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Abstract: Ensuring food security and curbing agricultural carbon emissions are both global policy
goals. The evaluation of the relationship between grain production and agricultural carbon emissions
is important for carbon emission reduction policymaking. This paper took Heilongjiang province,
the largest grain-producing province in China, as a case study, estimated its grain production-
induced carbon emissions, and examined the nexus between grain production and agricultural
carbon emissions from 2000 to 2018, using decoupling and decomposition analyses. The results of
decoupling analysis showed that weak decoupling occurred for half of the study period; however,
the decoupling state and coupling state occurred alternately, and there was no definite evolving path
from coupling to decoupling. Using the log mean Divisia index (LMDI) method, we decomposed
the changes in agricultural carbon emissions into four factors: agricultural economy, agricultural
carbon emission intensity, agricultural structure, and agricultural labor force effects. The results
showed that the agricultural economic effect was the most significant driving factor for increasing
agricultural carbon emissions, while the agricultural carbon emission intensity effect played a key
inhibiting role. Further integrating decoupling analysis with decomposition analysis, we found that
a low-carbon grain production mode began to take shape in Heilongjiang province after 2008, and
the existing environmental policies had strong timeliness and weak persistence, probably due to the
lack of long-term incentives for farmers. Finally, we suggested that formulating environmental policy
should encourage farmers to adopt environmentally friendly production modes and technologies
through taxation, subsidies, and other economic means to achieve low-carbon agricultural goals
in China.

Keywords: grain production; agricultural carbon emissions; decoupling; LMDI

1. Introduction

Global climate change is a key issue concerning the sustainable political, economic,
social, and ecological development of governments. Greenhouse gas emissions (GHG) are
an important influencing factor of global warming [1]. According to the UN Food and
Agriculture Organization, agricultural carbon emissions accounted for 20% of global GHG
emissions (in CO2 equivalents) in 2017, including emissions from livestock production
and changes in land use patterns caused by the expansion of farming [2]. According to
the Paris Agreement signed in 2016, a target of zero net carbon emissions and no more
than 1.5 ◦C of warming by 2050 will be achieved. The total global use of chemical fertilizer
has increased by nearly four times in the past 50 years, and large-scale carbon emissions
caused by the increase in fossil energy consumption in agriculture are a key factor [3–6].
It is expected that the global population will increase by 50% by 2050, and global food
demand will increase by 60–110% [7]. If traditional agricultural activity remains at current
levels, the use of nitrogen and phosphorus fertilizer will increase by about 2.7–3.4 times,
and nitrogen fertilizer use alone will lead to an annual equivalent emission of 3 billion
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tons of CO2 [8]. If drastic mitigation measures cannot be implemented, agricultural GHG
emissions are predicted to increase by 30% by 2050, which would deteriorate the global
eco-environment [9].

In view of the relationship between economy and environment, the OECD borrowed
the concept of decoupling to analyze a national/regional relationship between economic
growth and environmental pressure, and offered an indicator for measuring the decou-
pling degree, whose diagnosis is often affected by its base selection [10]. To avoid this
phenomenon, Tapio constructed a decoupling index based on an elastic coefficient to reflect
the sensitivity of pollutant changes to economic growth [11]. Both decoupling indexes
are widely used to examine the nexus between economic growth and pollution emis-
sions [12–15]. Currently, decoupling environmental “bads” from economic “goods” has
garnered great popular support, and an increasing number of countries are adopting the
idea of decoupling into policy goals [16].

Generally, low-carbon agriculture refers to a new mode of modern agricultural pro-
duction, in which agricultural output grows steadily accompanied by low agricultural
chemical inputs and low carbon emissions, by means of strengthening technology, pol-
icy, and management [17–19]. It has been widely accepted that environmentally friendly
agricultural growth is a correct approach to achieving the goal of a green economy, and
reduction in agricultural carbon emissions is conducive to improving human well-being.
However, many empirical studies indicate that agricultural economic growth and agri-
cultural carbon emissions mostly have the same increasing direction in practice [20–24].
For example, regarding studies dealing with agricultural carbon emissions in China, Tian
et al. [25] used Tapio’s decoupling index to test the nexus between grain production and
agricultural carbon emissions from 2000 to 2010, and found that strong and weak decou-
pling states were common from a national perspective, while other relevant conclusions
from a provincial perspective varied with region [26,27]. In fact, a phase-based decoupling
state at the national scale shows a mean level, and major agricultural provinces often
have more contributions to agricultural carbon emissions, whose decoupling/coupling
states directly affect the country’s low-carbon agricultural development. Additionally,
decoupling analysis can judge the change in the economy–environment relationship, but
cannot explain reasons for changes in detail.

