FairPM10 Respiratory disease 0.0048

Cardiovascular diseases 0.0019
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Table 1. Cont.

Researcher,
Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data
to Calculate
Premature
Mortality:

Results: Study
Quality

Xie et al. 2016
China [43]

PM2.5
Satellite derived analysis

Global Burden
of Disease data

2000–2010
In total 1.25 million premature deaths due to anthropogenic PM2.5 in 2010 Fair

Wang et al.
2018

China [44]
PM2.5 annual average Satellite derived analysis

Provincial
level data and
global burden
of disease data

Premature deaths attributed to PM2.5 nationwide amounted to 1.27 million in total Fair

Nawahda et al.
2013

Japan [18]

PM7.5–10
Directly monitored by the National Institute of

Environmental studies

Japan Statistics
Bureau

2006–2009 total of 40,000 premature deaths attributed
In 2009: 8347 (95%CI: 2087, 16,695) Good

Huang et al.
2011

China [19]
Pearl River

PM10 annual average
Directly measured by Environmental monitoring

center

Health Statistic
Yearbook data

5.71 × 107

Mean (95%CI)
GoodAcute PM10 effect 12,786 (3449, 20,837)

Chronic PM10 effect 15 (4, 26)

Segersson et al.
2017 [50]
Sweden

PM2.5 and PM10 annual mean
dispersion modelling to assess annual mean

exposure

Swedish Cause
of Death
Register

Number of premature deaths:
PM2.5: 256

PM2.5–10: 54
Good

Fang et al.
2013

Global [51]

PM2.5 modelled annually
Using AM3 design WHO data Global estimate over 21st century annually (accounts for climate change):

100,000 95%CI: (95% CI: 66,000, 130,000) Good

Wang et al.
2017

Global [1]

PM2.5 annually
CMAQ modelling

Global Burden
of Disease data

PM2.5-mortalities in East Asia and South Asia increased by 21% and 85% respectively,
from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010.

PM2.5-mortalities in developed regions (i.e., Europe and high-income North America)
decreased

substantially by 67% and 58% respectively

Good
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Table 1. Cont.

Researcher,
Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data
to Calculate
Premature
Mortality:

Results: Study
Quality

Silva et al.
2016

Global [52]

PM2.5 Annually
Integrated exposure–response model

Global Burden
of Disease data 2.23 (95% CI: 1.04; 3.33) million premature mortalities/year in 2005 Good

Silva et al.
2016

Global [53]

PM2.5 Annually to forecast
ACCMIP models

Global Burden
of Disease data

2030: 17,200 (95%CI: −386,000, 661,000)
2050: −1,210,000 (95%CI: −1,730,000, −835,000)
2100: −1,310,000 (95%CI: −2,040,000, −174,000)

Good

Nawahda et al.
2012 [54]

South East
Asia

PM2.5 annually
CMAQ modelling WHO data

2000: 237,665 (95%CI: 59, 416,475)
2005: 405,035 (95%CI: 101,259, 810,070)
2020: 313,438 (95%CI: 78,360, 626,876)

Good

Shi et al. 2018
[57]

South and
South East

Asia

PM2.5 Annual
GEOS-Chem chemical transport model

Global Burden
of Disease data

During 1999–2014, the estimated total average annual premature deaths mortality due to
PM2.5 exposure in SSEA reached 1,447,000 (95% CI: 9,353,00l, 2,541,100) Good
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Table 2. Studies Included in the Bayesian Hierarchal meta-analysis.

Researcher, Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data to Calculate
Premature Mortality and the

Baseline Population:
Results: Quality of the Study:

Upadhyay et al., 2018 [24]
India

PM2.5 annual average
Calculated using WRF-Chem

simulation

Global Burden of Disease data
and Indian census data

1.23 × 109

PM2.5 level µg m−3
Number of premature deaths

avoided annually if completely
mitigated

GoodTransport: 3.8 ± 4.3
Industrial: 5.5 ± 2.7

Energy: 2.2 ± 2.3
92,380 (95%CI: 40,978, 140,741)

