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Abstract: The quality of water has deteriorated due to urbanization and the occurrence of urban
stormwater runoff. To solve this problem, this study investigated the pollutant reduction effects from
the geometric and hydrological factors of green infrastructures (GIs) to more accurately design GI
models, and evaluated the factors that are required for such a design. Among several GIs, detention
basins and retention ponds were evaluated. This study chose the inflow, outflow, total suspended
solids (TSS), total phosphorus (TP), watershed area, GI area (bottom area in detention basins and
permanent pool surface area in retention ponds), and GI volume (in both detention basins and
retention ponds) for analysis and applied both ordinary least squares (OLS) regression and multiple
linear regression (MLR). The geometric factors do not vary within each GI, but there may be a
bias due to the number of stormwater events. To solve this problem, three methods that involved
randomly extracting data with a certain range and excluding outliers were applied to the models.
The accuracies of these OLS and MLR models were analyzed through the percentage bias (PBIAS),
Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR). The results
of this study suggest that models which consider the influent concentration combined with the
hydrological and GI geometric parameters have better correlations than models that consider only a
single parameter.

Keywords: green infrastructure (GI); total suspended solids (TSS); total phosphorous (TP); ordinary
least squares (OLS); multilinear regression (MLR)

1. Introduction

The water quality of stormwater runoff has rapidly deteriorated due to urbanization.
Consequently, stormwater runoff introduces significant quantities of nonpoint-source pol-
lutants into water bodies in the regions surrounding urban areas. As a result, different
types of stormwater best management practices (BMPs), which are referred to as green
infrastructure (GI) and low-impact development (LID), have been developed in order to
address stormwater runoff and its reduction in quality. For instance, Yu et al. [1] presented
BMP designs for parameters, such as antecedent dry days and hydraulic conditions (hy-
draulic loading rate and hydraulic retention time), as well as existing factors, such as the
BMP geometry and hydrological factors.

Constructed stormwater wetlands (CSWs) are a common form of stormwater BMP.
However, the plug flow assumptions in first order (the k-C* model) decay kinetics do not
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accurately reflect the real fluid dynamics in CSWs [2]. Real fluid dynamics combine plug
flow and mixed flow. It is difficult to estimate the accurate combination of plug and mixed
flows. This provides uncertainty in effluent estimation. Nevertheless, most previous studies
continued to use plug flow-based k-C* models in conjunction with univariate analysis.
In the case of the k-C* model, it was possible to estimate the treatment performance
conservatively when the background concentration was considered. These models employ
parameters, such as the residence time or flow velocity, in which there is no single unique
value, and, in some cases, the distribution of the wetland residence time alone deviates
from the plug flow behavior. Therefore, although the k-C* model is simple and widely
used, it does not sufficiently characterize the complex processes occurring in wetlands and
CSWs that result in the reduction of nonpoint-source pollutants [3].

Barrett [4] investigated the performance of retention ponds using the BMP database
and showed that the effluent concentration (Cout) of retention ponds tended to decrease as
the permanent pool volume increased, but that the volume divided by the mean annual
storm runoff volume at the site was not significant for fewer than 10. However, even
with multiple linear regression (MLR), the relationship between the pool volume and
water quality reduction could not be accurately expressed. A report by the Environmental
Protection Agency (EPA) [5] indicated that the removal rate of total suspended solids
(TSS) increased as the surface area contributing to the watershed increased, but after
some increase, the effect of the surface area on the TSS reduction diminished. According to
Barrett [4], however, in contrast to the EPA report, TSS removal was not significantly related
to the surface area. Barrett [6] evaluated both basic design characteristics and water quality
data in the BMP database and stated that pollutant concentrations are determined and
related to the site design. The percent reduction in the pollutant concentration observed
throughout the system is commonly used to calculate the BMP pollutant removal efficiency.
Nevertheless, Strecker et al. [7] recognized that this approach is unreliable since the percent
reduction is highly dependent on the influent concentration (Cin) and other parameters,
including the GI geometric and hydrological factors. In the case of retention ponds,
the greater the permanent pool volume is, the smaller the variability in the discharge
concentrations and the better the performance for individual events with a large runoff
volume. A significant relationship was not observed in the data among the detention time,
depth of banks and TSS removal.

