
Citation: Jun, S.; Li, M.; Jung, J. Air

Pollution (PM2.5) Negatively Affects

Urban Livability in South Korea and

China. Int. J. Environ. Res. Public

Health 2022, 19, 13049. https://

doi.org/10.3390/ijerph192013049

Academic Editors: Stefania Toselli,

Teodoro Georgiadis and

Letizia Cremonini

Received: 30 August 2022

Accepted: 7 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Air Pollution (PM2.5) Negatively Affects Urban Livability in
South Korea and China
Sunmin Jun 1 , Mengying Li 2 and Juchul Jung 2,*

1 BK21PLUS, Department of Urban Planning and Engineering, Pusan National University, Busan 46241, Korea
2 Department of Urban Planning and Engineering, Pusan National University, Busan 46241, Korea
* Correspondence: jcjung@pusan.ac.kr

Abstract: This study investigated the effect of the concentration of ambient fine particulate matter
(PM2.5), a transboundary air pollutant, on the livability of neighboring areas of China and South
Korea with the aim of informing common policy development. Grey relational analysis (GRA) and
panel regression analysis were performed to examine the effect of PM2.5 concentration on various
livability indicators. The results revealed that urban living infrastructure was an indicator of effect in
both South Korea and China. Based on the high correlation between urban living infrastructure and
PM2.5 concentration, it can be seen that PM2.5 clearly affects livability, shown by panel regression
analysis. Other key livability indicators were traffic safety, culture and leisure, and climate indicators.
Spatial analysis of the livability index revealed that from 2015 to 2019, livability improved in both
South Korea and China, but there was a clear difference in the spatial distribution in China. High-
vulnerability areas showed potential risks that can reduce livability in the long run. In South Korea
and China, areas surrounding large cities were found to be highly vulnerable. The findings of
this research can guide the establishment of policies grading PM2.5 pollution at the regional or city
macro-level.

Keywords: vulnerability to PM2.5; living conditions; livability; grey relational analysis; transboundary;
Korea; China

1. Introduction

According to the World Health Organization’s announcement in 2022, 99% of the
world’s population lives in areas that do not meet the recommended air quality standards,
and 70% of deaths from ambient fine particulate matter (PM2.5) exposure occurred in East
Asia and the Pacific, and South Asia. China and India accounted for 52% of global deaths
from PM2.5, with South Korea having the lowest rate among Organization for Economic
Cooperation and Development (OECD) member countries [1]. Air pollution is one of the
greatest threats to human health and can impede economic growth by increasing medical
expenses and lowering labor productivity. Furthermore, the increase in particulate matter
lowers an individual’s happiness index [2–5]. As PM2.5 is a transboundary pollutant
that moves beyond national borders, it damages not only the country concerned but
also neighboring countries. It has been widely reported as an aggravating factor for the
environment [6,7]. In particular, Korea is very close to the coastal areas of China, so there
is a high concern about the impact of PM2.5. In order to reduce PM2.5, not only the efforts
of individual countries but also transboundary consultations and joint responses with
neighboring countries are required.

PM2.5 has attracted substantial attention as a primary pollutant that plays a pivotal role
in the deterioration of the quality of urban living environments [8]. The urban movement
began when environmental pollution brought on by industrialization and urbanization
caused problems and gave rise to the term “livability,” which refers to the quality of
the urban living environment. Livability is the right of a citizen to live in appropriate
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living conditions [9], defined as “livable living conditions.” A natural environment is a
prerequisite for health and is the most important and fundamental factor in livability [10].
Empirical studies have revealed that the environment is a major determinant of livability,
and in particular, air quality has been found to have the greatest effect [11,12]. More recent
studies have measured livability based on indicators of natural disasters such as abnormal
climates [13], heat waves [14], and floods due to climate change [15]. Kim and Jin [5,16]
developed a method to estimate the value of environmental goods using the happiness
index to study how particulate matter affects the quality of life.