Residential: 26.2 ± 12.5 378,295 (95%CI: 175,002, 575,293)
Pooled estimate: 187,400 (95%CI: 47,073;746,038) premature deaths

annually if completely mitigated the effect of PM2.5 annually

Etchie et al. 2017
India [26]

Nagpur city

PM2.5 & PM10 Annual average
Directly measured

Life tables
4.65 × 106

Premature deaths in 2013 (95%CI) due to PM2.5 was 3300 (2600, 4200)
Population in Nagpur is 4,653,570 Good

Maji et al. 2017
India [28]

Mumbai and Delhi

PM2.5 and PM10 annualDirectly
measured if unavailable in some
stations a conversion factor was

used

Global Burden of Disease data
Mumbai: 2.25 × 107

Delhi: 1.82 × 107

The annual average deaths attribute to PM2.5 in Mumbai
and Delhi was 10,880 (95%CI: 5520, 16,387) and 10,900

(95%CI: 6118, 15,879).
Annual average premature deaths attributable to PM10 was around
25,006 (95%CI: 16,550; 32,346) and 32,115 (95%CI: 22,619; 39,192) for

year 1991–2015 in the urban area of Mumbai and Delhi.

Good

Fann et al. 2018
USA [29]

PM2.5 annual average
CMAQ modelling

BenMAP-CE software
(USA Environmental protection
agency. Washington, DC, USA)

Using country level data
3.18 × 108

Year Number of premature deaths and
95%CI

Good2005 150,000 (100,000, 200,000)
2011 124,000 (84,000, 160,000)
2014 121,000 (83,000, 160,000)

Punger et al. 2013
USA [30]

PM2.5 annual average
CMAQ modelling

BenMAP Based on centre for
Disease Control Data

2.95 × 108
66,000 (95%CI: 39,300; 84,500) premature deaths in 2005 Good

Sun et al. 2015
USA [31]

PM2.5 annual
WRF/CMAQ modelling

BenMAP-CE software
Using country level data

2.82 × 108

103,300 (70,400; 135,700) for the year 2000
60,700 (35,000; 86,000) for the year 2050 Good

Requia et al. 2018
Canada [47]

Hamilton

PM2.5 annual estimates
EPA’s MOVES model

Statistics Canada
5.19 × 105

Total premature deaths over Hamilton to be 73.10 (95%CI: 39.05; 82.11)
deaths per year. Good

Kihal-Talantikite et al., 2018 [48]
France

PM2.5 and PM10
The ESMERALDA Atmospheric

Modelling system
Paris Death Registry 2007–2009, the number of attributable deaths was equal

3209 (95%CI: 1938, 3355) and 2662 (95% CI: 2859, 3553) Good

Han et al. 2018
Korea [45]

PM2.5 annual average
Directly measured

CMAQ method

Using population census data
5.10 × 107

In 2015 the number of premature deaths due to PM2.5: 8539 (8428;
8649) Good
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Table 2. Cont.

Researcher, Year of the
Publication

Country

Size of the PM
Exposure Ascertained by:

Referred Data to Calculate
Premature Mortality and the

Baseline Population:
Results: Quality of the Study:

Hu et al. 2018
China [32]

PM2.5 annual average
Mean exposure taken from

average from 60 cities
CMAQ model

China Public Health and Family
Planning Statistical Yearbook

2014
1.35 × 109

In 2013 PM2.5 related premature deaths for adults ≥30 years old is
approximately 1.30 million, 95%CI: 0.69l, 1.78 million Good

Ji et al. 2019
China [33]

Beijing-Tianjin-Heibei

PM2.5
Directly measuredModelled with

previous data

Global Burden of Disease data
1.05 × 108

74,000 (95% confidence interval CI: 43,000, 111,000) premature deaths
were attributable to PM2.5 exposure in 2013. Good

Maji et al. 2018
China [37]

PM2.5
Air quality monitoring network

measurements

Global burden of disease data
1.37 × 109

PM2.5 in 161 cities was 652 thousand (95%CI:298, 902) thousand
premature deaths in 2015 Good

Maji et al. 2017
China [38]

PM2.5 and 10
Air quality monitoring network

Global Burden of disease data
1.37 × 109

Total premature deaths in China from 2014–2015 PM2.5 722,370 (95%CI:
322,716, 987,519

