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Abstract: For special populations with motor impairments, eye-controlled interaction may be the
only way for them to communicate with the outside world. Because of the dominance of vision in
the motor mechanism, eye-controlled interaction has high usability and important research value.
During eye-controlled interaction, the visual channel needs to receive information from the graphical
user interface (GUI) and transmit the user’s eye-controlled instructions, which overburdens the
visual channel and reduces the efficiency of eye-controlled interaction. This study presents an
ergonomic experiment to study how to design interactive GUI components in an eye-controlled user
interface. The experiments were conducted based on the shape, size, and distance (from the object
to the center of the screen) of the visual interactive components. The experiment comprised three
parts: (1) the pre-experiment determined the evaluation index and selected the icon material; (2) the
formal experiment was a three-factor within-subjects experiment, which included a search task using
participants’ peripheral vision; and (3) after the experiment, subjective evaluations were conducted
using a questionnaire. The results showed that the shape, size, and distance of the interactive object
significantly affected the reaction time, and the size factor significantly affected the movement time
of the eye-controlled interaction. Finally, combined with the results of the subjective evaluation,
we concluded that the recommended sizes of the interactive components were 2.889◦, 3.389◦, and
3.889◦, and the recommended distances were 5.966◦ and 8.609◦. Additionally, designers should
utilize components with simple concrete shapes as much as possible to improve user recognition
efficiency. Our study provides enlightening recommendations on how to design components in
eye-controlled interactive interfaces, and has great guiding significance for building design standards
of the eye-controlled systems.

Keywords: eye-controlled interaction; position; size; shape

1. Introduction

With the development of human-computer interaction technology and improvement
in the accuracy of eye tracking systems, the research on eye movement is changing from
‘passive’ to ‘active’. Eye-controlled interaction means that users can complete the interactive
behavior by moving only through their eyes and the computer. An eye tracker is usually
used to collect information from eyes. Other methods use a search coil [1] or are based
on electrooculography [2]. Corresponding to the three basic physiological movements
of gaze, saccade, and following, eye-controlled interactions can be divided into fixation,
eye gesture, and smooth pursuit [3,4]. The earliest eye-controlled interaction was mainly
used in some electronic communication devices in the 1970s [5,6]. Eye-controlled inter-
action was regarded as a feasible solution to replace the mouse and keyboard to control
a computer. It can enable special groups with movement disorders (especially patients
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with amyotrophic lateral sclerosis, ALS) to control the computer without touching it [7–9].
The most famous eye-controlled typing application, Dasher, can reach a typing speed of
up to 17 words per minute (wpm) [10]. Other eye-controlled typing applications such as
EyeWrite can reach 8 wpm [11], and these applications can greatly help people relying
on eye-controlled typing. At present, eye-controlled interaction has been applied in more
contexts, such as auxiliary manipulation tasks [12,13], improving game experience [14],
gaze-based painting [15], and designing authentication methods [16]. The eyes usually
reach the next object in the sequence before any sign of manipulative action, which indicates
eye movements are planned in the motor pattern and lead each action [17]. Therefore,
compared to other interaction methods in human–computer interaction (e.g., hand gesture
and intelligent speech interaction), eye movements can be a rapid, effective, and implicit
way to communicate. However, eye-controlled interaction also has unique problems.

A phenomenon called ‘Midas touch’ often occurs while interacting with eye move-
ments, which greatly reduces the usability of eye-controlled applications [18]. In the
existing literature, research methods for optimizing eye-controlled interaction are mainly
divided into two categories: (1) designing optimal eye-controlled interaction moves; and
(2) using graphical user interface (GUI) elements. Most previous studies are in the former
category, focusing on reorganizing and encoding basic eye-controlled actions or designing
new eye-controlled actions to increase the complexity of the interaction process [19–21].
However, an important problem exists when designing eye-controlled interactions. In
most eye-controlled applications, users need to communicate with computers for a long
time. Simple eye-controlled actions are beneficial for reducing the users’ memory cost
but are easily confused with natural eye-controlled actions. Furthermore, complex eye-
controlled actions create a certain memory burden for the users and increase their mental
load. Comparatively, using GUI elements in the process of eye-controlled interaction is a
more feasible method. However, there is a lack of research on designing GUI elements to
assist eye-controlled interactions.

This study aimed to explore the influence of GUI elements on the performance of
eye-controlled interaction through specific and quantified selection of task results, and to
provide inspiring suggestions for the design of eye-controlled interfaces in the future. To
this end, the following section introduces the process of eye-controlled interaction and GUI
elements, peripheral vision in eye control, visual variables in the eye-controlled interface,
and the research content of this paper.

1.1. The Process of Eye-Controlled Interaction and GUI Elements

GUI elements include windows, icons, menus, pointing devices (also called WIMPs),
or other visual representations. These elements play an auxiliary role in eye-controlled
interactive interfaces. Previous studies have shown that GUI elements in the interface
greatly impact the process of performing eye-controlled operations. Jenke found it necessary
to provide users with relevant visual information in the process of performing eye gesture
operations, and the visual interface elements they designed can have a significant guiding
effect on eye gesture interaction [22,23]. The number of visual objects on a computer
interface significantly impacts the efficiency with which users control their eyes [24]. In
terms of eye-controlled applications, many designers have designed novel eye-controlled
typing keyboards using WIMP elements to provide a better experience for users. For
example, the eye-controlled typing application EyeWrite has four trigger areas hidden in
four corners of the screen as pointing devices (pointers), and users can execute different
interactive commands by looking at pointers in different sequences [25]. The Eye-S is a
similar eye-based application with nine hidden rectangular trigger areas [11]. Urbina and
Huckauf designed a typing application called pEYEwrite based on pie-shaped menus that
can input letters by eye-controlled clicking on two pie-shaped menus respectively [26].
Similarly, the eye-controlled typing app designed by Bee and André uses a circular menu
in which the user performs two single gaze gestures to input a letter [27]. Other researchers
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have used auxiliary patterns composed of visual representations, such as points, lines, and
planes as feedforward to guide eye-controlled actions [28–30].