Decomposition analysis is frequently used for more targeted suggestions in pol-
icy terms, and the log mean Divisia index (LMDI) is widely accepted as a decomposi-
tion method, due to its advantages of complete decomposition and consistent aggrega-
tion [28–32]. Many scholars have used the LMDI method to decompose changes in agricul-
tural carbon emissions, according to dividing the total changes in carbon emissions into
multi-dimensional influencing factors [33–36]. In China, some scholars have decomposed
agricultural carbon emissions into factors of production structure, efficiency, labor force,
and agricultural economy, as well as other factors, and discovered the key factors that drive
or inhibit agricultural carbon emissions [37–39]. Li et al. [40] decomposed the agricultural
carbon emissions in Northeast China into carbon emission intensity, agricultural income,
employment structure, and rural population, and found that agricultural carbon emissions
in Heilongjiang province increased fastest during 1996–2013, and agricultural economic
growth was the key driving factor of agricultural carbon emissions, while agricultural pro-
duction efficiency was the main factor inhibiting agricultural carbon emissions. Although
results of decomposition analysis change with different influencing factors, the common
outcome points to agricultural economic growth, which often drives the increase in agricul-
tural carbon emissions, while the inhibiting factors of agricultural carbon emissions vary
with the indicator selection, more closely related to agricultural chemical use. Besides, it
is effective for us to find the key factors based on decomposition analysis, so as to adopt
targeted carbon emission reduction measures.

China’s grain output has increased for 18 consecutive years in the 21st century, and
remarkable achievements often come at the cost of agricultural resources and the envi-
ronment. China’s agriculture is facing challenges of sustainable development, consumer
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demand change, and globalization; hard constraints include a decrease in high-quality
cultivated land, and an increase in aging labor and part-time farmers, which changed the
application pattern of chemical fertilizer from small amounts repeated many times to large
amounts repeated fewer times [28,41,42]. Current research shows that the contribution of
chemical usage on grain yield in China was more than 40%, especially chemical fertilizer,
which plays an irreplaceable role in promoting agricultural production in China; it is even
called the “food” of grain [43]. However, the amount of chemical fertilizer application
has increased more than three times over the past 40 years, which caused about 30% of
agricultural carbon emissions, and the long-term stable relationship between nitrogen and
agricultural carbon emissions was more significant [44,45], especially as agricultural carbon
emissions continued to grow at an average annual growth rate of 5% recently [29,30]. In this
regard, green agricultural development will be the focus of China’s agricultural growth in
the future [46]. Since the beginning of the 21st century, the Chinese government has issued
a series of agricultural policies to encourage farmers to grow grain, and continuous bumper
harvests have demonstrated the effectiveness of these policies. During this period, some
environmental policies have been issued to protect the eco-environment; however, empir-
ical studies on the effects of environmental policy in practice, especially in agricultural
provinces, are insufficient. This paper takes Heilongjiang province as an example, diag-
noses its status of grain production-induced carbon emissions, and provides suggestions
for low-carbon agriculture on the basis of decoupling and decomposition analyses.

2. Materials and Methods
2.1. Study Area

Heilongjiang province is the largest agricultural province in China. The main grain
crops in Heilongjiang province include corn, rice, and soybean; its agricultural mechaniza-
tion level is above 98%, and its proportion of commodity grain is about 75% [31]. It is also
the largest green agricultural production base in China, and its green agricultural products
enjoy a national reputation. However, throughout the process of rural transformation since
2000, the hollowing out of villages is serious, and the shortage of a young and middle-aged
labor force intensifies the use of chemical fertilizer and pesticide. According to statistics
data from the Heilongjiang Province Statistical Yearbook (2001–2019), during the period
2000–2018, along with the years of bumper harvests in grain production (except in 2003
when farmers’ willingness to plant reached a new low), the area of cultivated land in
Heilongjiang province increased from 11.8 million hectares to 15.8 million hectares, and the
value added in agriculture increased from 414.4 hundred million yuan to 1463.7 hundred
million yuan, more than a threefold increase. Meanwhile, the use of chemical fertilizer
increased from 121.6 × 104 tons to 245.6 × 104 tons, and the amount of chemical fertilizer
per unit area increased from 103.3 kg/hectare to 154.9 kg/hectare; the amount of pesticide
used increased from 2.9 × 104 tons to 7.5 × 104 tons, an increase of 4.6 × 104 tons over
nearly 20 years. In terms of agricultural labor force, the number of agricultural labor force
decreased from 744.1 × 104 persons in 2000 to 609.3 × 104 persons in 2018, while the aging
rate of the agricultural labor force increased from 4.9% to 12.4% for the same period. All the
above data show the changes in agricultural production factors in Heilongjiang province.

2.2. Agricultural Carbon Emissions Calculation

Following the IPCC [47] and domestic calculation methods of agricultural carbon
emissions, we calculated agricultural carbon emissions and converted them into CO2
equivalents (CE) as Equation (1), using data from the China Rural Statistical Yearbook
(2001–2019) and the Heilongjiang Statistical Yearbook (2001–2019), and adopting carbon
emission coefficients from the localized research results [32,48–50] (Table 1).