PM10 pollution has caused 1,491,774 (95%CI: 972,770, 1,960,303)
premature deaths (age > 30) in China

Good

Zhao et al. 2018
China [41]

PM2.5 annual average
CMAQ modelling

Global Burden of Disease Data
1.37 × 109

PM2.5 related premature deaths in 2005 amounted to 1.72 (95%CI: 1.47,
1.99) million. The marginal contribution of household fuels was
estimated at 0.91 (0.72, 1.13) million, 53% (46, 60%) of the total

Good

Zhao et al. 2019
China [42]

Beijing, Tianjin, Hebei

PM2.5 meteorologically assessed
CMAQ modelling

Global Burden of Disease data
1.12 × 108

Exposure:long term PM2.5

Good

COPD 17.42(95%CI: 9.45, 24.40)
thousand

IHD 36.29(95%CI: 27.24, 48.48)
thousand

Lung cancer 13.53(95%CI: 5.19, 18.19)
thousand

Stroke 61.91(95%CI: 27.71, 79.93)
thousand

Acute lower respiratory infection 0.91(95%CI: 0.62, 1.14) thousand
Annual premature deaths:

Short term PM2.5 18.7 thousand
Long term PM2.5 130.1 thousand

Martinez et al. 2018
Yugoslav Republic of Macedonia

[49]

PM2.5 and PM10 annual average
Directly measured

State statistical office
5.44 × 105 PM2.5: 1199 premature deaths (95%CI: 821, 1519) in the year 2012 Good
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Figure 2. Geographical distribution of the selected studies, indicating the number of publications.

The techniques used to assess exposures varied among studies. Most studies used spa-
tial modelling, using different modelling techniques, and four studies used satellite-based
measures [4,35,43,44] (Tables 1 and 2). Ten studies directly measured PM
levels [18,19,26,28,33,36,39,40,45,49] (Tables 1 and 2).

The outcome, premature mortality, was calculated based on some existing measure-
ment of the country specific life expectancy. For this outcome, sixteen studies used the
Global Burden of Disease data [1,4,24,25,28,33,35,37,38,41–44,52,53,58] while others used
life tables [26], WHO data [51,54] and country statistics [18,19,27,29–32,34,36,39,40,44–50]
(Tables 1 and 2). No studies were determined to be of poor quality based on the Newcastle–
Ottawa scale.

3.1. Studies Not Included in the Bayesian Meta-Analyses

Twenty studies were not included in the meta-analyses. Figure 3 shows the number of
publications and the area/country of origin of the studies that were not included in the
Bayesian meta-analysis.

Among the studies that were not included in the Bayesian meta-analysis, two pub-
lications [27,50] reported results based on both PM10 and PM2.5, while 13 studies re-
ported [1,4,25,34,35,39,43,44,51–54,57] only on PM2.5 and five [18,19,36,40,46] reported only
on PM10. (Table 1). The presentation of results was different across the studies; however,
the direction of the associations was similar, showing an increase of premature mortality.
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3.2. Results of the Bayesian Meta-Analysis

The extracted premature mortality rate of the eligible studies was utilized for the
meta-analysis (Table 2). Fifteen studies were included in the meta-analysis of PM2.5 and
three in the meta-analysis of PM10, while two studies that investigated the outcome based
on both exposures were included in the respective analyses.

The Bayesian hierarchical meta-analysis forest plots report on the stepwise analysis.
This approach is hierarchical, which differs to conventional meta-analysis. The first level of
the forest plot corresponds to the relevant results of the participants in the study and the
second level is generated as the study participants are nested within a study and, here, we
assume the sample derived is a randomly selected sample from the exposed population.

Studies included in the PM2.5 analysis were published after 2013 and represented a
limited number of countries. Six studies were from China, three from USA, three from
India with one study each from Canada, Korea and Yugoslavia. City specific information
was available only in one study [28].

The analysis based on PM10 represented studies from France, China and two cities
from India. Therefore, most evidence here came from the Asian continent.