According to previous studies, the stormwater treatment performance in wetlands, a
type of storage GIs, is determined primarily by measuring the inflow or hydraulic loading
rate (HLR) and the detention time, both of which are influenced by the storm intensity,
runoff volume, and surface area and volume of GIs [8–11]. Carleton et al. [12] investigated
the wetland factors’ influence on stormwater treatment performance in 35 studies consider-
ing 46 wetland systems. In particular, Strecker et al. [13] suggested that the area ratio may
not be more important than the ratio of the average runoff volume to the storage volume
when determining the treatment performance [12]. In addition, Shamma et al. [14] found
that the detention time, detention volume, and geometric considerations influence the
treatment performance when designing detention facilities; in the case of detention basins,
particles remove suspended solids during the detention time by gravity. The settling veloc-
ity is related to the GI geometric parameter depth and detention time. Papa et al. [15] found
that as the pond depth decreases, the time required for particle sedimentation decreases,
which helps to improve the pollutant removal performance. Park et al. [16] found that
the effect of retention ponds on the TSS removal efficiency did not differ from that of
detention basins; however, in both of these GIs, the TSS effluent concentration decreased
as the surface area increased, thus affecting the retention ponds’ performance. Moreover,
in the case of detention basins, the influent concentration had a more noticeable effect
on the effluent concentration than did the surface area and inflow, whereas in retention
ponds, the GI surface area and inflow affected the effluent concentration. Gilliom et al. [17]
developed and evaluated a linear model that predicts the effluent concentrations for BMPs
and stormwater pollutants using the influent concentrations in the water quality data from
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the BMP database. They applied four linear models (percent reduction, ordinary least
squares (OLS) regression, a robust Theil–Sen estimator, and a linear decay model with an
irreducible concentration parameter) and modeled the percent bias (PBIAS), Nash-Sutcliffe
efficiency (NSE) and the root mean square error-observations standard deviation ratio
(RSR). For both BMPs and stormwater pollutants, none of the four models performed well,
although the OLS regression model showed the best overall performance for contaminants,
namely, total phosphorus (TP) and TSS, with acceptable PBIAS and good RSR values.

These studies analyzed GI performance based on influent concentration alone, and
did not consider design characteristics, such as GI geometric and hydrological factors
themselves. Most previous models for designing GIs were developed considering only the
influent and effluent concentrations. However, these models encounter difficulties when
the concentration range is outside the design configuration, such as extrapolation beyond
the contaminant concentrations that have been previously measured. In reality, many
factors affect the GI performance, but which parameters exert a greater influence remains
unclear. Additionally, no quantitative evaluations are available, and previous studies
predicted only the stormwater runoff effluent concentration as the influent concentration,
while excluding other parameters.

The aim of this study is to assess how GI design factors, such as GI geometric and
hydrological factors, influence performance, compared to influent concentration. Hence,
the purpose of this study is to investigate how geometric, hydrological, and influent con-
centration factors of GIs influence the effluent concentration. Through model evaluations
of detention basins and retention ponds, this study uncovers which parameter combination
exhibits the best performance for each GI, and a better model is found by comparing the
developed model with a model that only considers the influent concentration. The results
of this study are expected to provide insight into the influencing factors in the design
of GIs.

2. Methods
2.1. Stormwater BMP Database

The detention basin and retention pond data were acquired from the BMP database,
and the influent flow rates and geometric factors of the two GIs were sorted. Essentially,
only the stormwater events listed that include the GI geometry (area, depth, and volume),
hydrological factors (discharge, detention time, and hydraulic loading rate), watershed
area, inflow concentration and outflow concentration were used. Ultimately, data from a
total of twelve detention basins and eight retention ponds were used (Figure 1). Because
the number of stormwater events differs for each GI, bias can occur. In addition, for each
stormwater event, the GI geometry remains unchanged, while the remaining parameters
vary, resulting in increased variability of the model. If all of these data are used in the
model construction, good performance would not be achieved, so the model performance
is validated with three sampling methods.

Not all stormwater events collected from the BMP database were used; only those
occurring when the GI was operating properly were chosen. To satisfy this criterion, the
inflow rate must be greater than the outflow rate, and the inflow concentration must be
greater than the outflow concentration [16]. All data were subjected to normalization and
standardization because the units and value sizes differed among the various parameters
and, thus, could not be compared.

The aim of this study is to assess if the influent concentration is dominant in the
design of detention basins and retention ponds as GIs. The reason for choosing tradi-
tional techniques (detention basins/retention ponds) among GIs is that the quantity of
stormwater monitoring data about these techniques is the largest in the BMP database.
In the stormwater BMP/LID database, the number of observed TP is enough to apply
statistical analysis, but enough orthophosphate (SRP) data is not available. Therefore, this
study applied TP rather than SRP.
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Figure 1. Locations of the detention basins and retention ponds used in this study.

Sampling without replacement was performed a thousand times for each combination
of parameters used in the model. Each combination of parameters required the inflow
concentration. In addition, when only one element was added, one of the following was
included: the hydraulic loading rate (HLR), inflow rate (Q), detention time (T), area (A), or
ratio of the area to the watershed area (A/WA). When two additional factors were added,
the GI geometry, watershed area (WA), or A/WA was included, along with a hydrological
factor, such as the inflow rate (Q) or detention time (T). Excluding the OLS regression
model, which considers only the inflow concentration, a total of 14 combinations were
established to evaluate the model. Figure 2 depicts a flow chart of the methodology used
in this study.