Equation (1) is expressed as follows:

C = ∑i=7
i=1 Ti × fi (1)
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where C denotes grain production-based carbon emissions (CO2 equivalents, unit: tons); i
includes 7 kinds of agricultural carbon sources: chemical fertilizer, pesticide, plastic film,
electricity for irrigation, diesel for machinery, tillage, and CH4 emission from paddy field;
Ti represents the use of agricultural carbon source; i; fi is the carbon emission coefficient of
i kind agricultural carbon sources.

Table 1 shows the carbon emission coefficients of each carbon source factor.

Table 1. Carbon emission coefficients.

Carbon Sources Emission Factor Reference

Fertilizer 1.53 kg CE/kg (N fertilizer);
1.63 kg CE/kg (P fertilizer);
0.66 kg CE/kg (K fertilizer)

[32]

Pesticide 0.20 kg CE/kg (Herbicide);
16.60 kg CE/kg (Insecticide)

[32]

Plastic film 22.7 kg CE/kg [32]
Electricity for irrigation 1.23 kg CE/kWh−1 [48]
Diesel for machinery
Tillage

0.89 kg CE/kg
312.6 kg CE/km2

[32]
[49]

CH4 emissions from paddy field 66.2 kg CH4/hm2 [50]

Based on Equation (1), two indicators, that is, agricultural carbon emission intensity
(CCI) and agricultural carbon density (CCD), are introduced.

Agricultural carbon emission intensity (CCI), also called the agricultural production
efficiency [38,51], is presented in Equation (2):

CCI =
C
G

(2)

where CCI denotes carbon emissions per unit of value added in grain production (unit:
tons/10,000 yuan), C is grain production-based carbon emissions (CO2 equivalents, unit:
tons), and G is the value added in grain production (unit: 100 million yuan).

Agricultural carbon density (CCD) is calculated according to Equation (3):

CCD =
C
A

(3)

where CCD denotes agricultural carbon emissions per unit of sown area (unit: tons/hectare),
C is grain production-based carbon emissions (CO2 equivalents, unit: tons), and A is sown
area (unit: hectare).

Data for CCI and CCD calculation were obtained from the China Rural Statistical
Yearbook (2001–2019) and the Heilongjiang Statistical Yearbook (2001–2019).

2.3. Decoupling Index

Following Tapio’s decoupling elasticity coefficient [11], we define the decoupling
index (DI) as Equation (4):

DIt =
∆C
∆G

=
Ct/Ct−1 − 1
Gt/Gt−1 − 1

(4)

where DIt indicates the change in one unit of CO2 equivalents (C) with respect to G (value
added in grain production) during base period t − 1 and last time t. Ct−1 and Ct represent
agricultural carbon emissions at base time t − 1 and last phase t, respectively, and ∆C
represents the change rate of agricultural carbon emissions between last phase t and base
time t − 1. Gt−1 and Gt indicate the value added in grain production in base time t − 1
and last phase t, respectively, and ∆G represents the growth rate of value added in grain
production from last phase t to base time t − 1. Data for calculating Ct, Ct−1, Gt, and Gt−1
are from the China Rural Statistical Yearbook (2001–2019) and the Heilongjiang Statistical
Yearbook (2001–2019), and carbon emission coefficients appear in Table 1.
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The relationship between grain production and agricultural carbon emissions is di-
vided into six decoupling states on the basis of Equation (4): strong decoupling, strong
coupling, weak decoupling, weak coupling, recessive decoupling, and expansive coupling
(Table 2).

Table 2. Degrees of decoupling states.

Decoupling States Relationship between Agricultural Carbon Emissions
and Grain Production

Weak coupling ∆C < 0, ∆G < 0, 0 < DI < 1
Strong coupling ∆C > 0, ∆G < 0, DI < 0
Expansive coupling ∆C > 0, ∆G > 0, DI > 1
Recessive decoupling ∆C < 0, ∆G < 0, DI > 1
Weak decoupling ∆C > 0, ∆G > 0, 0 < DI < 1
Strong decoupling ∆C ≤ 0, ∆G > 0, DI ≤ 0

As shown in Table 2, strong decoupling means that the increase in agricultural carbon
emissions becomes zero or negative as the value added in grain production increases; in
other words, ∆C ≤ 0 and ∆G > 0, which indicates that grain production has broken away
from the mode of high yield with high inputs and emissions. Strong coupling means a
positive rate of change in agricultural carbon emissions (∆C > 0), but a negative rate of
change in value added in grain production (∆G < 0). Weak decoupling means a state with
positive change rates in both value added in grain production and agricultural carbon
emissions, namely, ∆C > 0 and ∆G > 0, and DI ranges from 0 to 1. Weak coupling means
that the rate of decline in agricultural carbon emissions is slower than the rate of decline in
agricultural economy for the same period, namely, ∆C < 0 and ∆G < 0, and DI ranges from
0 to 1. Recessive decoupling means that agricultural carbon emissions decline faster than
the value added in grain production declines for the same period (∆C < 0 and ∆G < 0, and
DI > 1), and expansive coupling means that value added in grain production rises at the
cost of the increase in agricultural carbon emissions (∆C > 0 and ∆G > 0, and DI > 1).

