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Abstract: Home advantage (HA) is the tendency for sporting teams to perform better at their home
ground than away from home, it is also influenced by the crowd support, and its existence has
been well established in a wide range of team sports including rugby union. Among all the HA
determinants, the positive contribute of the crowd support on the game outcome can be analyzed
in the unique pandemic situation of COVID-19. Therefore, the aim of the present study was to
analyze the HA of professional high-level rugby club competition from a complex dynamical system
perspective before and during the COVID-19 pandemic. HA was analyzed in northern and southern
hemisphere rugby tournaments with (2013-2019) and without (2020/21) crowd support by the
means of the exhaustive chi-square automatic interaction detection (CHAID) decision trees (DT).
HA was mitigated by the crowd absence especially in closed games, although differences between
tournaments emerged. Both for northern and southern hemisphere, the effect of playing without
the crowd support had a negative impact on the home team advantage. These findings evidenced
that in ghost games, where differences in the final score were less than a converted try (7 points), HA
has disappeared.

Keywords: COVID-19; home advantage; rugby union; margin of victory; decision trees

1. Introduction

Home advantage (HA) in sport depends on several factors and it should be analyzed
from a complex dynamical system perspective. Although HA has been well-documented
in several competitive sports (baseball, basketball, handball, indoor soccer, roller hockey,
rugby, soccer, volleyball, and water polo) [1], the causes are less well understood [2].
According to Nevill and Holder [3], the factors associated with HA for all sports include
crowd support, travel fatigue, familiarity with local conditions, territoriality, referee bias,
special tactics, and psychological factors, even if territoriality, referee bias, and other
psychological factors are all thought to be influenced by the crowd support [2]. In addition,
rugby union provides an important context to explore this phenomenon because of the
high level of home advantage [1] and the use of a television match official to help to
provide a less biased decision by the referees. HA in rugby union was investigated both
in northern [1,4-6] and southern hemisphere [7,8]. In particular, HA was reported to
be oscillating around 60% in northern hemisphere international competitions between
1883 and 2011 [5] and to have a mean of 7 points in national and international southern
hemisphere competition [7,8]. Nevertheless, it varied between teams from season to
season [7] and during non-professional era (i.e., before 1995) [5].
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Among all the determinants of the HA, the positive contribute of the crowd support on
the game outcome can be analyzed in the unique pandemic situation of COVID-19. During
the first phase of the COVID-19 pandemic, (i.e., March 2020) several sport competitions
started to be suspended and subsequently some of them were resumed, while others were
cancelled for the 2019-2020 season [9]. In Europe, the Six Nations Tournament and the
main club competitions (i.e., English Premiership, Pro14) were suspended in March 2020
and rescheduled during the following summer, while the club competition in France (i.e.,
Top 14 2019-2020) was cancelled after the 17th matchday. In the southern hemisphere, the
2020 Super Rugby competition involving teams from Argentina, Australia, Japan, New
Zealand and South Africa was cancelled after 46 games, whereas regional tournaments
replaced it in New Zealand, Australia, South Africa, and crowds were regularly allowed to
attend the tournaments. At a national level, the 2020 National Provincial Championship
in New Zealand and the 2020 Currie Cup in South Africa were played but no crowds
or limited crowds were allowed, while the National Rugby Championship in Australia
was cancelled.

Although the pandemic restrictions was reported to impact HA in rugby [10], the
application of a non-linear data mining techniques considering contingencies (e.g., the tour-
nament, the margin of victory, the scoring first) may explore potentially useful information
in a large dataset, and produce a simple and understandable message to the stakehold-
ers [11]. In fact, since the game outcome is affected by the location (i.e., home or away),
the margin of victory [12], the scoring first [13], and the differences in playing styles across
hemispheres [14-16], these aspects should be considered in a data mining investigation.

Data mining is a process of extracting and discovering patterns in datasets. Sports data
mining assists coaches and managers in result prediction, player performance assessment,
player injury prediction, sports talent identification, and game strategy evaluation [17]. In
particular, decision tree (DT) is a machine learning technique that applies an approach of
dividing data into smaller clusters to identify patterns that can be used for prediction. The
logical structure consists in a hierarchical combination of decisions from the root to the
terminal (i.e., leaf) nodes, and these provide knowledge based on the classification. Exhaus-
tive CHAID (i.e., Chi-squared Automatic Interaction Detector) method is used based on
the chi-square test of association. An Exhaustive CHAID tree is a decision tree constructed
by repeatedly splitting subsets of the space into two or more child nodes, beginning with
the entire data set, until only two super categories are left. Exhaustive CHAID can find
the best split for each predictor variable by minimize the variation within nodes in order
to construct homogenous subgroups in the decision tree diagram [18]. Decision trees are
usually assessed for accuracy by means of cross-validation techniques [19]. In particular,
dataset is randomly subsampled and is entirely used both for training and validation,
maximizing the dataset volume.