In the research and design of eye-controlled interactions aided by GUI elements, the
most important application approach is to design an eye-control browser. Eye-controlled
browsers, such as GazeTheWeb [31] and WeyeB [32], use GUI elements that effectively
guide users to perform eye gestures and contribute to improving interactive accuracy.
In addition, Menges designed an eye-controlled user interface framework, eyeGUI [33],
as shown in Figure 1. It supports users in using the daily browser in an eye-controlled
interactive manner.

Figure 1. An eye-controlled browser based on eyeGUI [33].

For example, when using an eye-controlled browser, the user first reads the content
from the interface and then conveys interactive instructions through eye movements. The
visual channel simultaneously receives information and transmits eye-controlled instruc-
tions. Visual fatigue and reduced efficiency of users performing eye-controlled interactions
is caused when inappropriate GUI elements are used in the interface. Therefore, in-depth
research must be conducted on how to design GUI elements for eye-controlled interactions.

1.2. Peripheral Vision in Eye-Controlled Interaction

When performing eye-controlled interaction with a GUI, the visual channel receives a
large amount of information, including content information from web pages and interactive
information from applications. Our visual processing ability is limited and selective when a
large amount of visual information is received. This selection mechanism is called selective
attention [34]. Selective attention enables users to focus on the useful information. Pre-
attention occurs before selective attention and these two stages occur sequentially [35,36].
Pre-attention is very important for completing interactive behavior through eye control.
For example, after reading the content for a period of time, people must first search for
interactive components through pre-attention and then trigger them through eye movement.
If the interface contains unreasonable interactive components (which are too small or too
large), redundant eye movements can easily lead to eye strain and fatigue.

Human vision involves two mechanisms: focal and peripheral vision. Information
obtained from attention and preattention is related to focal and peripheral vision, respec-
tively [37]. In focal vision, the field of view is small, but the image has high resolution,
which is the opposite in peripheral vision. High-resolution clear images from focal vision
are advantageous for recognizing objects, whereas low-resolution images from peripheral
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vision can provide suitable indications of eye movements [38]. Paillard and Amblard argue
that information in focal and peripheral vision is processed by two semi-independent
visual systems, each of which plays a specific role in goal-directed movement [39]. Fur-
ther research suggests that low spatial frequency (LSF) information in peripheral vision is
helpful for predicting the direction of subsequent movements [40] and is also beneficial
for processing high spatial frequency (HSF) information in focal vision [41]. This makes
the study of peripheral vision useful in some ergonomic studies, such as in the design of
head-mounted displays in aircrafts [42] and driving tasks [43]. However, there have been
no ergonomic studies related to peripheral vision and eye-controlled interactions.

In this study, we designed a visual search task that combines eye-controlled interac-
tions with peripheral vision. In the experiment, the participants had to use their peripheral
vision to search for objects. Based on visual search performance through peripheral vision,
this study aimed to gain insight into the design of useful eye-controlled GUI components.

1.3. Visual Variables in Eye-Controlled Interface

While using eye-controlled applications, users usually search for GUI components
first, and then trigger them. This process is affected by several factors from the interface.
Bertin defined position, size, shape, lightness, color, and texture as the six most important
factors, also called as ‘visual variables’ [44]. These factors are closely related to the visual
representation of an eye-controlled system. For example, color can significantly affect visual
search efficiency [45], but Weelden et al. argued that color and texture would lead to a
high cognitive processing load [46]. Therefore, we mainly studied shape, position, and size
from a cognitive perspective and eye-controlled interactive component design. GUI can
vividly convey metaphorical information and achieve a user-centered interactive experi-
ence [47,48]. Furthermore, shape factors play an important role in object perception [49,50]
and are considered one of the main tools for object classification [51,52]. After accepting
the visual information of the interface, the user first identifies the control by the form factor
and subsequently associates the corresponding function of the control. According to the
visual metaphor theory, one image can indicate another object by comparing images [53,54].
Metaphor classification of visual objects is closely related to shape factors [52]; therefore,
we focus on the impact of visual metaphors of component shapes on interaction processes.
Position and size represent the spatial characteristics of the interactive objects. The usability
of eye-controlled components depends on their spatial characteristics. For example, com-
pared to traditional browsers, eye-controlled browsers have larger interactive components
to adapt to low-precision eye tracking systems [55]. From the human–computer interaction
perspective, the spatial characteristics of GUI components have a significant impact on the
user’s operational performance. This can be explained by Fitts’ law, which was originally a
behavioral model for evaluating touch-and-click tasks [56], but Ware and Mikaelian found
that eye-tracking input also obeys the same law [57]. Therefore, this study focused on the
shape, position, and size of eye-controlled GUI components, among which the position
factor can be expressed in the form of polar coordinates (direction and distance).

1.4. The Research Content of This Paper

This study investigated the effects of shape, position, and size on the performance of
eye-controlled interaction through ergonomic experiments and drew conclusions about
eye-controlled interactive component design. We designed an experimental paradigm
to simulate visual-search tasks through eye-controlled interactions. The paradigm was
divided into two parts: visual search and eye-controlled triggering. To draw a conclusion
that is more aligned with the actual application situation of eye-controlled interaction,
the two processes relied on peripheral vision and theories related to Fitts’ law. In the
experiment, we chose some icons to simulate the visual search objects, taking the size,
position (the distance from the icon to the center of the screen), and shape of the icons as
independent variables. Additionally, we used the correct rate, reaction time (corresponding
to the visual-searching process), and movement time (corresponding to the eye-controlled-
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triggering process) as dependent variables. We designed a within-subjects experiment to
determine the influence of shape, position, and size of eye-controlled GUI components on
the visual search task and obtained the optimal value and ideal combination of each factor.