2.4. Log Mean Divisia Index (LMDI) Model

According to Ang [33], the LMDI method consists of multiplicative factor decomposi-
tion and additive factor decomposition, and the two can be transformed into each other.
The LMDI multiplicative factor decomposition in this paper is expressed as Equation (5).
The change in agricultural carbon emissions from basic period t − 1 to last period t can be
decomposed into four factors: agricultural economy (CAE), agricultural carbon emission
intensity (CCI), agricultural structure (CSI), and agricultural labor force (CAL).

C =
C
G

× G
TG

× TG
AL

× AL = CCI × CSI × CAE × CAL (5)

where

C: grain production-based carbon emissions (CO2 equivalents, unit: tons), calculated
according to Equation (1) and carbon emission coefficients from Table 1;
G: value added in grain production (unit: 100 million yuan);
TG: total output value of agriculture (unit: 100 million yuan);
AL: scale of agricultural labor force (unit: 10,000 persons);
CAE: agricultural economic level, calculated by total output value of agriculture per unit of
agricultural labor force (unit: yuan per capita);
CCI: agricultural carbon emission intensity, calculated by agricultural carbon emissions per
unit of value added in grain production (unit: tons/10,000 yuan);
CSI: agricultural structure, value added in grain production divided by total output value
of agriculture (unit: %);
CAL: scale of agricultural labor force, here, CAL = AL (unit: 10,000 persons).
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All above data were obtained from the China Rural Statistical Yearbook (2001–2019)
and the Heilongjiang Statistical Yearbook (2001–2019).

Similarly, the structural formula for the LMDI additive factor decomposition analysis
is expressed in Equation (6), and Equation (6) is numerically equal to Equation (5).

∆C = Ct − Ct−1 = ∆CCI + ∆CSI + ∆CAE + ∆CAL

∆CCI = ∑ Ct−Ct−1
LnCt−LnCt−1

·Ln ( CCI t
CCI t−1

)

∆CSI = ∑ Ct−Ct−1
LnCt−LnCt−1

·Ln ( ∆CSI t
∆CSIt−1

)

∆ CAE = ∑ Ct−Ct−1
LnCt−LnCt−1

·Ln ( ∆CAEt
∆CAEt−1

)

∆CAL = ∑ Ct−Ct−1
LnCt−LnCt−1

·Ln ( ∆CALt
∆CALt−1

)

(6)

Here, the change in agricultural carbon emissions from base period t − 1 to last period
t was also decomposed into four factors: 1© agricultural economic effect (∆CAE), which
reflects the change in the total output value of agriculture per unit of agricultural labor force;
2© agricultural carbon emission intensity effect (∆CCI), which indicates a comparison of the

change in agricultural carbon emissions with the change in value added in grain production
year by year. For example, if ∆CCI > 0, agricultural carbon emissions per unit of value
added in grain production increase one year later, which offers a sign of environmental
degradation; otherwise, if ∆CCI < 0, agricultural carbon emissions per unit of value added
in grain production decrease one year later, which indicates environmental improvement
owing to policy incentives and agricultural scientific and technological progress. Thus,
∆CCI < 0 is a sign of a low-carbon production mode; 3© agricultural structure effect (∆CSI),
which reflects the annual change in the share of the value added in grain production in the
total output value of agriculture; 4© agricultural labor force effect (∆CAL), which reflects
the change in the scale of agricultural labor force within a year.

2.5. Data Sources and Data Processing

All data for calculating agricultural carbon emissions, decoupling analysis, and de-
composition analysis were obtained from the China Rural Statistical Yearbook (2001–2019)
and the Heilongjiang Statistical Yearbook (2001–2019). We took 2000 as the base period,
excluded the impact of price processing according to the current year consumer price index,
and obtained all the actual value added in grain and total output value of agriculture.

Table 3 reports the descriptive statistical analysis of variables. There are four indicators
whose statistical data change greatly, including agricultural carbon emissions (C), value
added in agriculture (G), total output value of agriculture (TG), and agricultural economic
level (CAE). Other indicators’ statistical data are relatively stable, including agricultural
carbon emission intensity (CCI), agricultural structure (CSI), and AL and CAL for agricultural
labor force.

Table 3. Descriptive statistical analysis of variables.

Variable Unit N Mean Min Max Standard
Deviation

C 10,000 tons 19 982.28 678.99 1633.97 319.86
G 100 million yuan 19 867.40 414.40 1463.70 349.42
TG 100 million yuan 19 1303.92 625.10 2076.74 472.88
AL 10,000 persons 19 702 609 781 57
CAE yuan per capita 19 19,114.86 8400.75 34,086.75 8282.29
CCI tons/10,000 yuan 19 1.20 0.92 1.72 0.25
CSI % 19 0.66 0.61 0.70 0.03
CAL 10,000 persons 19 702 609 781 57

Before decoupling analysis, we took the value added in agriculture as the independent
variable and the agricultural carbon emissions as the dependent variable, and obtained the
best-fit linear equation relating these two variables (Table 4). Seen from the significance of
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the coefficient and R-squared, the fitting effect of the equation is good, and the relevant
statistics also support the results of the regression.