In the last decade HA was extensively studied in several sports [1] and classification
decision trees were used to assess the effect of performance indicators on game outcome
in rugby league [20,21] as well as in rugby union [22,23]. However, to the best of our
knowledge, this is the first study to apply a flexible and nonlinear statistical model to
investigate HA in professional rugby union. In particular, the aim of the present study
was to analyze the HA of professional high-level rugby club competition from a complex
dynamical system perspective according to the tournament, the margin of victory, the
scoring first, and the crowd support.

2. Materials and Methods
2.1. Design

This study comprised 7934 performances (3967 games) played by professional teams
from elite national (i.e., English Premiership = 1824 (23%), French Top14 = 2520 (32%),
Currie Cup = 566 (7%), Mitre 10 Cup = 1188 (15%)) and international (i.e., Pro14 = 1836
(23%)) competitions during the last 6 competitive seasons before (2013/14 to 2018/19)
and after (2020/21) the COVID-19 pandemic period. The 2019/20 season was excluded
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from the analysis because of the irregular and intermittent game schedule. Archival
data were collected by a researcher from the Ultimate Rugby web domain (https://www.
ultimaterugby.com/# (accessed on 16 July 2021)). Data reported in this Web domain were
collected by a researcher and stored into a .csv file. The local institutional review board
approved this study.

2.2. Methodology

Win and lose but not drawn performances were considered in this study. For each of
the 7938 performances fixture (home vs. away), outcome (win vs. lose), margin of victory
[\/(points scored-points conceded)?], season (Pre-COVID vs. COVID 20-21), tournament
(Prol4 vs. Top14 vs. Premiership vs. Currie Cup vs. Mitre 10 Cup), and the first event of
the game (scoring, missed scoring, yellow or red card, and substitution) were considered.
In particular, scoring included scored try with and without conversion, penalty try, and
kick at goal, while missed scoring included missed penalty (i.e., kick at goal failed). Noting
the relation of the margin of victory (i.e., final score difference) [12,24] and of the first
scoring [20] with the relative success of the game plan adopted by the winning teams, the
same were included in this study. The margin of victory was clustered within the decision
tree to define 3 clusters (closed, balanced, and unbalanced games).

2.3. Data Analysis

An exhaustive chi-square automatic interaction detection (CHAID) decision tree was
grown using win/lose as the binary response variable in IBM SPSS Statistics package
(version 27, IBM Corp., New York, NY, USA) using a ten-fold cross validation. Outcome
was set as dependent variable while season, fixture, margin of victory, tournament, and first
event were set as independent variables. In order to manage both accuracy and complexity
of the model (i.e., the maximum tree depth, which contains the highest value of accuracy,
is five), grow limits was set to 5 levels and minimum number of cases for parent and child
node was set at 100 and 50, respectively. Level of significance for splitting nodes was set at
p < 0.05 and within multiple comparisons, significance values for merging and splitting
criteria were adjusted using the Bonferroni method. The intervals for the continuous
variable (i.e., margin of victory) was set at 3, corresponding to the closed, balanced, and
unbalanced games clusters.

3. Results

Out of the 7934 performances, the model successfully classified 2658 (67.0%) of the
3967 loses and 2663 (67.1%) of the 3967 wins. The model has grown 47 nodes within all
the 5 levels and 28 leaves (i.e., terminal nodes). The diagram and the detailed table of
the entire model are presented in Figure 1 and in Table S1, respectively. Figure 2 resumes
closed games both from the away and home fixture perspective.

[os ][ e ]

Figure 1. Decision Tree (DT) Diagram.
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Figure 2. Closed Games Diagram from the Away and Home Fixture Perspective.

From the fixture perspective (node 1-2) teams playing at home were 66.4% likely to
win the game. At the second level of depth (nodes from 3 to 8), the values of the margin of
victory were divided into 3 clusters, below 6 points for closed, from 6 to 16 for balanced,
above 16 for unbalanced games, respectively.