2.2. Sampling Methods
2.2.1. Modified Cluster Sampling (MCS)

Cluster sampling is a method in which all elements are sampled by selecting a specific
cluster after creating clusters according to certain criteria. Each cluster encompasses a
naturally occurring group. However, this approach is less accurate than simple random
sampling because the elements which are not organized into clusters during the cluster
selection phase are not included in the sampling scheme [18]. To compensate for this
flaw, random sampling is carried out in all clusters; this approach is similar to stratified
sampling but excludes the selection of clusters. This step is expected to compensate for the
lack of accuracy.

The MCS method involved dividing the population into clusters and then randomly
extracting the number of similar stormwater events that were possible for each cluster. The
detention basins were extracted by setting the number of events as close as possible for
each of the 12 GIs; the eight retention ponds were extracted in the same way. This sampling
method is possible only when the GI geometry and the watershed area are separate. In
contrast, the hydrological factors and influent concentrations were not separate because
they are not constants in a given GI. This approach is suitable for stratified sampling or
modified stratified sampling excluding outliers (Figure 3a).



Int. J. Environ. Res. Public Health 2021, 18, 10104 5 of 28
Int. J. Environ. Res. Public Health 2021, 18, x  5 of 29 
 

 

 
Figure 2. Schematic diagram of the methodology employed in this study. 

2.2. Sampling Methods 
2.2.1. Modified Cluster Sampling (MCS) 

Cluster sampling is a method in which all elements are sampled by selecting a spe-
cific cluster after creating clusters according to certain criteria. Each cluster encompasses 
a naturally occurring group. However, this approach is less accurate than simple random 
sampling because the elements which are not organized into clusters during the cluster 
selection phase are not included in the sampling scheme [18]. To compensate for this flaw, 
random sampling is carried out in all clusters; this approach is similar to stratified sam-
pling but excludes the selection of clusters. This step is expected to compensate for the 
lack of accuracy. 

The MCS method involved dividing the population into clusters and then randomly 
extracting the number of similar stormwater events that were possible for each cluster. 
The detention basins were extracted by setting the number of events as close as possible 
for each of the 12 GIs; the eight retention ponds were extracted in the same way. This 
sampling method is possible only when the GI geometry and the watershed area are sep-
arate. In contrast, the hydrological factors and influent concentrations were not separate 
because they are not constants in a given GI. This approach is suitable for stratified sam-
pling or modified stratified sampling excluding outliers (Figure 3a). 

Figure 2. Schematic diagram of the methodology employed in this study.Int. J. Environ. Res. Public Health 2021, 18, x  6 of 29 
 

 

 
Figure 3. Schematic diagram of the three sampling methods. (a) Modified cluster sampling (b) Stratified sampling (c) 
Stratified sampling (no outliers). 

2.2.2. Stratified Sampling 
Stratified sampling produces a representative sample when the sample to be col-

lected from the data is not homogeneous, requiring a layered sampling approach. This 
method samples each layer by splitting the layers into subcollections that have more uni-
form populations, and more reliable estimates for each sample are obtained if the data are 
divided by stratification. This sampling technique obtains an estimate of the population 
in each stratum when each variable is more accurate. Layered sampling gives relatively 
accurate and informative data on the sample (Figure 3b). The researcher's knowledge and 
expert judgment are used to determine the strata, thereby providing objective information 
about the structure, and the stratification scheme is determined by the estimated popula-
tion characteristics [18]. 

As shown in Table 1, stratified sampling was performed by selecting a unit in which 
the number of stormwater events per parameter was as uniform as possible. The layers 
created through units can be sampled by creating layers based on hydrological factors and 
influent concentrations, as well as the GI geometry and watershed area. 

Table 1. Stratified sampling values for each parameter. 

GI  
Area 
(m2) 

Depth 
(m) 

Volume 
(m3) 

Watershed 
Area (km2) 

FlowRate 
(m3/s) 

Detention 
Time (s) 

HLR 
(m/s) 

Influent Concentration 
(Cin) (mg/L) 

Detention Basins 
TSS 800 0.4 200 20,000 0.001 20,000 2.0 × 10−6 30 
TP 250 0.7 600 40,000 0.004 30,000 5.0 × 10−6 0.1 

Retention Ponds 
TSS 1000 0.35 1000 100,000 0.01 20,000 1.0 × 10−6 50 
TP 4000 0.4 2000 300,000 0.05 50,000 1.0 × 10−6 0.5 

2.2.3. Stratified Sampling (No Outliers) 
The EPA [5] report indicates that if the area of a retention pond exceeds a certain 

level, the TSS removal rate does not have a significant effect. In the stratified sampling of 
all the parameters, which were chosen based on the EPA report, the above stratified 

Figure 3. Schematic diagram of the three sampling methods. (a) Modified cluster sampling (b) Stratified sampling
(c) Stratified sampling (no outliers).