The concept of livability emerged in the Netherlands in 1950 against the background of
poor rural living conditions and refers to the human right to healthy living conditions. Since
then, it has been used to guide the creation of cities where citizens can live comfortably,
as well as to reduce environmental pollution and reckless urban development, and warn
of the wide range of environmental effects of the latter. Consequently, livability has
been highlighted as a new urban policy ideology that emphasizes democracy and active
citizenship [9]. In other words, livability is considered the basis for the protection of citizens
from noise and environmental pollution and their right to a safe environment, as well as
for their responsibility. Livability is a measure of the quality of a person–environment
relationship based on location [17]. Veenhoven [18] defined livability as “livable living
conditions” and stated that it indicates that institutional arrangements meet human needs
and capacities. Livability is an umbrella term for various environmental qualities and is
measured as the sum of objective indicators that improve the quality of life, such as the
economy, society, safety, transportation, and culture [15]. From the perspective of urban
sustainability, it is important to reduce the environmental impact of rapid urbanization
to ensure livability [19]. Negative indicators, such as environmental pollution, negatively
affect people’s living burden and livability, thereby lowering their quality of life [20].

An important factor to consider in the measurement of livability is PM2.5 vulnerability
because it is closely related to the population and the socio-ecological system, which are
factors affecting livability [21]. Klinenberg [22] found through empirical studies that the
death rate due to heat waves has a strong correlation with social vulnerabilities, such
as racial segregation and inequality. The reason for the demographically similar but
regionally different results is that the social infrastructure, i.e., physical space and group
differences that determine how people interact, has an impact. Therefore, the higher the
social vulnerability, the more vulnerable a society is to disasters, and it can be predicted
that this will negatively affect livability. Cutter et al. [23] found that social vulnerability is
defined by a high sensitivity to natural disasters and the degree of the ability to respond to
disasters, and they used vulnerability, housing type, race, and sex as indicators. As for the
studies related to the vulnerability assessment of PM2.5, many studies have investigated
the effects of particulate matters on health [24,25]. The composition of the vulnerability
index is mainly determined using response variables such as exposure, sensitivity, and
adaptive capacity, according to the Intergovernmental Panel on Climate Change.

Most studies focused on exposure indices, such as the air pollution status and PM2.5
concentration, and did not consider potential risk factors, including PM2.5 vulnerability.
Therefore, in this study, based on previous studies, social vulnerability to PM2.5 was con-
sidered to have a large effect on livability and was judged as an important indicator to be
considered in the livability index. Figure 1 shows a conceptual diagram of the index system
used for measuring livability considering PM2.5 vulnerability. Until now, few studies have
empirically analyzed the relationship of PM2.5 with living-environment factors, such as
livability, among geographically adjacent countries. As South Korea and China can geo-
graphically influence each other, it is necessary to consider how environmental pollutants
such as PM2.5 affect the quality of the living environment, and how they can formulate a
joint policy. Therefore, this study empirically analyzed how PM2.5 concentrations affect the
livability index in geographically adjacent regions of South Korea and China.
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Figure 1. Conceptual diagram of livability measurement considering PM2.5 vulnerability.

First, we compare the correlation between PM2.5 concentration and the livability index
in Korea and China. Second, we spatially analyze livability, considering the vulnerability of
PM2.5. Third, to see the causal relationship between PM2.5 and the highly related livability
index, panel regression analysis is performed to identify the effect. Based on the relationship
between the PM2.5 concentration and the livability index, this study will contribute to a
joint urban policy for PM2.5 reduction and response between the two countries in the future.

2. Materials and Methods
2.1. Study Area and Data

The study area included the Chinese eastern coastal region, where industrial com-
plexes and large cities are concentrated, and entire regions of South Korea. China has
three large cities (Beijing, Shanghai, and Tianjin), nine coastal regions (Liaoning, Hebei,
Shandong, Jiangsu, Zhejiang, Fujian, Guangdong, Guangxi, and Hainan), and six central
economic zones (Shaanxi, Henan, Anhui, Hubei, Hunan, and Jiangxi). South Korea has
34 regions, including seven large cities (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju,
and Ulsan) and nine regions (Gyeonggi-do, Chungbuk, Chungnam, Jeonbuk, Jeonnam,
Gangwon-do, Gyeongbuk, Gyeongnam, and Jeju-do). All these regions formed the study
area (Figure 2). Annual data from 2015 to 2019 were used to analyze changes over time. For
South Korea, PM2.5 data was available from 2015. To control for the impact of COVID-19,
only data from 2015 to 2019 were used. For PM2.5 concentration data, IDW (Inverse Dis-
tance Weighted) spatial interpolation method was used to derive annual average values
for each administrative district. The reason for using the IDW method among spatial
interpolation methods was that the visualization and precision of the spatial distribution of
PM2.5 concentration were superior to other interpolation methods [26] As shown in Table 1,
data on variables that can be obtained from both South Korea and China were collected.
For South Korea, annual data by province were collected from the national statistics portal
(https://kosis.kr/index/index.do, accessed on 15 March 2022), and for China, data were
collected from the national statistical yearbook [27], urban statistical yearbook [27], and
environmental statistics yearbook [28].

https://kosis.kr/index/index.do
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Table 1. Livability indicators used in this study.