Table 4. Estimated results of the regression model.

Variable Coefficient Std. Error t-Statistic Prob

Constant 2.49 0.49 5.11 0.00
lnG 0.65 0.07 8.94 0.00

Statistic Value

R-squared 0.82
Adjusted R-squared 0.81
S.E. of regression 0.13
Sum squared resid 0.29
Log likelihood 12.90
F-statistic 79.94
Prob (F-statistic) 0.00
Mean dependent var 6.84
S.D. dependent var 0.30
Akaike into criterion −1.15
Schwarz criterion −1.05
Hannan–Quinn criterion −1.13
Durbin–Watson stat 0.52

3. Results
3.1. Estimation of Agricultural Carbon Emissions

According to Equation (1), we estimated agricultural carbon emissions in Heilongjiang
province during 2000–2018 (Figure 1). Agricultural carbon emissions rose from 7.1 million
tons in 2000 to 16.3 million tons in 2018, including declines in agricultural carbon emissions
in 2002 and 2008; agricultural carbon emissions continued to rise from 2009 to 2018. In the
early stages of 2000–2008, the growth rates of agricultural carbon emissions were generally
lower, and a negative growth rate occurred in 2002, 2005, and 2008; during 2009–2018, the
growth rates of agricultural carbon emissions retained positive values and low volatility
until recently. The policy of building a resource-conserving and environmentally friendly
society was put forward in 2012, and growth rates of agricultural carbon emissions fell
sharply from 25% to 4% in the following period. However, the rising trend of agricultural
carbon emissions did not change during 2012–2018.

Figure 2 presents agricultural carbon emission intensity and agricultural carbon emis-
sion density in Heilongjiang province during 2000–2018. As can be seen from Figure 2,
on the whole, agricultural carbon emission intensity presented a fluctuating downward
trend, declining from 1.72 tons/10,000 yuan in 2000 to 1.12 tons/10,000 yuan in 2018,
including a low (0.92 tons/10,000 yuan) in 2008 and subsequently fluctuating around the
mean 1.0 tons/10,000 yuan over the most recent decade. Agricultural carbon emission
density, however, presented a fluctuating upward trend, increasing from 0.6 tons/hectare
in 2000 to 1.0 t/hectare in 2018, including early low points (such as 0.58 t/hectare in 2002
and 0.59 t/hectare in 2008). Another low point of 0.78 tons/hectare occurred in 2014 due to
an increase in arable land.

The year 2008 can be regarded as a watershed. After 2008, agricultural carbon emission
intensity remained at low volatility, which indicates that a low-carbon grain production
mode begun to take shape in Heilongjiang province. “Action Plan for Zero Growth of
Chemical Fertilizer Use by 2020” was issued in 2015, and agricultural carbon emission
intensity declined accordingly. However, there was a quick rebound in the following
two years, and it fell again after intensive environmental policies were issued in 2017,
including several red lines defined for ecological protection, stricter national environmental
protection standards, and the implementation of regulations of Environmental Protection
Tax Law (draft). However, the similar environmental policy effect did not happen for
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agricultural carbon emission density, and agricultural carbon emission density increased
during 2009–2018.
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Based on the above estimated results of the regression (Table 4), the change char-
acteristics of both grain production and agricultural carbon emissions in Heilongjiang
province during 2000–2018 were further fitted as a scatter diagram (Figure 3). However,
Figure 3 does not show the inner relationship between agricultural carbon emissions and
agricultural economic growth. As we needed to measure the extent to which agricultural
carbon emissions could decouple from grain production, decoupling analysis was essential.
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3.2. Results of Decoupling Analysis

On the basis of Equation (4) and Table 2, the annual results of decoupling analysis are
shown in Table 5 and Figure 4. Four decoupling states occurred in Heilongjiang province
during 2000–2018: strong decoupling (for 3 years: 2002, 2005, and 2008), weak decoupling
(for 9 years), expansive coupling (for 5 years), and strong coupling (for 1 year).

Table 5. Decoupling states in Heilongjiang province (2000–2018).