Int. J. Environ. Res. Public Health 2021, 18, 10104 6 of 28

2.2.2. Stratified Sampling

Stratified sampling produces a representative sample when the sample to be collected
from the data is not homogeneous, requiring a layered sampling approach. This method
samples each layer by splitting the layers into subcollections that have more uniform
populations, and more reliable estimates for each sample are obtained if the data are
divided by stratification. This sampling technique obtains an estimate of the population
in each stratum when each variable is more accurate. Layered sampling gives relatively
accurate and informative data on the sample (Figure 3b). The researcher’s knowledge and
expert judgment are used to determine the strata, thereby providing objective information
about the structure, and the stratification scheme is determined by the estimated population
characteristics [18].

As shown in Table 1, stratified sampling was performed by selecting a unit in which
the number of stormwater events per parameter was as uniform as possible. The layers
created through units can be sampled by creating layers based on hydrological factors and
influent concentrations, as well as the GI geometry and watershed area.

Table 1. Stratified sampling values for each parameter.

GI Area
(m2)

Depth
(m)

Volume
(m3)

Watershed
Area (km2)

FlowRate
(m3/s)

Detention
Time (s)

HLR
(m/s)

Influent
Concentration

(Cin) (mg/L)

Detention Basins
TSS 800 0.4 200 20,000 0.001 20,000 2.0 × 10−6 30
TP 250 0.7 600 40,000 0.004 30,000 5.0 × 10−6 0.1

Retention Ponds
TSS 1000 0.35 1000 100,000 0.01 20,000 1.0 × 10−6 50
TP 4000 0.4 2000 300,000 0.05 50,000 1.0 × 10−6 0.5

2.2.3. Stratified Sampling (No Outliers)

The EPA [5] report indicates that if the area of a retention pond exceeds a certain level,
the TSS removal rate does not have a significant effect. In the stratified sampling of all the
parameters, which were chosen based on the EPA report, the above stratified sampling
method was performed after excluding the layer with the highest unit value at the time of
stratified sampling (Figure 3c).

2.3. Linear Model Regression
2.3.1. OLS Regression

OLS regression is a type of generalized linear modeling that can be used to model a
single response variable on at least an interval scale [19]. The least squares method indicates
when the square of the prediction error is minimal, as shown in Equation (2) below:

ŷ = β0 + β1x1 + ε (1)

∑(y− ŷ)2 = Least (2)

where y is the dependent variable and x is the independent variable. ŷ is the value of y
predicted by the model, and ε is the prediction error. The regression coefficients are β0 and
β1. In this study, y is the outflow concentration and x is the inflow concentration in a given
stormwater event in the BMP database.

2.3.2. MLR

MLR identifies the effects of the interaction between certain variables independent of
the variation in the dependent variable in order to determine the independent variables that
best predict or explain the most variance in the dependent variable. In MLR, a dependent
variable is related to two or more independent variables, as follows:

ŷ = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (3)
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where y is the dependent variable, xn denotes an independent variable, ε is the prediction
error, and βn denotes the regression coefficients. The inflow concentration must be an inde-
pendent variable, and additional parameters (including the GI geometric and hydrological
factors) are included. When three or more independent variables are entered, one variable
from each category is entered because both the GI geometric factors and the hydrology
factors are required during the design of GIs.

2.3.3. MLR-Interactions

The magnitude of the relationship between one predictor and the criterion varies
as a function of at least one other predictor in an interaction. Generally, one predictor
is considered to be a focal predictor, while all other predictors multiplied by the focal
predictor are moderators, which are assumed to influence the relationship between the
focal predictor and the criterion (although this distinction is arbitrary given the symmetry
of the interaction) [20]. This interaction effect is represented as a regression equation via
the product of two or more independent variables, as follows:

ŷ = β0 + β1x1 + β2x2 + βnxn + · · ·+ β12x1x2 + · · ·+ β(n−1)nxn−1xn (4)

where ŷ is the predicted value of a dependent variable, xn denotes the independent vari-
ables, and βn denotes the regression coefficients. A regression coefficient corresponding to
the interaction effect of xn−1 and xn is β(n−1)n, and xn−1xn is the interaction.

2.3.4. MLR-Robust Fit

When outliers exist, linear regression analysis using the least squares method is not
suitable. In a robust regression model, outliers are not excluded, and a robust analysis is
performed and is not affected if outlier data exist. Robust regression, as the name implies, is
a more robust version of least squares regression compared to other regression techniques.
When outliers exist, they provide regression coefficient estimates. However, in the absence
of outliers, MLR coupled with OLS exhibits better performance than robust regression.