From closed games in home fixture perspective (node 6) the crowd absence affected
HA by 9.4% (49.3% vs. 58.7%). At a deeper level, during the Pre-COVID period, the HA was
significantly higher for Top14 championship (node 31) compared to other championships
(64.4% vs. 56.9% vs. 42.9%). In Top14, HA was higher when scoring was the first event
of the game. From balanced games in home fixture perspective (node 7), the highest HA
was in Top14 championship (node 17) compared to the others (74.1% vs. 65.9% vs. 53.6%).
In Premiership, Prol4, and Mitre 10 Cup (node 18) crowd absence affected HA by 16.2%
(68.2% vs. 52%). From unbalanced games in home fixture perspective (node 8), HA was
higher (79.8% vs. 45.6% vs. 69.8%) when the first event of the game was scoring (node
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20) compared to card or substitution (node 21) and to missed score (node 22), respectively.
When scoring first, HA was highest in Top14 (node 36) compared to the others (89.2% vs.
77.8% vs. 70.6%). In Top14 (node 36), crowd absence affected HA by 10.8% (90.2% vs. 80%).
When the first event was card or substitution in Currie Cup or Premiership or Mitre 10
Cup (node 40), HA was lower than the others (31.1% vs. 59.4%). Figrues 2, S1 and S2
present the decision tree for home fixture according to closed, balanced and unbalanced
games, respectively.

In closed games in away fixture perspective (node 3), results are specular to those in
closed games in home fixture perspective (node 6). From balanced games in away fixture
perspective (node 4), HA was higher (37.5% vs. 23%) when the first event of the game was
scoring (node 11) compared to card or substitution or missed score (node 12), respectively.
At a deeper layer, the highest HA (49.6%) was reported in Mitre 10 Cup (node 28) compared
to Premiership or Pro14 or Currie Cup (node 27) and Top14 (node 26) when scoring first.
Scoring first in Premiership or Prol14 or Currie Cup without crowd support increases HA
by 17.1% (54.5% vs. 37.4%). From unbalanced games in away fixture perspective (node 5),
HA was higher (30% vs. 12.2%) when the first event of the game was scored (node 13)
compared to card or substitution or missed score (node 14), respectively. At a deeper layer,
the highest HA (36.4%) was reported in Mitre 10 Cup, Premiership, Pro14, or Currie Cup
(node 30) compared to Top14 when scoring first occurred (node 29). Figures 2, S3 and 54,
present the decision tree for away fixture according to closed, balanced and unbalanced
games, respectively.

4. Discussion

Since HA was reported to be influenced by the crowd support, the aim of the present
study was to analyze it considering the crowd absence during the unique COVID-19
pandemic situation. Thus, HA was investigated within professional rugby club competi-
tions according to the tournament, the margin of victory, and the scoring first. The main
findings of this study were that the HA disappeared when competing without the sup-
porters, especially in closed games, where differences in the final score were less than a
converted try (7 points). Although differences between tournaments emerged, the crowd
absence was associated with a detrimental effect on HA in both northern and southern
hemisphere competitions.

From a complex system perspective, non-linear approaches for clustering and in-
terpreting high-dimensional datasets, as Self Organizing Maps and Decision trees, were
used in rugby union performance analysis [22,25,26] in order to better understand the
determinants of success. To date, linear statistical models (e.g., analysis of variance, linear
regression, chi-square) are the most common statistical tools used in analyzing HA in rugby
union [1,4,7] although the use of non-linear statistics and machine learning techniques
were shown to be a powerful and robust tool in detecting the most influent independent
variables within large samples [11,27]. In fact, from a multivariate perspective, super-
vised non-linear statistical modeling technique like Exhaustive CHAID decision tree (i.e.,
Chi-squared Automatic Interaction Detector) can handle both nominal and numeric input
variables, it is capable of handling datasets that may have errors, outliers, and missing
values, and is considered to be a nonparametric method [28,29]. Moreover, its represen-
tation is easy to follow and it can be comprehensible by non-professional users [28,29].
On the other hand, it can be subject to overfitting and underfitting, particularly when
using a small data set and this effect could limit the robustness of the model. Finally,
strong correlation between different potential independent variables may improve the
model statistics even if they are not causally related to the dependent variable. Therefore,
projecting and interpreting DT models should consider these pros and cons [28,29], taking
into account that adding multiple contextual variables in a non-linear perspective could
enhance insight in performance analysis in rugby [30] and help coaches and coaching staff
to better identify opportunities and threats. In this study a rather complex DT was grown,
but it can be made simpler by following each variable of interest at a time.
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With respect to the variables within the DT, the margin of victory had the highest
impact on the classification (i.e., 2nd level of depth) and hence three clusters were built
(i.e., <6, 6-16, >16). Compared to previous studies [12,24] in rugby union, the cutoff values
in this study were lower. In fact, closed games were considered when differences in the
final score were less than a converted try (i.e., <7 points), compared to 9 [12] and to 15 or
11 [24]. In this situation the HA was significantly lower than in balanced and unbalanced
games, stressing the higher outcome uncertainty that was previously reported in rugby
union [12,24].