Year ∆C (%) ∆G (%) DI Decoupling States

2000–2001 0.044 0.065 0.682 Weak decoupling
2001–2002 −0.085 0.075 −1.138 Strong decoupling
2002–2003 0.070 −0.035 −1.998 Strong coupling
2003–2004 0.072 0.227 0.317 Weak decoupling
2004–2005 −0.065 0.090 −0.727 Strong decoupling
2005–2006 0.051 0.065 0.784 Weak decoupling
2006–2007 0.059 0.033 1.775 Expansive coupling
2007–2008 −0.140 0.127 −1.102 Strong decoupling
2008–2009 0.155 0.051 3.033 Expansive coupling
2009–2010 0.025 0.089 0.282 Weak decoupling
2010–2011 0.085 0.100 0.850 Weak decoupling
2011–2012 0.239 0.075 3.206 Expansive coupling
2012–2013 0.069 0.075 0.912 Weak decoupling
2013–2014 0.048 0.077 0.631 Weak decoupling
2014–2015 0.056 0.073 0.775 Weak decoupling
2015–2016 0.098 0.054 1.795 Expansive coupling
2016–2017 0.095 0.041 2.355 Expansive coupling
2017–2018 0.035 0.045 0.781 Weak decoupling

According to Table 5, the sum of strong decoupling and weak decoupling states
amounted to 12 years during the study period, and weak decoupling occurred the most
(half of the study period), which overall was a better indication of the relationship between
grain production and agricultural carbon emissions. Table 5 shows that the change rates
in agricultural growth almost always had a rising tendency, except in 2003 when change
in the value added in grain production fell to −3.5%, due to farmers being less willing to
grow a small amount of grain, while the change rate in agricultural carbon emissions was
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a positive value (∆C was 7% for the same period). As a result, this was the only strong
coupling state that occurred, and a series of policies supporting agriculture and farmers
have been issued since 2004. Under the influence of an environmental policy issued in 2012,
weak decoupling state, strong decoupling state, and expansive coupling state alternately
appeared for the rest of the study period.
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Figure 4 indicates that the decoupling index (DI) frequently fluctuated, and four
kinds of decoupling or coupling states appeared irregularly. Even after the environmental
policy issued in 2012, this situation did not improve, for example, weak decoupling states
happened continuously in 2013, 2014, and 2015, followed by expansive coupling states
in 2016 and 2017. A weak decoupling state occurred in 2018, but we could not guarantee
that a weak or strong decoupling would happen next. Heilongjiang province still faces
opportunities and pressure for low-carbon agricultural development.

Table 5 and Figure 4 show the temporal change characteristics of the relationship
between grain production and agricultural carbon emissions in Heilongjiang province
during 2000–2018. The details of this that actually drive the decoupling state have not been
established; therefore, further decomposition analysis of influencing factors is essential
for more instructive suggestions and to achieve the goal of decoupling in Heilongjiang
province.

3.3. Results of LMDI Decomposition

On the basis of Equations (5) and (6), the decomposition results of agricultural carbon
emissions in Heilongjiang province during 2000–2018 are shown in Table 6 and Figure 5.
Using the LMDI method, annual increases in the total agricultural carbon emissions (∆C)
were a common phenomenon during the study period, except for three important time
nodes: 2002, 2005, and 2008, consistent with the time when a strong decoupling state
occurred in Section 3.2.



Int. J. Environ. Res. Public Health 2022, 19, 198 11 of 16

Table 6. Decomposition of agricultural carbon emissions in Heilongjiang province during 2000–2018
(104 t).

Year ∆CcI ∆CsI ∆CAE ∆CAL ∆C

2000–2001 −14.26 −0.73 47.31 −0.83 30.76
2001–2002 −114.70 −4.07 52.07 3.36 −63.46
2002–2003 72.51 −45.79 −25.03 45.79 47.49
2003–2004 −101.56 21.14 162.74 −29.97 52.35
2004–2005 −115.84 −8.25 83.23 −10.09 −50.95
2005–2006 −9.93 0.70 53.94 −7.64 37.07
2006–2007 19.43 −17.66 −46.80 90.26 45.23
2007–2008 −203.57 15.17 72.28 2.56 −113.56
2008–2009 70.60 −8.49 41.02 4.81 107.94
2009–2010 −49.23 18.42 57.33 −6.28 20.24
2010–2011 −11.76 25.83 171.20 −115.28 69.99
2011–2012 142.17 15.40 71.80 −15.41 213.96
2012–2013 −7.07 29.60 54.96 −1.14 76.35
2013–2014 −32.29 22.97 101.35 −34.69 57.34
2014–2015 −19.69 13.65 86.84 −10.63 70.17
2015–2016 55.32 −0.83 95.35 −21.59 128.25
2016–2017 77.57 −8.28 98.44 −30.25 137.48
2017–2018 −15.24 16.14 82.66 −27.93 55.63
2000–2018 −257.55 84.93 1260.72 −164.96 923.13
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As shown in Table 6 and Figure 5, agricultural economic effect (∆CAE) and agricultural
structure effect (∆CSI) were two factors that drove the increase in agricultural carbon
emissions overall during 2000–2018, and the agricultural economic effect (∆CAE) was more
important and exceeded the agricultural structure effect (∆CSI) by far, with contributions
of 12.61 and 0.85 million tons of agricultural carbon emissions, respectively. In detail,
∆CAE almost always presented a positive driving factor of an increase in agricultural
carbon emissions except in 2006–2007, which indicated that agricultural growth had strong
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momentum in agricultural carbon emissions in Heilongjiang province; it also revealed the
difficulty of inhibiting agricultural carbon emissions as the largest agricultural province
in China.