Domain Indicators Sub-Indicators

Vulnerability Sensitivity

X1: Percentage of the population over 65 years
X2: Percentage of the population under 13 years
X3: Ratio of recipients of basic living support
X4: Mortality rate per 100,000 population
X5: Aging index

Urban living infrastructure
Culture and leisure X6: Urban Park area per 1000 population

Education X7: Number of students per teacher
X8: Number of childcare facilities per 1000 children

Health and healthcare
X9: Number of employees in medical institutions
per 1000 population
X10: Hospital beds per 1000 population

Urban plan Urban growth X11: Urban area per capita
X12: Green area rate

Transportation Convenience of movement X13: Road pavement rate
X14: Number of vehicle registrations per person

Economic development Economic vitality

X15: GDP per capita
X16: Income per capita
X17: Economic participation rate
X18: Number of employees per 1000 population

Social development Social inclusion

X19: Public administration budget in general
accounting
X20: Social welfare budget in general accounting
X21: Population

Safety Traffic safety X22: Number of traffic accidents per 1000 vehicles
Natural disaster X23: Natural disaster damage

Environment
Environmental consumption X24: Final energy consumption
Water management system X25: Water supply rate

Climate X26: Annual average precipitation
X27: Annual average temperature
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2.2. Livability Measurement and Index
2.2.1. Livability Measurement Methods

There are two methods to measure livability. The first estimation method is based
on input and evaluates whether the living conditions are suitable for human needs and
capacities. It uses a composite index of the economy (e.g., gross domestic product (GDP)
per capita), society, environment, culture, education, etc. The second inductive evaluation
method estimates health and satisfaction, life expectancy, and other outputs, such as
happiness [29]. The former measures the objective status through statistical analysis of data
sets, whereas the latter measures the satisfaction, perception, and happiness of residents.

Metrics and methods should be selected considering that livability is related to the
quality of everyday social life and the quality of the environment with which people interact
daily. The choice of indicators to include in the livability index often reflects a political
agenda or is based on the subjectivity of researchers. Therefore, it is difficult to compre-
hensively measure livability because not all factors can be reflected [30]. Nevertheless,
livability can objectively measure the quality of the living environment, which affects the
quality of life. In this study, livability was measured based on the input estimation method,
considering the effects of transboundary PM2.5. Furthermore, the results of this study were
visualized and analyzed by the Geographic Information System (GIS) program in order to
better understand and present the spatial–temporal variation of PM2.5 concentrations and
livability levels in the study area. For spatial analysis, ArcGIS [31], a software developed
by Esri, was used. Excel program was used for GRA analysis, and panel analysis was
performed with STATA [32], a statistical program for time series regression analysis.

2.2.2. Livability Index

We used the livability index reported by Jun et al. [33] (Table 1). The livability index
used in this study was derived based on scientific and objective methodologies through a
scoping review of previous studies. It considers eight domains: vulnerability, urban living
infrastructure, urban planning, transportation, economy, society, safety, and environment.
In previous studies, housing and satisfaction were also considered; however, in this study,
they were excluded because of limitations in data acquisition. The livability index consists
of 3 levels, 8 domains, 13 indicators, and 27 sub-indicators. The vulnerability index was
composed of variables including vulnerable groups sensitive to exposure to PM2.5. For the
vulnerable groups sensitive to PM2.5, the population under the age of 13, the population
over 65, the aging index, and the number of beneficiaries of basic livelihood with high
damage and low resilience in the event of a disaster and mortality were used as variables [1].
The reason for limiting this vulnerability to the vulnerable population index as a variable
to measure vulnerability is that damage varies greatly depending on the population group
with high disaster sensitivity and low response capacity [22].