When differences between teams are minimal and the outcome uncertainty is high, like
in closed games, alterations in contextual variables can be substantial. In fact, contextual
differences caused by COVID-19 pandemic had a significant influence on the game outcome
exclusively in closed games. In particular, the crowd absence negatively influenced the HA,
reducing it from 58% to less than 50% (i.e., 49.3%). Although the crowd absence had an
effect even in balanced and unbalanced games, it resulted less important to the differences
between tournaments and to the first event of the game. The scenario induced by the
COVID-19 pandemic was detrimental for the HA in any case, even when it was secondary
to other variables (i.e., nodes 34, 35, 41, 42, 45, 46), and it altered HA progressively less in
closed, balanced and unbalanced games, respectively (i.e., nodes 6, 7, 8).

Differences between tournaments emerged when describing HA in rugby union. In
fact, HA was always higher in Top14 compared to other tournaments, providing higher
chances of winning without distinction for closed, balanced, and unbalanced games. More-
over, for teams playing away in Top14 in balanced and unbalanced games, scoring first
does not represent a significant advantage compared to other tournaments (nodes 26, 29),
like in Mitre 10 Cup where scoring first in balanced games nullifies HA (node 28). On
the contrary, teams playing home in unbalanced games in Top14, as well as in Pro14,
maintained HA even when they received a penalty card or they made a substitution at the
very start of the game (i.e., 59.4%), unlike it happened for other tournaments (i.e., 31% in
Premiership, Mitre 10 Cup, and Currie Cup). In the Pre-COVIDperiod, HA in Top14 was
less affected by negative contextual variables (i.e., penalty cards or early substitutions),
especially in unbalanced games (i.e., node 39). Based on several key performance indicators,
it was suggested that playing style in Top14 is characterized by very few opportunities to
spread the ball wide and to play a fast-paced game [31]. In addition, French Top14 is one
of the oldest and more successful championship in the northern hemisphere in terms of
attendance [32], as well as one of the highest paid rugby domestic league [33] attracting
many elite foreign players. These characteristics could have made Top14 more resilient in
terms of HA, less sensitive to negative contextual variables and more sensitive to positive
ones (i.e., scoring first).

In general, HA was also modulated by the first event of the game. In rugby league
scoring first was reported to increase chances of success [13] and this phenomenon would
be in line also with rugby union. Although it was not investigated in rugby union before,
in this study scoring first enhanced HA especially in balanced and unbalanced games, for
both teams playing away and at home (i.e., nodes 11, 13, 20). Conversely, negative events
like receiving a penalty card or making an early substitution reversed the HA for teams
playing home (i.e., node 21) and penalized even more teams playing away (i.e., nodes 12,
14). Even if success in rugby union is multifactorial phenomenon depending on technical
and tactical and time-motion events [12,34], the first event of the game should be take into
account for estimating the outcome of the game.

5. Conclusions

COVID-19 pandemic situation stressed the importance of the crowd support in rugby
union elite competitions. HA was influenced by the absence of the crowd support, al-
though it should be considered as a multifactorial phenomenon depending on several
variables. Considering the margin of victory, closed games are more sensitive to contextual
variables in altering HA with respect to balanced and unbalanced games. Differences in HA
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depend on the tournament also, notably in the Top14 where playing home adds significant
advantage to winning games compared with all the other tournaments. In their turn, all
the above-mentioned changes in HA are sensitive to the first technical and tactical event
of the game. Similar to rugby league, scoring first increases HA while receiving a penalty
card decreases it in rugby union also, especially in balanced and unbalanced games.

This study is in line with others that investigated performance analysis by means
of the decision tree classification method, albeit no cut-off is set for the classification
validity [21,35]. Moreover, because of the advantages of the non-linear statistics (i.e., such
as decision trees) in terms of ability to cope with errors, outliers, and missing values within
databases, and ease of understanding by non-professional users, they should be preferred
when describing multidimensional complex scenarios in performance analysis. Finally,
further investigation on the characteristics of the tournaments (e.g., physical status, relative
age effect, presence of top players) should be undertaken to better explain HA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182312711/s1, Figure S1: Home balanced games, Figure 52: Home unbalanced games,
Figure S3: Away balanced games, Figure S4: Away unbalanced games, Table S1. EXHAUSTIVE
CHAID decision tree table.
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