In terms of factors inhibiting agricultural carbon emissions, the agricultural carbon
emission intensity effect (∆CCI) and agricultural labor force effect (∆CAL) contributed –2.57
and –1.64 million tons of agricultural carbon emissions in reducing agricultural carbon
emissions, respectively. According to the change trend of the agricultural carbon emission
intensity effect, ∆CCI frequently varied, and its driving or inhibiting factor of agricultural
carbon emissions was not stable. Additionally, agricultural labor force (∆CAL) showed a
clear inhibiting effect from 2010. The combined effects of agricultural carbon emission
intensity (∆CCI) and agricultural labor force (∆CAL) were generally not enough to balance
the agricultural economic effect (∆CAE). Four decomposition factors varied in the quantity
and driving direction of agricultural carbon emissions during 2000–2018.

Below, we discuss the results of integrating decoupling analysis with decomposition
analysis.

First, strong decoupling states occurred in three years: 2002, 2005, and 2008. On the
one hand, the agricultural growth rate of the strong decoupling state was a positive value
(∆G > 0), while the change rate of agricultural carbon emissions was a negative value
(∆C < 0). On the other hand, the agricultural economic effect (∆CAE) was a positive value,
which drove the increase in agricultural carbon emissions, while the agricultural carbon
emission intensity effect (∆CCI) was a negative value, which inhibited agricultural carbon
emissions. Upon further analysis, we found that the inhibiting power of ∆CCI exceeded
the driving power of ∆CAE in agricultural carbon emissions in the same period, which
proved the key inhibiting role of the agricultural carbon emission intensity effect (∆CCI) in
neutralizing agricultural carbon emissions driven by the agricultural economic effect (∆CAE).
From a policy perspective, environmental policies issued in 2002, 2005, and 2008 indeed had
an effect on inhibiting agricultural carbon emissions. For example, the Clean Production
Promotion Law was drafted in 2002; the Kyoto Protocol signed by the Contracting Parties to
the United Nations Framework Convention on Climate Change officially came into force in
2005, China’s National Plan to Address Climate Change was introduced, and Xi Jinping first
put forward the idea that lucid waters and lush mountains are invaluable assets; the Clean
Production Promotion Law and the Circular Economy Promotion Law were promulgated
in 2008. Accordingly, agricultural carbon emission intensity played a prominent part in
inhibiting agricultural carbon emissions in these years and led to the occurrence of strong
decoupling.

Second, weak decoupling states happened mostly in Heilongjiang province during
the study period. Similar to the strong decoupling state, the agricultural growth rate was a
positive value (∆G > 0); and changes in agricultural carbon emissions were also positive
values (∆C > 0). Results of decomposition analysis showed that the agricultural economic
effect in each weak decoupling state was a positive value (∆CAE > 0), which drove the
increase in agricultural carbon emissions, while agricultural carbon emission intensity
effect was a negative value (∆CCI < 0), which inhibited agricultural carbon emissions
from increasing, similar to the strong decoupling state to some extent. However, unlike
the strong decoupling state, the driving power of ∆CAE was stronger than the inhibiting
power of CCI in agricultural carbon emissions in the same period, the inhibiting power
of agricultural carbon emission intensity effect is insufficient to contend with agricultural
economic effect, which results in weak decoupling. Additionally, both the agricultural
structure effect (∆CSI) and agricultural labor force (∆CAL) did not appear to have a stable
variation tendency.

Third, regarding expansive coupling states, the agricultural carbon emission intensity
effect was a stable driving factor of the increase in agricultural carbon emissions (∆CCI > 0),
while the agricultural economic effect appeared to be more of a driving factor of the increase
in agricultural carbon emissions (∆CAE > 0). The agricultural structure effect was largely
an inhibiting factor of agricultural carbon emissions (∆CSI < 0), and the agricultural labor
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force effect (∆CAL) did not display a clear driving or inhibiting effect on agricultural carbon
emissions.

Lastly, a strong coupling state occurred only once in 2003, due to lacking long-term
incentive policies of grain growing, which resulted in a negative agricultural economic
effect (∆CAE) and agricultural structure effect (∆CSI), with contributions of −25.03 × 10−4

and −45.79 × 10−4 tons of agricultural carbon emissions, respectively. The agricultural
carbon emission intensity effect (∆CCI) and agricultural labor force effect (∆CAL), however,
acted as driving factors of the increase in agricultural carbon emissions, with contributions
of 72.51 × 10−4 and 45.79 × 10−4 tons of agricultural carbon emissions, respectively. As a
result, agricultural growth fell and agricultural carbon emission intensity rose, causing the
worst result of strong coupling.

4. Discussion and Policy Suggestions

The goal of low-carbon agricultural development focuses both on the stability and
continuity of agricultural economic growth, and on the carrying capacity of agricultural
resources and the environment. Therefore, the effective intervention of agricultural envi-
ronmental policy, and the full participation of agricultural scientific and technical measures
are needed for low-carbon agriculture [26].