2.3. Grey Relational Analysis (GRA)

GRA is a statistical method that analyzes multiple factors and is used when there is
no clear relationship between the main influencing factors [34]. The GRA method reduces
correlation errors caused by sample size limitations and trend uncertainty. Compared to
commonly used mathematical statistical methods, such as analysis of variance, regression
analysis, and principal component analysis, the GRA method has the advantage of pro-
ducing consistent results for both quantitative and qualitative phenomena [35]. It can also
be used to calculate the priority of influencing factors between PM2.5 concentration and
the livability index. Livability indicators are composed of parameters in various domains
that are influenced by PM2.5 concentrations. To study the relationship between PM2.5
concentrations and livability indicators, the variables of all indicators were standardized
for different units of measurement. Indicators can be standardized based on the Z-score,
the ratio of value, or min–max. The Z-score utilizes the mean and standard deviation to
standardize a data point to a value between –1 and 1, the ratio of value method utilizes the
maximum value to standardize a data point to a value between 0 and 1, and the min–max
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method normalizes data points to a value between 0 and 1 based on the maximum and
minimum values. In this study, the min–max method was used. The ratio of value method
has an advantage in that the value can be standardized as a positive number, but it is
limited in that only the maximum value, not the range of the index is considered.

The theory of GRA is based on cybernetics and information theory, which can measure
correlations, similarities, and differences between variables through mathematical calculations.
By measuring differences between variables, it is possible to present a dynamic correlation
between different subject characteristics [36,37]. The grey-related coefficient value calculated
by the GRA method ranges between 0 and 1. The closer the coefficient value is to 0, the lower
its relevance, and the closer to 1, the higher its relevance. In addition, the priority correlation
between indicators can be displayed [38]. The GRA procedure is as follows:

1. Suppose that the reference sequence and the sequences that are compared with the
reference sequence after normalization are:

Yj(t) =


y1(1) y1(2)
y2(1) y2(2)

· · · y1(n)
· · · y2(n)

· · · · · ·
yi(1) yi(2)

· · · · · ·
· · · yi(n)

Xij =


x11 x12
x21 x22

· · · x1j
· · · x2j

· · · · · ·
xi1 xi2

· · · · · ·
· · · xij


The reference column (Y) is the concentration of PM2.5. The comparator column (X) is

a livability indicator.

2. Data normalization

Data standardization is necessary for the analysis and comparison of variables with
different units. There are many data standardization methods, including initial value
conversion, average value conversion, percentage conversion, Z-score conversion, and scale
readjustment using maximum–minimum values [39–41]. This study used the min–max
method for standardization. After normalization, all Yj values and Xij index values were
normalized to values between 0 and 1. In data normalization, the division of expressions
into positive data and negative data considers the negative impact on livability in the case
of vulnerability and disaster indicators. For exponentiation, it was calculated considering
the negative influence. In the case of PM2.5, concentration data was not standardized and
was used as it is.

Yj =
yi − yimin

yimax − yimin
(1)

Positive data : Xij =
xij − xijmin

xijmax − xijmin
(2)

Negative data : Xij =
xijmax − xij

xijmax − xijmin
(3)

3. Grey relational calculation

GRA determines whether data columns are closely related by comparing the simi-
larity of the geometric shapes of the data column curves. The more similar these curves,
the greater the association between the data. The grey relational calculation value after
standardizing the data is obtained by Equations (4)–(6). In Equation (4), ∆ij is the differ-
ence between the dependent and independent variable columns, and γij is the relational
coefficient. The value of the distinguishing coefficient (ε) in Equation (5) is generally set to
0.5. Equation (6) is used to calculate the grey correlation degree (ρij), and the order of the
correlation degree can be expressed by the coefficient value.

∆ij =
∣∣yj − xij

∣∣ (4)

γij =
∆min + ε∆max

∆ij + ε∆max
(5)
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ρij =
1
n ∑n

i=1 γij (6)

4. The weight of the livability indicator

Livability was indexed by applying the R coefficient values calculated by GRA to the
weighted values of the indicators. The weights were calculated using Equation (7), where
wi represents the weight of index i.

wi =
ρij

∑n
t=2
∣∣ρij(t)

∣∣ (7)