The eye-controlled search task was divided into two processes in the sequence of time:
visual-searching process (Stage 1) and eye-controlled-triggering process (Stage 2). We make
the following assumptions based on relevant research:

H1. In Stage 1, the focal vision is clear but the peripheral vision is blurred, which is not conducive
to the rapid identification of the target. It can be inferred that the size and distance of eye-controlled
GUI components will significantly impact the performance of the visual-searching process.

H2. In Stage 2, the predictive model of human movement used in ergonomics, i.e., Fitts’ Law,
argued that the size and distance to target in a selection task would affect the performance of the
act of pointing [58–60]. Like the pointing action in Fitts’ law, eye-controlled interaction also
accomplishes the task through a single channel. Therefore, it can be assumed that the size and
distance to components will significantly affect the eye-controlled-triggering process.

H3. In Stage 1, the shape factor mainly affects the classification task of visual objects [49,50,52].
Stage 2 is performed after Stage 1 occurs. Therefore, the shape of the interactive objects will not
significantly affect the eye-controlled-triggering process (Stage1).

2. Experiment Method
2.1. Pre-Experiment: Screening Icons Based on Shape Classification Criteria
2.1.1. Preparation

The pre-experiment aimed to screen the icons for the formal experiment and determine
the standard for the qualitative division of the shape variable of the icons. Combined with
the discussion on shape and visual metaphors in Section 1.3, we divided icons into two
types: concrete and abstract shapes. A concrete shape refers to an icon whose metaphorical
object is similar to the image description, whereas an abstract shape refers to an icon whose
metaphorical object is far from the image description. We selected 30 icons seen in daily life
as experimental materials, divided into 15 abstract and concrete shapes each, as shown in
Figure 2. All icons were flattened and processed using the Adobe Photoshop 2020 (Adobe
Inc., San Jose, CA, USA). The content of the icons was related to an interactive interface,
information communication, and transportation.

Figure 2. Icons used in the experiment.

2.1.2. Participants and Task Design

The pre-experiment included 14 participants (7 males and 7 females). Their ages
ranged from 21 to 24, with an average age of 21.86 and an age variance of 0.901. They were
all undergraduate or graduate students from School of Mechanical Engineering, Southeast
University. All participants were physically and psychologically healthy.

The method of screening for icons was closely related to human cognitive processing.
Snodgrass proposed four standardized indices related to memory and cognitive processing,
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namely, visual complexity, familiarity, image agreement, and name agreement [61], in
which image agreement is consistent with our division criteria for icon shape. To prevent
the other three variables from affecting the experiment, we used all four variables as indices
for evaluating icons.

The experiment was conducted using a 5-point Likert scale. The scale is shown in
Figure 3b. The participants rated each of the 30 icons according to the four indices. The four
evaluation indices of the scale are shown in Figure 3a, and their meanings are as follows:

• Visual complexity represents the simplicity or complexity of the visual features of the
icons. When there are many visual features, the amount of information received by
the observer will increase.

• Familiarity indicates whether people are familiar with the icons. The more often an
icon appears in daily life, the more familiar it is.

• Image agreement indicates how closely each icon resembles subjects’ mental image
of the object, which can also be defined as the consistency between icon and the
imagination. The icons with high consistency are concrete, whereas those with low
consistency are abstract.

• Name agreement indicates the consistency between the name of the icon and its actual
meaning. If the subjects can accurately understand the meaning of the icon after
recognizing its name, it indicates that the icon has a high name agreement.

Figure 3. (a) Experimental evaluation index: visual complexity, familiarity, image agreement, and
name agreement; (b) evaluation scale.

2.1.3. Results and Data Analysis

The descriptive statistics of the abstract and concrete icons are presented in Table 1.
The mean visual complexity scores of the abstract and concrete icons were approximately
2.0, and the mean familiarity and name agreement scores were similar. The mean value
of image agreement was 3.78 and 3.05 for concrete and abstract icons, respectively. This
means that the participants in the pre-experiment were more likely to produce physical
mapping after recognizing the concrete icons rather than abstract icons.

Based on the total rating of each icon, eight abstract icons and eight concrete icons
were selected for the final experiment. The selected concrete icons were: ‘Car’, ‘Voice’,
‘Delete’, ‘Tool’, ‘Movie’, ‘Plane’, ‘Snowflake’. The selected abstract icons were: ‘Mute’,
‘Chat’, ‘Time’, ‘Settings ‘, ‘Network’, ‘Play’, ‘Male’, ‘Female’.

ANOVA was conducted on the four standardized indices, and the results showed that
there was no significant difference between the visual complexity, familiarity, and name
agreement of the abstract and concrete icons (p > 0.05). There was a significant difference
between the image agreement of icons in the two groups (p < 0.05), indicating that the
three indexes other than image agreement had less influence on the perception of icons in
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this experiment, which also indicated that the grouping of icons in this experiment was
reasonable. After screening the icons as material through the pre-experiment, the formal
experiment used these screened icons for further research.

Table 1. The cognitive characteristics score of concrete-shape group and abstract-shape group.

Icons Visual Complexity Familiarity Image Agreement Name Agreement

Concrete-shape group
Mean 2.05 4.1 3.78 3.92

N 15 15 15 15
St. Deviation 0.41 0.55 0.5 0.59

Abstract-shape group
Mean 1.98 4.26 3.05 3.6

N 15 15 15 15
St. Deviation 0.26 0.41 0.42 0.38

2.2. Experiment

A total of 15 abstract and 15 concrete icons were selected in the pre-experiment,
which were used to simulate the eye-controlled GUI components in the experiment. The
experiment studied the effects of size, distance, and shape of the components on the
performance of the visual search task through peripheral vision.