The robust regression model assigns a weight to each data point. The bisquare weight
function uses the least squares method to iteratively reweight the data. Robust fitting was
conducted with a default tuning constant of 4.685 and the bisquare weight function, which
is also called the biweight function, as follows:

bisquare′ : w = (|r| < 1)×
(

1− r2
)2

(5)

r =
resid

tune× s×
√

1− h
(6)

where resid is a vector of residuals from the previous iteration, tune is an adjustment
constant divided by the residual vector before calculating the weight, h is a vector of
leverage values from least squares fitting, and s approximates the standard deviation of
the error term given by s = MAD/0.6745, where the MAD of the residuals is their median
absolute deviation from the median. For a normal distribution, a constant of 0.6745 makes
the estimate unbiased [21–24].

In this study, MATLAB software was used to analyze the data. Four regression models
(OLS, MLR, MLR-Interactions, and MLR-Robust) were created, and model evaluations
were performed using the ‘fitlm’ function in the Regression Learner Toolbox.

2.4. Model Evaluations (PBIAS, RSR, NSE)
2.4.1. Root Mean Square Error-Observations Standard Deviation Ratio (RSR)

This study normalized the data to evaluate the performance of the four models. The
RSR is a ratio based on the observed standard deviation of the root mean square error
(RMSE), a commonly used error index statistic. The RSR varies from an optimal value of
zero (indicating that the residual variation is zero) to positive infinity. A lower RSR value



Int. J. Environ. Res. Public Health 2021, 18, 10104 8 of 28

(close to zero) indicates good model performance with a low RMSE [25–28]. The RSR is
computed as follows:

RSR =
RMSE

STDEVobs
=

√
∑(Yobs − Ysim)2√

∑(Yobs − Ymean)
2

(7)

where Yobs denotes the observation data, Ysim denotes the model simulation data, and
Ymean is the mean of the observation data.

2.4.2. Percent Bias (PBIAS)

The PBIAS represents the average trend in which the value of the simulated data is
greater or less than the value of the observed data, thereby reflecting the relative error
from the measured value. The optimal PBIAS value is zero, and the closer the value is to
zero, the more accurate the model simulation is. Positive values indicate that the model
exhibits an underestimation bias, and negative values conversely indicate an overestimation
bias [28,29]. The PBIAS is computed as follows:

PBIAS =
∑(Yobs − Ysim)

∑ Yobs
(8)

2.4.3. Nash-Sutcliffe Efficiency (NSE)

The NSE normalizes the relative magnitude of the residual variance between the
observed value and the model-simulated value, thereby indicating how well a plot of the
two data values fits along the 1:1 line [30]. The optimal NSE value is one, and acceptable
NSE values are generally between zero and one [28].

NSE = 1− ∑(Yobs − Ysim)2

∑(Yobs − Ymean)
2 (9)

Table 2, which is based on figures provided in the work of Gilliom et al. (2020) [17],
shows the criteria thresholds for good, acceptable, and poor model performance.

Table 2. Model evaluation criteria thresholds [17].

Criteria PBIAS RSR NSE

Good −10% < PBIAS < 10% RSR < 0.80 NSE > 0.6
Acceptable −25% < PBIAS < 25% 0.80 < RSR < 0.98 0.4 < NSE < 0.6

Poor PBIAS < −25%, PBIAS > 25% RSR > 0.98 NSE < 0.4

3. Results

When designing the GI model, 14 combinations of parameters were created using
the GI geometric and hydrological factors, as well as the inflow concentration. The GI
geometric factors included the area (A), volume (V), and depth (D), while the hydrological
factors included the inflow rate (Q), hydraulic loading rate (HLR), and detention time (T).
The watershed area (WA) and the ratio of the GI area to the watershed area (A/WA) were
also entered as combination parameters. Among the GI geometric factors, ‘A’ describes the
bottom area of a detention basin and the permanent surface area of the pool in a retention
pond. Table 3 matches the parameters with the 14 combinations and their numbers.

Table 3. Combination numbers.

Numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations
Cin,

HLR
Cin,
Q,
A

Cin,
Q

Cin,
Q,
D

Cin,
Q,
V

Cin,
T

Cin,
Q,

WA

Cin,
Q,

A/WA

Cin,
A

Cin,
A/WA

Cin,
T,
A

Cin,
T,
D

Cin,
T,

WA

Cin,
T,

A/WA
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3.1. GI Performance

The TSS and TP removal performances in the model evaluations of the detention basins
are both “good” and “acceptable”. The removal performance of the detention basins is well
represented by each of the MLR models for most parameter combinations. The numbers
along the x axes in the figures denote the combination numbers of the parameters listed in
Table 3. The TSS removal PBIAS in detention basins ranges from −15% (“acceptable”) to
0% (“good”) (Figure 4). Only the MLR-R model with the MCS method is different from
the other models. With the MCS method, the MLR-R model PBIAS is closer to zero than
the PBIAS of the other sampling methods. With the SS and SS (no outliers) methods, the
MLR-I model PBIAS is close to zero, and the TSS removal performances in the detention
basins are “good” (RSR < 0.8) and “acceptable” (RSR < 0.98). The parameter combination
results of the sampling methods in the MLR-R model are similar to those in the OLS model
(Figure 5). The NSE of TSS removal in the detention basins is mostly “acceptable”, and
some parameter combinations in the MLR models exhibit “good” performance. With the
SS (no outliers) method, gaps in the resulting values from the MLR-I and OLS models are
observed that are not found in the other models. In particular, the NSE with the SS (no
outliers) method in the MLR-I model is slightly closer to one (Figure 6).