During the last 20 years, Heilongjiang province has achieved a better agricultural
economic growth effect, which fits the status of the largest agricultural province. From
the perspective of policy effect, agricultural policies have been successful in encouraging
farmers to grow grain since 2004; however, there is still much room for improvement
in environmental policy. As the largest green agricultural production base in China, the
low-carbon grain production mode has begun to take shape in Heilongjiang province
according to the change in agricultural carbon emissions intensity after 2008 and the results
of decoupling analysis. In fact, except in 2002, 2005, and 2008, when strong decoupling
states occurred, the Chinese government regularly issued environmental policies in the 21st
century. However, both coupling states following a decoupling state and decoupling state
alternating with coupling state indicated that environmental policy had strong timeliness
and weak persistence, probably mainly due to the lack of long-term incentives for farmers.

Seen from international experience, the agricultural policies of Europe, the United
States, Japan, and other countries keep agricultural environmental protection in focus.
At the same time, the formulation of environmental policy should pay close attention to
economic development, and encourage agricultural producers to take the initiative to adopt
environmentally friendly production modes and technologies through taxation, subsidies,
and other economic means. In practice, the current environmental policy in China pays
more attention to the environmental effect and ignores the economic effect on agricultural
development, and problems of low compensation standard and insufficient compensation
are common. The adoption of environmentally friendly technology itself poses a certain
risk, so insufficient incentive levels will lead to a lack of enthusiasm for the subject.

Considering the key inhibiting effect of agricultural carbon emission intensity based on
the above decomposition analysis, this paper provides the following suggestions from the
perspectives of agricultural scientific and technical measures, agricultural environmental
policy, and incentive measures for farmers.

(a). We will upgrade agricultural science and technology to promote agricultural carbon
emission reduction in grain production. Measures include: 1© adopting soil testing
formula fertilization, and improving the efficiency of agricultural chemical usage
and utilization, so as to reduce the problem of excessive application of chemical
fertilizer from carbon sources; 2© promoting diversified agricultural modernization
means, such as water and fertilizer integration, slow-release and long-acting fertilizers,
nitrification inhibitors, and other emission reduction technologies and new fertilizers;
3© strengthening the research and development of low-toxicity and low-pollution

agricultural chemical materials, such as the development of high-efficiency compound
fertilizers, low-toxicity pesticides, and low-cost degradable agricultural film.
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(b). We will integrate agricultural subsidy policy with environmental policy. Conver-
sational tillage mode and returning straw to the field have significant effects on
enhancing soil fertility, improving grain production efficiency, and increasing grain
yield, which also help to reduce the use of chemical fertilizer. We have seen the
Comprehensive Implementation Plan of Straw Utilization in Heilongjiang Province
issued in November 2021, which published detailed implementation rules for paying
incentives to farmers who return straw to the field. It will benefit all farmers to adopt
these new agricultural activities, under the incentive mechanism design.

(c). We will encourage new business entities, such as large growers, nongovernmental
service organizations, and leading enterprises, to widely apply green prevention and
control technologies. Agricultural technical training and precision skill training for
farmers should be strengthened. Additionally, establishing a strict quality and safety
supervision traceability system in society and a pricing mechanism, adopting an
appropriate incentive mechanism to compensate farmers, can directly or indirectly
inhibit the use of chemical fertilizer, pesticide, and other chemicals, all which help to
reduce agricultural carbon emissions.

5. Conclusions

In this paper, we adopted decoupling and decomposition analysis to examine the
relationship between grain production and agricultural carbon emissions in Heilongjiang
province during 2000–2018.

The results of decoupling analysis indicated that four decoupling states occurred:
weak decoupling, strong decoupling, expansive coupling, and strong coupling. Although
decoupling states, including strong and weak decoupling, appeared frequently, there was
no sign of a stable evolution path from coupling to decoupling, which highlights both
the pressure and challenges for Heilongjiang province as it develops towards low-carbon
agriculture.

Using the LMDI method, we decomposed the change in agricultural carbon emissions
into four factors: agricultural economic effect (CAE), agricultural carbon emission intensity
(CCI), agricultural structure effect (CSI), and agricultural labor force effect (CAL). The results
show that the agricultural economic effect (∆CAE) and agricultural structure effect (∆CSI)
were two factors generally driving the increase in agricultural carbon emissions during
2000–2018; the agricultural economic effect (∆CAE) was the most important driving factor.
The agricultural carbon emission intensity effect (∆CCI) and agricultural labor force effect
(∆CAL) were frequent factors inhibiting agricultural carbon emissions, and the agricultural
carbon emission intensity effect (∆CCI) was the key inhibiting factor.

Further integrating decoupling with decomposition analyses, we found that a low-
carbon grain production mode began to take shape in Heilongjiang province after 2008, and
the existing environmental policies had strong timeliness and weak persistence, probably
due to the lack of long-term incentives for farmers. Based on this, specific suggestions for
low-carbon agricultural development were provided.
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