2.2.1. Experiment Design

The experiment was a 2 × 3 × 5 within-subjects design. The independent variables
were the size, shape, and the distance to the to-be-selected icon. The dependent variables
were correct rate, reaction time, and movement time to measure the interactive performance
in the task. The specific variables and levels are shown below:

1. Independent variables:

• Icon shape: concrete shape and abstract shape.
• Icon distances (distance from the center of the interface to the center of the icon):

243 px (5.966◦), 351 px (8.609◦), 459 px (11.243◦).
• Icon sizes (expressed as the side length of the rectangular base): 80 px (1.889◦),

100 px (2.389◦), 120 px (2.889◦), 140 px (3.389◦), 160 px (3.889◦).

2. Dependent variable:

• Correct rate: The ratio of the number of correct trials to the total number of trials
for each combination of variable levels. The correct rate was used to measure
the likelihood of user errors when performing a visual search task in an eye-
controlled interface.

• Reaction time: The time taken by the participant from receiving the stimulus to
completion of the visual search task.

• Movement time: The time taken by the participant to perform the eye-controlled
triggering process on the search object.

There were 30 combinations of variable levels in the experiment (2 × 3 × 5 = 30),
and four replications of each variable combination were performed, resulting in 120 trials
(30 × 4 = 120). In each task, participants needed to complete saccades in different directions
to complete eye-controlled triggers, and studies have suggested that the movement time of
saccades is related to the direction [62]. To eliminate the effect of orientation on performance,
the experiment was set up with four replicate experiments with each combination of
independent variable levels. The four replicate experiments were identical, but the target
to be selected would appear in any direction (any of the eight orientations) to exclude the
effect of the direction of saccades. At the end of the experiment, the performance data of the
four repetitions were averaged to obtain the final data for the analysis. The statistical test
power of the experiment was calculated using G*power 3.1.9.7 (created by Franz Faul et al.,
Kiel, Germany [63]), where the total sample size was 20, the number of groups was 1, and
the number of measurements was 30 (2 × Shape + 3 × Distance + 5 × Size). The effect
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size was f = 0.25, α = 0.05, and the test efficacy (power, 1 − β) was 0.9999 (>0.8), so the
probability of committing a Type-II error was less than 0.01%.

The interface distribution of this experiment is shown in Figure 4. A circular distri-
bution interface was used, and the participants were required to perform visual search
experiments on this experimental interface. The center ring is marked as the starting
domain for the gaze, and the ending domain is set up with different icons, each with the
same distance to the center of the circle. The surrounding area was set with eight icons
to be selected, and the target randomly appeared at each of these eight positions with the
same probability. In addition, the text cues used in the experiments were the names of the
icons to be selected, and the cue font was Ariel, with a size of 33 px and a style of Normal.
The diameter of the central marker was 60 px.

Figure 4. Diagram of experimental interface distribution, distance factor and size factor.

2.2.2. Participants, Apparatus, and Experiment Environment

Twenty participants (10 men and 10 women) were invited to participate in this ex-
periment. The participants’ ages ranged from 22 to 26, with a mean age of 22.7 and an
age variance of 2.6. All the participants were undergraduate or graduate students from
Southeast University with good physical and mental health and no history of psychiatric
disorders. All the participants had corrected visual acuity ≥1.0 and no eye diseases.

Experiments were conducted using a Tobii Eye Tracker5 eye-tracking device with
Windows 10 (64-bit) RS3 or higher. The device has a sampling frequency of 133 Hz and
offers excellent responsiveness, accuracy, and reliability, enabling pilot tracking using the
latest smart sensor technology. The monitor used was a Dell SE2419H_HX model LCD
monitor, 24′, with an aspect ratio of 16:9, brightness of 250 cd/m2, original resolution of
1920 px × 1080 px, and a pixel pitch (actual distance between pixels) of 0.2745 mm. The
eye-tracking device was fixed in the lower center of the monitor and connected to the
laptop through the USB port, with the monitor placed 64 cm directly in front of the user’s
eyes. The experimental platform was built by importing the Tobii SDK installation package
via Unity 6.0 and compiling it in C#.

The experiments were conducted in a laboratory with an area of about 30 m2, with
natural light, good ventilation, and no noise interference. The experimental scenario is
shown in Figure 5.

2.2.3. Procedure

Preparation: First, the participants were asked to position themselves with 64 cm
between their eyes and screen. The icons were then shown to the participants to ensure
that they there was no ambiguity regarding the meaning of the icons. Because the Tobii
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eye-tracking device supports head movements, participants could move their head slightly
during the experiment. Next, a pre-experimental calibration was performed. After a 7-point
calibration with the Tobii Eye Tracker 5 (Stockholm, Sweden), a bubble pointer (also known
as ‘Tobii Ghost’) appeared on the screen with gaze point feedback. After confirming that the
participants gaze position and bubble pointer appeared in the same position, the calibration
was successful; otherwise, the calibration session was repeated. After calibration, the
experimental rules were explained to the participants, and the practice experiments began.
These experiments were consistent with the formal experimental procedure; however, there
were no data recording and no time limit.

Figure 5. Experimental scenario.

Single Trial: The experimental procedure was the same for each trial in the formal
experiment. This procedure is shown in Figure 6: (1) The name of the search target appeared
in the center of the screen and disappeared after 1.5 s. (2) An annular marker appeared
in the same position as the text. The participant needed to gaze at the annular marker
to trigger it; the marker would become yellow during the gaze, and become green after
1000 ms. (3) Along with the trigger, eight to-be-selected icons would appear around the
screen simultaneously. The participant was required to maintain their gaze and search
for the task through peripheral vision. While finding the search target through peripheral
vision, the participant was required to press the ‘Space’ button to indicate that the target
had been found. (4) After pressing the ‘Space’ key, the subject could move the gaze point to
the target icon to complete the eye-controlled-triggering process. (5) Finally, a blank screen
was presented for 1 s to eliminate any visual residual image. The experiment was divided
into four parts because of the fatigue that could be experienced by the participants. The
participants could take a break with no time limit after every 30 trials and was informed of
the overall progress of the experiment.