The PBIAS TP removal performance values of all the models (except the MLR-R
model) in the detention basins are similar to the PBIAS TSS removal performance values in
the detention basins. The MLR-R model PBIAS is the closest to zero, indicating a “good”
performance. Some of the simulated values of the MLR-R model are overestimated, which
is different to the other models (Figure 7). In contrast, the MLR-R model RSR is found to
be worse at removing TP for some of the parameter combinations in the detention basins
than the OLS model. The MLR-I model RSR, as shown in Figure 8, is closer to zero than
the OLS model RSR. Moreover, in terms of the NSE, the TP removal performance in the
detention basins is mainly at “good” and “acceptable” levels. The performance reaches a
“poor” level for some combinations with the SS (no outliers) method in the MLR-R model
(Figure 9).

The TSS and TP removal performances in the retention pond model evaluations are
“acceptable” and “poor”, but some of the parameter combinations achieve “good” levels.
The TSS removal performance in the retention ponds has a larger variation than that in the
detention basins. The PBIAS levels of TSS removal in the retention ponds are “acceptable”
and “poor” since the results are lower than −20% (Figure 10). The RSR results of the
OLS model for all three sampling methods in Figure 11 are close to one. In addition, the
results of the three MLR models for four parameter combinations are similar to those of
the OLS model, but the ranges for the other parameter combinations are closer to zero
than those of the OLS model (Figure 11). As shown in Figure 12, the OLS model NSE is
“poor” since it is close to zero. The MLR model results are “good” and “acceptable” except
for four parameter combinations. Therefore, the MLR and OLS model results have some
discrepancies. The MLR-R model NSE is different from the OLS model NSE and similar to
the MLR model result. The MLR-I model NSE with the SS (no outliers) method has a large
range that is closer to one than the NSE values of the other models (Figure 12).

The PBIAS range of values pertaining to the TP removal performance in retention
ponds includes some positive values, which indicates that the models exhibit an underesti-
mation bias (Figure 13). The TP removal performance in the retention ponds according to
the RSR (Figure 14), which is similar to that in the detention basins (Figure 8), is worse for
some parameter combinations in the MLR-R model than in the OLS model. The MLR and
MLR-R model RSR values are “poor” and “acceptable” (except with the SS (no outliers)
method) since they have negative values (Figure 15). Therefore, the MLR and MLR-R model
results (except with the SS (no outliers) method) are worse than the OLS model results, as
shown in Figure 15. Moreover, the MLR-I model ranges span all three performance levels.
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Figure 4. Error analysis (PBIAS) results of TSS removal in detention basins. Figure 4. Error analysis (PBIAS) results of TSS removal in detention basins.



Int. J. Environ. Res. Public Health 2021, 18, 10104 11 of 28
Int. J. Environ. Res. Public Health 2021, 18, x  11 of 29 
 

 

 
Figure 5. Error analysis (RSR) results of TSS removal in detention basins. Figure 5. Error analysis (RSR) results of TSS removal in detention basins.
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Figure 6. Error analysis (NSE) results of TSS removal in detention basins. 
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Figure 7. Error analysis (PBIAS) results of TP removal in detention basins. Figure 7. Error analysis (PBIAS) results of TP removal in detention basins.
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Figure 8. Error analysis (RSR) results of TP removal in detention basins. Figure 8. Error analysis (RSR) results of TP removal in detention basins.
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Figure 9. Error analysis (NSE) results of TP removal in detention basins. Figure 9. Error analysis (NSE) results of TP removal in detention basins.
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Figure 10. Error analysis (PBIAS) results of TSS removal in retention ponds. Figure 10. Error analysis (PBIAS) results of TSS removal in retention ponds.
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Figure 11. Error analysis (RSR) results of TSS removal in retention ponds. Figure 11. Error analysis (RSR) results of TSS removal in retention ponds.
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Figure 12. Error analysis (NSE) results of TSS removal in retention ponds. Figure 12. Error analysis (NSE) results of TSS removal in retention ponds.
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Figure 13. Error analysis (PBIAS) results of TP removal in retention ponds. Figure 13. Error analysis (PBIAS) results of TP removal in retention ponds.
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Figure 14. Error analysis (RSR) results of TP removal in retention ponds. Figure 14. Error analysis (RSR) results of TP removal in retention ponds.
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Figure 15. Error analysis (NSE) results of TP removal in retention ponds. Figure 15. Error analysis (NSE) results of TP removal in retention ponds.
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In comparison to the PBIAS values of the other models, the MLR-R model PBIAS is
close to zero in both the detention basins and the retention ponds. Among the MLR models,
the MLR-I models RSR and NSE perform better. Some of the MLR-R model RSR and NSE
values exhibit worse performance than those of the OLS model among the 14 combinations
of parameters. The MLR-I model performs well in the three model evaluations compared
with the OLS model.