Values in the PM2.5 forest plot indicate the log mortality rate mapped to their cor-
responding normal distribution values. After conversion back to the original scale, the
annual estimate of premature mortality due to PM2.5 was 253 (95%CI: 90, 643) deaths per
1,000,000 population globally (Figure 4). The predicted value, overarching the sampling
error of individual studies, is the expected mean value of a future study which is 269
(95%CI: 15, 3083) per 1,000,000 population.

Similarly, the transformed results of the PM10 forest plot (Figure 5) indicate that the
annual estimate of premature mortality due to exposure to PM10 was 587 (95%CI: 1, 39,746)
deaths per 1,000,000 population. However, when the sampling errors of individual studies
were removed, the predicted mean result for a future study was 645 (95%CI: 0, 16,106) per
1,000,000 population.
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Figure 5. Forest plot PM10. The values of the forest plots indicate the log mortality rate mapped to
their corresponding normal distribution values.

3.3. Heterogeneity of the Studies

Figures 6 and 7 illustrate the joint posterior density of heterogeneity τ and the effect
µ (log mortality rate), for PM2.5 and PM10, respectively. The darker area on the plots
indicates the area of higher probability density. Red lines represent the 50%, 90%, 95%
and 99% credible intervals of the joint distribution. The blue solid line is the conditional
posterior mean log mortality rate as a function of heterogeneity, with the blue dashed lines
corresponding to the 95% credible interval. The green lines indicate the marginal posterior
median and 95% credible intervals for both parameters.
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Figure 7. Heterogeneity plot PM10.

The observed heterogeneity for the pooled studies for PM2.5 was 1.06 (95%CI: 0.23,
2.06) and for PM10 it is 1.9 (95%CI: 0.00, 10.50).

When the true heterogeneity is compared between the PM2.5 and PM10 meta-analyses,
the between-study variance (true heterogeneity) was high among the studies that have
assessed the outcome based on PM10.

4. Discussion

In this systematic review, we identified thirty-six studies of either good or fair quality
assessing the association between ambient PM2.5 and/or PM10 and premature mortality. All
studies reported a positive association. In the meta-analysis, in which we included sixteen
studies, we observed that 253 premature deaths per million population are associated
with exposure to ambient PM2.5. Prediction estimates indicated that the magnitude of
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the PM2.5—premature mortality relationship will increase in future studies. We obtained
unstable estimates for PM10, most likely due to the high level of heterogeneity among
studies included.

This is the first systematic review and meta-analysis conducted to assess the associa-
tion between ambient PM (both PM2.5 and PM10) and premature mortality. Our findings
reflect a previous meta-analysis based on 53 studies that explored the association between
ambient PM2.5 and all-cause mortality, which found that a 1 µg/m3 increase in PM2.5 was
associated with a significant 1.29% increase in all-age all-cause mortality [11]. Similarly,
Hanigan and colleagues reported a positive association between anthropogenic PM2.5 and
premature mortality in Australia [59], albeit not a meta-analysis. A recent systematic review
and a meta-analysis conducted by Jie et al. [60] also found that exposure to PM2.5 and PM10
increases mortality. In addition to mortality studies, studies which assessed Disability
Adjusted Life Years (DALYs) and Health Adjusted Life Years (HALYs) as outcomes have
also found that PM exposure increases health burden [61]. However, the DALYs does not
include years of life lost and the HALYs calculation includes both morbidity and mortality
data. In this study we did not include either of these measurements as outcomes thereby
enabling us to understand the impact on years of life lost due to premature mortality, which
is a long-term exposure to particulate matter pollution. Not including papers with DALYs
and HALYs estimates did not bias our findings given only a limited number of papers
were excluded.

It is important to highlight that our assessment has only focused on ambient PM. We
considered household air pollution as a separate exposure, as in the Global Burden of
Disease study. However, household air pollution and ambient air pollution are interlinked
exposures as each one contributes to the other. Indeed, it has been found that emissions
from the use of unclean fuels for domestic energy, when compared to other emissions such
as industry and road traffic, have the largest impact on premature mortality globally [62].