The three dependent variables of the experiment were reaction time, movement time,
and correct rate. As shown in Figure 6, in the experiment, the reaction time is the time
taken from the appearance of the icon until the participant presses the ‘Space’ key, which
corresponds to the visual-searching process of the participant. The movement time is the
time recorded from when the ‘Space’ key is pressed till completing the triggering, which
corresponds to the eye-controlled-triggering process. Correct rate is the ratio of the number
of correct selections to the total number of selections.

Eye movements are very fast, and humans usually look before the next action [64].
This subconscious habit would affect the experimental task; hence, the following protection
mechanism was set up in the experiment. While the participant gazed at the central annular
marker and searched for the target through peripheral vision, if the viewpoint moved
away from the annular marker, the surrounding to-be-selected icons would disappear



Int. J. Environ. Res. Public Health 2022, 19, 10737 10 of 22

immediately. The participant was required to look at the central annular marker again
to trigger it. The experimental trial was able to continue only when the visual search
was completed (by pressing ‘Space’). Through this mechanism, the participants could
complete the visual search task only through their peripheral vision, which guaranteed a
real simulation of eye-controlled interaction.

Figure 6. Flow chart of experiment.

2.2.4. Parameter Set

Trigger time: Participants were required to gaze at the central annular marker for a
certain amount of time; when the time spent gazing exceeded the time threshold, eight
to-be-selected icons appeared. Many researchers have studied the time threshold of gaze in-
teraction and found that the settings of gaze trigger time ranged from 200 to 1000 ms [65–67].
In this experiment, participants had to search for targets from the corners of their eyes.
Therefore, to allow participants to produce complete peripheral vision in time after com-
pleting the gaze action, 1000 ms was chosen as the trigger time threshold for the central
annular marker.

Icon size: Niu et al. studied the trigger accuracy and task completion time of visual
search tasks in an eye-controlled interface with a grid interface layout [68]. They proposed
a recommended size of 200 px (viewing angle of 2.889◦) for the control. The icon-size
determination method for this experiment is shown in Figure 7 and Equation (1).

α = 2× tan−1 L
H

(1)

where α is the size of the viewing angle corresponding to the icon size, L is the side
length of the square base of the icon, and H is the distance from the participant to the
screen. Combined with the experimental equipment parameters in Section 2.2.2, we can
calculate that the size corresponding to the angle of view of 2.889◦ in the experimental
display is 120 px. The error of the eye-tracking instrument used in the experiment was
0.32◦ (approximately 22.5 px, which is approximated as 20 px), so the step size of the
component was set to 20 px, which could result in two levels, larger and smaller than
120 px respectively. This resulted in five levels (80, 100, 120, 140, and 160 px), converted
into angles of 1.889◦, 2.389◦, 2.889◦, 3.389◦, and 3.889◦, respectively.

Icon distance: The distance in the experiment was divided into three levels of 5.966◦,
8.609◦, and 11.243◦, which were converted into pixels of 243, 351, and 459 px, respectively.
The definition of distance in the experiment is the same as Fitts’ law [58–60], which refers
to the distance from the center of the icon to the location of the central annular marker. The
value of the distance factor considers the two extreme location distributions (closest and
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farthest positions from the central annular marker), as shown in Figure 8. Two distance
values, 0.677◦ and 11.243◦, were obtained based on the nearest and farthest extremes.
The distance between the two extremes was divided into five levels of distance variables:
0.677◦, 3.317◦, 5.966◦, 8.609◦, and 11.243◦. However, it was found that the icons of the
to-be-selected targets in the interface would overlap when the distance was taken as 0.677◦

and 3.317◦; therefore, these two levels were removed.

Figure 7. Schematic diagram of experimental target distance.

Figure 8. Extreme positions and overlap phenomena: ‘right’ indicates a normal condition that occurs
in the experiment, and ‘cross’ indicates a condition that is not allowed to occur in the experiment.

2.3. Questionnaire Evaluation

To verify the results of the experiments, we designed an immersive evaluation interface
for a subjective evaluation. As in the formal experiment, the annular marker at the center
of the interface was retained in the immersive evaluation platform, and changed to yellow
when subjects gazed at it. Subjects could trigger the annular marker by gaze to recall the
situation and experience of visual-searching process through peripheral vision, so that they
could make real evaluation in the questionnaire.

The evaluation interface was programmed using Unity3D and Visual Studio, as shown
in Figure 9. All 20 participants (10 male and 10 female) who took part in the experiment
underwent this immersive evaluation, which the participants underwent upon completion
of the formal experiment to retain their memory and authentic experience of the experi-
ment. The participants were asked to rate the combinations of variables presented in the
evaluation interface. The rating index was the difficulty of the visual search task in the
formal experiment, which was divided into a 5-point Likert scale: very easy, easy, fair,
difficult, and very difficult. The central circular marker was the same as that in the formal
experiment, and color feedback was presented when the viewpoint was inside the marker.
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Figure 9. Immersive evaluation: The upper left is the operation method. The upper right is the
current variable combination. The lower left is the number of distance and area variables. The current
combination presented in the figure means the distance is 459 px (Marked as 0), the size is 100 px
(Marked as 1), and abstract objects.

3. Results and Analysis
3.1. Experiment

A total of 2400 performance data and 600 subjective evaluation data were obtained,
which were subjected to multi-factor ANOVA, simple effects analysis with significant inter-
actions, and post hoc multiple comparisons for factors showing significant main effects.