3.2. Combinations of Parameters

Figures 16–19 show the differences between the OLS model and the other three MLR
models by averaging the values of the model evaluations with the three sampling methods.
Figure 16 shows the TSS removal performance values in the detention basins. The RSR and
NSE (but not the PBIAS) have the same trend, although the resulting values are different
among the sampling methods. In the PBIAS results, the MLR-R model differs greatly
from the OLS model across all sampling methods. Except for some combinations, the RSR
and NSE results of the MLR-I model differ strongly from those of the OLS model. Large
discrepancies between the RSR and NSE results are found for parameter combinations
No. 2, No. 8, and No. 11. Combinations No. 2 and No. 8 contain the flow rate, and
combinations No. 2, No. 8 and No. 11 all include the bottom area.
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As shown in Figure 17, the TP removal performance in the detention basins in the
MLR-R model differs more from that in the OLS model than from any of the other models
in the PBIAS results, and the MLR-I model differs from the OLS model in terms of the
RSR and NSE. Unlike Figure 16, the PBIAS differs more from the results of the OLS model
with the SS (no outliers) method than from the results with the MCS method. In terms
of the RSR and NSE, the MLR-I model exhibits the greatest difference among all the
sampling methods, and the MLR-R model performs worse than the OLS model for some
combinations; i.e., combinations No. 5 and No. 12 show considerable differences from the
OLS model, and combinations No. 11 through No. 14 (which include the detention time)
have clear differences from the OLS model.

Unlike the PBIAS of the TSS removal performance in detention basins (Figure 16),
there is a larger discrepancy among the PBIAS values of the MLR-R and OLS models in the
TSS removal performance in retention ponds (Figure 18) for all parameter combinations.
However, the MLR-R model is not the best model in the model evaluations in the PBIAS of
TSS removal performance in retention ponds (Figure 18). In combinations No. 4, No. 7,
and No. 8, the MLR-I model shows a larger PBIAS difference from the OLS model than
the MLR-R model with all sampling methods. Except for the SS (no outliers) method, in
terms of the RSR and NSE, the MLR-R model in combination No. 8 exhibits better model
performance evaluations than the other models. With the SS (no outliers) method, in terms
of the NSE, the MLR-R model displays negative values for some combinations. With the
SS (no outliers) method, the MLR-I model provides the largest difference from the OLS
model in all model evaluations for combination No. 14, whereas with the other sampling
methods, the MLR-I model shows discrepancies with the OLS model for combinations No.
5 and No. 11; similar to combination No. 14, combinations No. 3 and No. 9 show small
differences from the OLS model in all sampling methods and model evaluations. With
all sampling methods in the MLR-I model, combination No. 4 (including the depth and
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flow rate) has the smallest gap with respect to the OLS model among the combinations that
include the flow rate with GI parameters.

In the case of combination No. 8 regarding the TP removal performance in retention
ponds (Figure 19), the MLR-I model results are different from the OLS model results with
all sampling methods and in all model evaluations. Except for PBIAS, combination No. 8
reveals a large gap between the OLS model and the MLR-I model among all parameter
combinations. In terms of the PBIAS, the MLR-R model results are largely different
from those of the OLS model for combinations No. 5 and No. 13. However, with the
SS (no outliers) method, in terms of the NSE, the MLR-R model shows negative values
for combinations No. 5 and No. 13. The SS (no outliers) method features the smallest
differences from the OLS model results compared to the other sampling methods, but few
models display negative values.

4. Discussion

The difference between a detention basin and a retention pond is the existence of a
permanent pool, i.e., the former does not have a permanent pool, whereas the latter (being
wet ponds) does have a permanent pool. The performance results in retention ponds are
more different from the OLS results than those in detention basins. Certain types of BMPs,
such as wet ponds, can reduce runoff through evaporation and infiltration. The removal of
pollutants contributes to reducing pollutant loading while improving effluent quality [31].
Figures 16 and 18 show that the HLR of retention ponds is correlated with TSS removal.
The wetland treatment performance is determined by the inflow, HLR, and detention time.
Carleton et al. [12] showed that wetlands had no significant HLR results for TP removal
but showed significant results with respect to the detention time and the ratio of watershed
area to wetland area. Combination No. 1 in Figure 19 (including the HLR) indicates that
the difference from the OLS model is not appreciable compared to other combinations in
detention basins. Combination No. 14 (including the detention time and the ratio of the
watershed area to the permanent pool area of retention ponds) is different from the OLS
model among the 14 combinations, so there is a correlation. These two parameters affect
the effluent concentration because combination No. 14 shows a satisfactory difference
among all TSS and TP removal results in detention basins and retention ponds.