The biological plausibility of the association observed cannot be underestimated. With
increasing industrialization and urbanization in most regions, more PM is released into
the environment, which has a negative impact on the cardiovascular, cerebrovascular and
respiratory systems. This, in turn, increases the risk of mortality before the expected life
expectancy. Moreover, the causal relationship we found is supported by many studies.
Brook et al. [63] and Pope et al. [64] reported short term changes in PM2.5 levels which lead
to changes in daily mortality rates. Thurston et al. [65] also highlighted that PM2.5 increases
IHD (Ischemic Heart Diseases) and mortality and reported a dose response association.
Many studies, including the Harvard Six Cities study, have also found that long term
exposures to PM2.5 (Dockery et al. and Pope et al.) increase mortality and that the overall
reduction of PM2.5 can reduce the mortality rates, confirming its causal association.

The advantage of our study is the statistical approach used. The Bayesian hierarchical
meta-analysis, compared to the conventional meta-analysis, assesses the predicted credible
intervals taking the weights of the reference population rather than the individual study
results. When compared to a conventional meta-analysis, Bayesian hierarchical methods
utilize a prior probability distribution in assessing this. Therefore, Bayesian hierarchical
random-effect models can obtain accurate pooling effects, even with a limited number of
studies in the meta-analysis. Furthermore, conventional meta-analysis cannot incorporate
extreme values and small studies due to the systematic difference, limiting its application
to our research question [66]. In contrast to the conventional meta-analysis, Bayesian
hierarchical meta-analysis can address these issues [67].

While reading this review, an important point to note is that the strategies undertaken
by individual countries to reduce the emission of PM are not uniform across the globe.
Therefore, our pooled estimate of premature mortality may vary according to these varying
mitigation strategies. The finding of our study is a concern pointing to the urgency of
implementing strategies to mitigate this growing environmental risk factor for premature
mortality; the impact of ambient PM2.5 on premature mortality is remarkably high when
considering the current global population and the predicted population growth in the
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coming decades. Although we observed an increased premature mortality for PM10, the
confidence interval was extremely wide, indicating an unstable estimate. Results therefore
should be interpreted cautiously. The considerable variation observed was most likely due
to the heterogeneity among the studies, and future research efforts need to focus on the
effects of PM10 and premature mortality.

As with all studies, there are a number of limitations. First, heterogeneity among
studies may have hidden the real burden of premature mortality due to PM exposure. The
studies we analyzed do not represent the global burden of premature mortality due to PM,
or the urban rural disparity, as we did not have data representing all countries of the world.
Indeed, most of the studies included were conducted in China and India. Although these
countries account for 36% of the world’s population, they are also among the most polluted
countries, so less polluted countries may be underrepresented in our study. Further, within
an individual country, the available data only represents a sample of the population, which
may not reflect the true impact. The majority of studies included in our study did not adjust
for weather conditions or other associated conditions. The epidemiology-based exposure
dose-response functions that were applied, how premature mortality was calculated, and
other factors associated with life expectancy may also hide the true association. Second,
we were unable to conduct a subgroup analysis, for example by region, due to the limited
number of studies and lack of variation in the countries where research was conducted.
None of the studies commented on causality rather than association. Third, meteorological
effects on particulate matter pollution were not quantified in our analysis. Furthermore,
we have excluded the satellite-based studies from our analysis.

Notwithstanding these limitations our approach, namely pooling of the available
study results to obtain a summary measure and then to statistically model the reference
populations of the included studies using Bayesian hierarchical meta-analysis, is meaning-
ful for analyzing the impact of an environmental exposure(s) in contrast to analyzing a
selected sample. This has enabled findings related to environmental exposures, such as
PM, where the exposure cannot be confined to a sample population, and a key outcome
such as premature mortality. We recommend that future systematic reviews consider this
approach when collating evidence on environmental exposures and outcomes.

5. Conclusions

Existing evidence indicates a positive association between ambient PM2.5 and prema-
ture mortality, even while accounting for heterogeneity between studies. Evidence for PM10
remains inconsistent. This is one of few meta-analyses that has explored the causal associa-
tion between PM and premature mortality, taking into account the heterogeneity found in
the various reported studies. This study, therefore, strengthens our current knowledge of
the important relationship between exposure to PM and health outcomes, highlighting the
urgency to mitigate the growing exposure to air pollutants.
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