3.1.1. Correct Rate

If the selected icon was not the prompted one, the trial was judged to be incorrect. The
average correct rate for the 30 variables was 97.9%, indicating that all the participants in the
experiment were able to complete the search task accurately. As shown in Figure 10a, the
average correct rate of the abstract icons was 97.5%, and the abstract icon with a distance
of 100 px and size of 243 px had the lowest correct rate of 94%. As shown in Figure 10b,
the average correct rate of the concrete icons was 98.2%, and the concrete icon with a
distance of 100 px and size of 243 px achieved the lowest correct rate of 93.4%. Therefore,
from the descriptive statistics of the correct rate, the correct rate of the abstract icons was
slightly lower than that of the concrete icons. According to the participants’ feedback
after the experiment, this may be due to their misunderstanding of the meaning of the
icons. To eliminate the ambiguity of the icons, we asked the participants to browse through
all icons presented in the experiment before each experiment. However, there were still
some who could not accurately understand the metaphors of the icons. For example, some
participants easily confused the ‘male’ and ‘female’ icons in the abstract group.

A multi-factor ANOVA was implemented for the correct rate. The results showed a
significant main effect of the size factor (F (4,1953) = 4.430, p = 0.001 < 0.05), and post hoc
multiple comparisons showed that the area factor of 100 px was significantly different from
that of 80 px (p = 0.009 < 0.05), 120 px (p = 0.002 < 0.05), 140 px (p = 0.000 < 0.05), and 160 px
(p = 0.001 < 0.05), while the last four levels were not significantly different from each other.
The main effect of the distance factor was not significant (F (2,1955) = 2.803, p = 0.061 > 0.05)
and the main effect of the shape factor was also not significant (F (1,1956) =1.148, p = 0.284 > 0.05).
It can be concluded that the distance and shape factors of the visualized object (icons) had
no significant effect on the correct rate of the search task. Although the size factor had a
significant influence on the correct rate, the correct rate did not show a monotonic change
with the increasing size of the search object, and the correct rate of the search in an area of
100 px was significantly lower than that at other levels (levels larger or smaller than 100 px
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showed higher correct rates). Since the deviation of the average correct rate was not large
(within 4% difference) and was higher than 93% overall, the impact of this phenomenon on
the correctness of eye-controlled interaction is not significant.

Figure 10. (a): Average correct rate of abstract icons; (b) average correct rate of concrete icons.

3.1.2. Reaction Time

The descriptive statistics for reaction time are shown in Table 2, and the results show
that the average reaction times were 1.46, 1.27, 1.29, 1.33, and 1.30 s at the five size levels of
80, 100, 120, 140, and 160 px, respectively. The average reaction time for the distances 243,
351, and 459 px were 1.30, 1.29, and 1.40 s, respectively. The mean reaction times for the
abstract and concrete icons were 1.42 and 1.25 s, respectively. The bar graphs of the reaction
times at different size, distance, and shape levels are shown in Figure 11a–c, respectively.

Table 2. One-way Welch’s ANOVA results for reaction times of size, distance, and shape factors.

Size Distance Shape

80 px 100 px 120 px 140 px 160 px 243 px 351 px 459 px Abstract Concrete

Descriptive
statistics

N 120 120 120 120 120 200 200 200 300 300
Mean 1.461 1.276 1.293 1.334 1.304 1.306 1.291 1.404 1.422 1.245

St. Deviation 0.437 0.354 0.379 0.414 0.374 0.378 0.365 0.437 0.407 0.366

Variances
homogeneity test

Levene statistic 1.776 2.136 5.097
df1 4 2 1
df2 595 597 598
Sig. 0.132 0.119 0.024

Welch

Statistic 3.771 4.329 31.043
df1 4 2 1
df2 297.095 395.822 591.364
Sig. 0.005 0.014 0.000

Regarding the inferential statistics of the reaction time data, we first cleaned the data
by excluding those with reaction times outside M ± 3SD (5.79% of the reaction time data)
and then performed a normality test on the data. The results of the Shapiro–Wilk test
showed that all the data under 30 combinations of variable levels were consistent with the
normality assumption.

One-way Welch’s ANOVA was used to determine whether the size, distance, and
shape factors had an impact on the reaction time. As shown in Table 2, the results showed
that the main effect of the size factor (F (4,297.095) = 3.771, p = 0.005 < 0.05) was significant,
and a post hoc test (Figure 11b) indicated that the size factor of 80 px was significantly
different from that of 100, 120, 140, and 160 px, while the last four levels were not signifi-
cantly different from each other. The main effect of the distance factor (F (2,395.822) 4.329,
p = 0.014 < 0.05) was significant, and a post hoc test (Figure 11a) showed that the distance
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factor level of 459 px showed significant differences as compared to 243 and 351 px. The
main effect of the shape factor (F (1,591.364) = 21.028, p = 0.000 < 0.05) was significant.
Therefore, there were significant effects on all three factors: size, distance, and shape. It
can be tentatively stated that eye-controlled GUI components with a larger size and longer
distance from the center of the screen would lead to less reaction time for visual search.
However, the reaction time did not change if the size was bigger than 80 px or the distance
was longer than 351 px. As for the shape factor, the abstract shape would require a longer
response time for the search task than the concrete shape.

Figure 11. (a–c) Bar graphs of response times and post hoc multiple comparisons of main effect levels
for the size, distance, and shape factors, respectively. The line between the levels indicates the results
of the t-test at the level of the two variables, ‘ns’ indicates that no significant differences are presented
between samples, ‘*’ indicates that significant differences are presented between samples, and ‘**, ***
and ****’ indicates a higher significance. (d,e) show the simple effect analysis of interaction effect of
distance × size and distance × shape, respectively.
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A multi-factor ANOVA determined that the interaction effect of distance × size
(F = 9.323, p = 0.000 < 0.05) and the interaction effect of distance × shape (F = 7.619,
p = 0.001 < 0.05) was significant. According to a simple effect analysis of distance × size
(Figure 11d), the average reaction times for sizes of 80, 100, and 120 px showed an in-
creasing trend as the distance increased, but a trend of fall–rise appeared with sizes of
140 and 160 px. As shown in Figure 11e, a simple effect analysis of the interaction effect
of distance × shape showed that the average reaction time of concrete-shaped objects did
not change significantly with the increase in distance, and the average reaction time of
abstract-shaped objects did not change significantly at a distance of 243 or 351 px but
increased significantly at 459 px.