As shown in Figure 18, when retention pond depth is included in the parameter com-
binations, the OLS results are similar, unlike the other geometric parameters of detention
basins. As the depth increases, the pollution control performance deteriorates because
the particles take longer to settle through the larger vertical water column [14,15]. The
depth and detention time have an impact on settling by gravity. As shown in Figure 17,
in the TP removal results in detention basins, the depth performance is better than that
of combinations with the bottom area regardless of the hydraulic parameters, such as the
inflow rate and detention time. Walker [32] showed that the removal of phosphorus from
urban runoff in detention basins is more sensitive to the pond depth than to the surface
area. The results of this study demonstrate that, in addition to the surface area, the bottom
area also shows the same trend.

Combinations No. 2 and No. 11 in Figures 16 and 18 include the area as the GI
geometric parameter, and the differences from the OLS model are the largest among the
14 combinations. Park et al. [16] found that the confidence intervals for runoff concen-
trations decreased with the surface area of detention basins and retention ponds. This
means that the TSS effluent concentration decreased as the surface area increased in both
the detention basins and the retention ponds. Barrett [4,6] showed that only the influent
concentration (and not the permanent pool volume or surface area of retention ponds) was
correlated with the mean TSS concentration. However, in Figure 18, combination No. 5
shows a correlation when both the inflow rate and volume are included. In the case of
combination No. 9 (including the surface area and influent concentration only), there is
no significant difference, but the results confirm that there is a difference from the OLS
model in combination with hydrological factors, such as the flow rate and detention time.
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These differences from the OLS model indicate that other parameters are correlated with
the effluent concentration. Therefore, even a small difference indicates some correlation.
The model evaluation results obtained with the three sampling methods and the four
models in Figures 4–15 show that, in addition to the influent concentration, various other
parameters are also related to the effluent concentration. Existing studies have concluded
that parameters other than the influent concentration do not significantly affect the ef-
fluent concentration, but that such effects appear to manifest through differences from
the OLS model using only the influent concentration and MLR models that include other
parameters. As shown in Figures 16–19, the difference from the OLS model is larger in the
combinations with GI geometric parameters and the HLR than in the combinations with
one parameter in addition to the influent concentration. These figures and results suggest
that designing the GI model with consideration of both GI geometric and hydrological
parameters can produce better performance than designing the model using only one
parameter, such as the influent concentration.

5. Conclusions

Three sampling methods, namely, MCS, SS and SS (no outliers), were used to reduce
the bias of stormwater events per GI through the removal of TSS and TP from two GIs, i.e.,
detention basins and retention ponds. This study applied the OLS model (including only
the influent concentration) and the MLR, MLR-I and MLR-R models, which included other
parameters. Although the detention basins exhibited better model performance evaluations
than the retention ponds, the correlations of the parameters showed clearer results in the
retention ponds. For both detention basins and retention ponds, the hydrological factors of
inflow rate and detention time were positively correlated with GI geometric factors. Com-
binations with both hydrologic and GI geometric factors showed more of a gap with OLS
results than those including only one factor. Among several the GI geometric parameters,
area and volume included in the combination were positively correlated with the two GIs.
The two GIs were also positively correlated with the watershed area. In TSS removal of
detention basins, combinations of the bottom area included hydrological factors and the
ratio of the bottom area to the watershed area had more difference than other combinations.
Therefore, the bottom area was more relevant than other GI geometric parameters in TSS
removal of detention basins. In TSS and TP removal of retention ponds, combinations
which included depth had smaller gap with OLS results than other combinations with GI
geometric factors. But in TSS and TP removal of detention basins, combinations with depth
produced different OLS results, similarly to other combinations with GI geometric factors.
Unlike detention basins, there was a negative correlation with depth in the retention ponds.
This study demonstrates that parameters other than the influent and effluent concentrations
are correlated with the treatment performance of detention basins and retention ponds.
The combinations with both GI geometric and hydrological parameters showed greater
differences from the OLS model than the combinations with only one parameter in addition
to the influent concentration. To design the optimal GI model, this study proposed that it
would be better to consider other parameters in addition to the influent concentration. For
future study, it is necessary to account for the underlying soil condition in the analysis. The
type of underlying soil is one of the most important factors involved in determining the
performance of a stormwater basin. A basin with a soil with high permeability performs
better than one with a less permeable soil. Mechanisms such as adhesion and sedimentation
were not considered in combination with the soil type when analyzing the data.
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