3.1.3. Movement Time

The descriptive statistics are shown in Table 3, with average reaction times of 0.488,
0.463, 0.430, 0.452, and 0.428 s for sizes of 80, 100, 120, 140, and 160 px respectively. The
average reaction times were 0.436, 0.444, and 0.453 s with the distances of 243, 351, and
459 px. The average reaction times for the abstract- and concrete-shaped objects were 0.444
and 0.445 s, respectively. The bar graphs of the reaction times at different distance, size,
and shape levels are shown in Figure 12a–c, respectively.

Table 3. One-way Welch’s ANOVA results for movement times of size, distance, and shape factors.

Size Distance Shape

80 px 100 px 120 px 140 px 160 px 243 px 351 px 459 px Abstract Concrete

Descriptive
statistics

N 119 119 118 119 117 198 196 198 296 296
Mean 0.448 0.463 0.430 0.452 0.428 0.436 0.444 0.453 0.444 0.445

St. Deviation 0.103 0.110 0.091 0.105 0.076 0.103 0.088 0.102 0.100 0.096

Variances
homogeneity test

Levene statistic 2.684 2.348 0.190
df1 4 2 1
df2 587 589 590
Sig. 0.031 0.096 0.663

Welch

Statistic 2.866 1.349 0.053
df1 4 2 1
df2 292.339 390.868 589.100
Sig. 0.024 0.261 0.818

Regarding the inferential statistics of the movement time data, we first performed data
cleaning to remove data with movement times outside of M ± 3SD (13.08% of the response
time data) and then performed normality tests on the data. The results of the Shapiro–Wilk
test indicated that some of the data had significant deviations from a normal distribution (7
out of 30 variable levels), but the overall profile of the data was bell-shaped, so these data
presented an approximate normal distribution, and ANOVA with an equal sample size
was able to provide a valid measure [69].

One-way Welch’s ANOVA was used to determine whether the size, distance, and
shape factors had an impact on movement time. As shown in Table 3, the results showed
that the main effect of the size factor (F (4,292.339) = 2.866, p = 0.024 < 0.05) was significant,
and a post hoc test (Figure 12a) showed that the size factor was significantly different
between 100, 120, and 160 px, and the area factor was significantly different between 140
and 160 px. The main effect of the distance factor (F (2,390.868) = 1.349, p = 0.261 > 0.05)
and shape factor (F (1,589.100) = 0.053, p = 0.818 > 0.05) was not significant. Therefore, it
can be tentatively concluded that as the size of the search object increases, the movement
time (i.e., the time to complete the saccades) of the visual search process will decrease.

3.2. Subjective Questionnaire

A total of 20 participants were asked to provide a subjective evaluation of the ex-
periment on a scale of 1 to 5, with 1 corresponding to very difficult, and 5 to very easy.
Descriptive statistics were derived for ratings of size, distance, and shape. As shown in
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Figure 13a, according to the results of the evaluation, the visual search task was more
difficult when the size was 80 and 100 px, and easier when the size was 100, 120, and 160 px.
As Figure 13b presents, the task was least difficult at a distance of 243 px and most difficult
at a distance of 459 px; thus, the difficulty of the task increased as the distance increased.
In addition, all the participants thought that the difficulty of the experiment was higher
with abstract icons than with concrete icons, which means that concrete icons were more
conducive to the performance of eye-controlled interaction.

Figure 12. (a–c): Bar graphs of movement times and post hoc multiple comparisons of main effect
levels for the size, distance, and shape variables, respectively. The line between levels indicates the
results of the t-test at the level of the two variables, ‘ns’ indicates that no significant differences are
presented between samples, ‘*’ indicates that significant differences are presented between samples,
and ‘**’ indicates the higher significance.

Figure 13. (a) The subjective evaluation analysis of size and shape; (b) the subjective evaluation
analysis of distance and shape.

4. General Discussion

This experiment aimed to determine the performance of the eye-controlled visual-
search task under different levels of independent variables (size, distance, and shape). The
visual search task in the experiment was divided into two processes: visual searching
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and eye-controlled triggering processes. The correct rate which was used to measure
the feasibility of the experiment, and showed that all participants could complete the
task accurately.

First, the most significant effect on reaction time showed that the reaction time of the
visual search task increased as the size of eye-controlled GUI components decreased and
as they moved further from the center of the interface. This result supports Hypothesis 1
(H1). Studies have shown that the reaction time for search tasks depends on the number of
eye movements and the duration of a single gaze [70,71], and stated that the duration of a
single gaze increases with the difficulty of the peripheral visual search task [72]. Thus, an
increase in the difficulty of the peripheral visual search task led to an increase in reaction
time. In the experiments in this study, the farther the eye-controlled components were from
the center of the screen, the farther the image formed on the retina was from the central
concave area. According to the physiological structure of the human retina, the 1~2◦ field
of view corresponding to the central concave area presents the clearest image, and images
with low definition present at a farther position from the center of peripheral vision. In
other words, the closer the eye-controlled interactive component is to the center or the
larger the size, the clearer the image formed on the human retina, which helps people make
quick recognition and judgment (i.e., reduce the difficulty of the search task); thus, the
reaction time is decreased, which is consistent with our experimental results.

The significant interaction effect of the distance × size suggested that the size and
position of eye-controlled components in an eye-controlled interface helped the users
recognize objects efficiently, but when there were multiple components in the interface,
they influenced each other. Objects in peripheral vision become difficult to recognize when
they are in close proximity to other objects [73,74], so it is important to design eye-controlled
GUI components at an appropriate distance from each other. We identified this problem in
our previous study and provided relevant design recommendations [68].

In addition, the results showed that the larger the size of the components, the shorter
the movement time of eye-controlled triggering; however, the distance had no signifi-
cant effect on the triggering process, which was not in line with our second hypothesis
(H2). In the experiment, participants successively completed the visual-searching and
eye-controlled-triggering processes, during which they completed multiple saccades. The
saccades followed the experimental paradigm of Fitts’ law, and related studies have shown
that the eye-controlled selection task abided by Fitts’ law [57,60]. However, the findings on
the distance of the components did not abide by Fitts’ law. This provides avenues for fur-
ther analysis in conjunction with relevant studies. In terms of the mechanism of human eye
movements, saccades are caused by force impulses and conform to the impulse-variance
model [75]. Human eye’s natural saccades within 15◦ are considered small saccades, which
account for 80% of the natural saccades of the human eye [76,77]. In our experiments, the
distance was divided into three levels of 5.966◦, 8.609◦, and 11.243◦, all of which were in
the range of small saccades. Therefore, the lack of conformance of the experimental results
with Fitts’ law is likely to be caused by small saccades. In other words, our experiments
demonstrated that the amplitudes of saccades within 12◦ had little effect on the interaction
performance in eye-controlled interaction.

Although the average reaction time for searching visual objects with abstract shapes
was approximately 200 ms higher than that of concrete shapes, the ANOVA results showed
that shape did not have a significant effect on movement time, which supports the third
hypothesis (H3). Wu et al. argued that people would have a higher search efficiency
for icons conforming to the semantic cognitive law [78]. Participants in our experiment
performed a visual search in low-resolution images of peripheral vision and could only
rely on the shape outline of the icons for recognition and judgment. In this case, abstract
icons containing complex metaphors would be more difficult to recognize because concrete
icons conform more to the human semantic cognitive law than abstract icons, which causes
higher search efficiency. In the eye-controlled-triggering process, because the participants
have already determined the direction of the interactive target, they only need to complete
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the saccade in the corresponding direction, and the movement process is influenced by
shape factors.

The significant interaction effect of shape × distance (Figure 11e) suggests that the
reaction time of abstract-shaped icons increases with the distance to the center of the
visual object, while the reaction time of concrete-shaped icons does not change significantly.
In other words, choosing abstract icons for eye-controlled interactive components leads
to a lower recognition efficiency for users farther away from the center of the interface.
Therefore, the design of eye-controlled GUI components should consider the metaphor of
icons in different regions, and components far from the center of the screen should use
concrete icons as much as possible to ensure that users can recognize the components
efficiently. The results of the immersive subjective evaluations (Figure 13) showed that the
task using abstract-shaped components in the experiment was more difficult than that using
concrete-shaped components. Combined with the results of the participants’ interviews,
most participants indicated that they preferred recognizing concrete-shaped components
when interacting using eye control because the concrete shapes were more consistent with
their expected imagination of a text prompt than the abstract shapes, which made it easier to
make choices. Therefore, the use of components with concrete shapes was more consistent
with the ‘user-centered’ design principle when designing eye-controlled GUI components,
both from the perspective of experimental performance and user preferences.

5. Conclusions

Based on the results of this study and existing studies, the following recommendations
for designing eye-controlled GUI components were derived:

(1) The size of the GUI elements in the eye-controlled interaction interface is very im-
portant. An appropriate size would benefit both visual-searching and eye-controlled-
triggering processes. Combining the results of the subjective evaluation, we derived
the recommended values of 2.889◦, 3.389◦, and 3.889◦ for size.

(2) Multiple interface components influence each other when they are in close proximity,
so they need to be spaced appropriately from each other. According to our previous
study [68], 1.032◦ is a suitable spacing value.

(3) For eye-controlled modalities that require saccades to complete triggering (e.g., eye-
gesture interaction), the distance factor has less impact on the performance of eye-
controlled triggering when performing saccades within 12◦. In addition, if an efficient
visual search is to be ensured, the recommended values for the distance of the saccades
are 5.966◦ and 8.609◦.

(4) The shape of the eye-controlled GUI components significantly affects the user recog-
nition procedure. Abstract-shaped components can lead to a greater cognitive load
than concrete-shaped components in the process of user recognition of eye-controlled
interactive components. Designers should attempt to simplify the recognition pro-
cess by selecting materials that fit the user’s semantic perception (e.g., using simple
concrete icons).

Our research provides quantitative and standardized design recommendations for
user interface design in eye-controlled interactive applications, and these findings will help
improve the user experience of eye-controlled interactive applications and achieve user-
centered design guidelines. For special populations with motor impairments (e.g., people
with physical disabilities or ALS), using eye-controlled applications is the only way to
communicate with the world. Thus, we are devoted to conducting further research focusing
on the usability of eye-controlled applications, providing directions for designing human–
computer interaction, and expanding the application fields of eye-controlled interaction.

6. Study Limitation and Future Work

This study has some limitations. In our experimental design, the values of the distance
factor were determined based on three premises: (1) the participants were 64 cm away from
the screen; (2) the experiment used a display with a resolution of 1920 px × 1080 px.; and
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(3) the experiment used a circular distribution, and the icon size was a minimum of 80 px
and a maximum of 160 px. The limitation of these three premises led to a maximum value
of 11.243◦ (less than 12◦) for the distance factor, which falls within the range of values for
short saccades [77]. In this case, we could not explore the situation with long saccades.
Therefore, in future studies, we aim to fully consider the value of the distance factor and
investigate the effect of the distance factor under long saccades.

In addition, we use Bertin’s ‘visual variables’ as the basis for determining factors [44],
which consist of six factors: shape, position, area, brightness, color, and texture. We studied
the first three factors through ergonomic experiments, but the last three factors also need
to be considered in the GUI design for eye-controlled interaction. Therefore, we hope to
investigate the other three elements in our future research.
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