2.4. Panel Regression Analysis

Based on the GRA analysis results (Table 2), the livability indicators with PM2.5
concentrations and grey correlation degree higher than 0.6 were selected, and panel data
regression analysis was performed. Before analyzing the panel data regression model,
a multicollinearity test was performed on each panel data using the Variance Inflation
Factor (VIF) index. VIF is the coefficient of variance expansion, and the VIF value is the
most commonly used method for multicollinearity testing [42–45]. According to the VIF
method, if the VIF value of the root variable is less than 10, it proves that there is no
multicollinearity problem in the model [43,44,46]. Accordingly, in this study, variables with
VIF values greater than 10 were removed from the model. In addition, before estimating
the panel data regression model, the hypothesis compliance of the model was always
tested. In particular, time series autocorrelation and heterogeneity tests were performed
for the characteristics of the panel data [47]. Moreover, in this study, the heteroscedasticity
and autocorrelation of the population were tested using the modified Wald test and the
Wooldridge test, respectively. Panel regression models usually test the significance of fixed
and random effects on individual and time effects, and panel models combining cross-
sectional and time series data are used for research purposes. If both effects are significant,
the Hausman test is used to set the characteristics of the data and the appropriate model as
the final analytical model [47].

In addition, this study performs a natural logarithmic transformation on the data.
The natural logarithm transformation can reduce the heterogeneity of the data without
changing the original characteristics of the data. In addition, the inconvenience of different
units of measurement can be eliminated, and the estimated coefficients are elastic moduli,
with the advantage that a 1% increase in the independent variable can be interpreted as a
net percentage change in the dependent variable [48]. Therefore, the regression analysis
Equation (8) for panel data in this study is as follows:

PM2.5it = αi + β1Vulnerabilityit + β2 In f rastructureit + β3Planit
+β4Transportationit + β5Economicit + β6Socialit

+β7Sa f etyit + β8Environmentit + µit

(8)
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Table 2. Grey correlation degree results for the livability indicators.

Domain Grey Correlation Degree Indicators Grey Correlation Degree Sub Indicators Grey Correlation Degree
Korea China Korea China Korea China

Vulnerability 0.565 0.673 Sensitivity 0.565 0.673

X1: Percentage of the population over 65 years 0.497 0.530
X2: Percentage of the population under 13 0.870 0.512

X3: Ratio of recipients of basic living support 0.470 0.874
X4: Mortality rate per 100,000 population 0.493 0.518

X5: Aging index 0.496 0.931

Urban living
infrastructure

0.665 0.773

Culture and leisure 0.825 0.856 X6: Urban park area per 1000 population 0.825 0.856

Education 0.687 0.561
X7: Number of students per teacher 0.870 0.512

X8: Number of childcare facilities per 1000 children 0.504 0.610

Health and
healthcare

0.483 0.932
X9: Number of employees in medical institutions per

1000 0.481 0.934

X10: Hospital beds per 1000 population 0.485 0.931

Urban plan 0.504 0.737 Urban growth 0.504 0.737
X11: Urban area per capita 0.526 0.584

X12: Green area rate 0.482 0.890

Transportation 0.505 0.523 Convenience of
movement

0.505 0.523
X13: Road pavement rate 0.483 0.518

X14: Number of vehicle registrations per person 0.527 0.527

Economic
development 0.495 0.590 Economic vitality 0.495 0.590

X15: GDP per capita 0.504 0.474
X16: Income per capita 0.483 0.526

X17: Economic participation rate 0.461 0.514
X18: Number of employees per 1000 population 0.531 0.844

Social
development 0.556 0.475 Social inclusion 0.556 0.475

X19: Public administration budget in general
accounting 0.746 0.467

X20: Social welfare budget in general accounting 0.462 0.452
X21: Population 0.460 0.507

Safety 0.672 0.502
Traffic safety 0.840 0.429 X22: Number of traffic accidents per 1000 vehicles 0.840 0.429

Natural disaster 0.504 0.574 X23: Natural disaster damage 0.504 0.574

Environment 0.580 0.541

Environmental
consumption 0.624 0.512 X24: Final energy consumption 0.624 0.512

Water management 0.459 0.475 X25: Water supply rate 0.459 0.475

Climate 0.658 0.540
X26: Annual average precipitation 0.677 0.462
X27: Annual average temperature 0.640 0.616

Note: The distinguishing coefficient was valued at 0.5. Values with a correlation coefficient of 0.6 or more were bolded.
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3. Results
3.1. Grey Correlation between PM2.5 Concentration and the Livability Indicators

Table 2 shows the results of the grey correlation degree between PM2.5 concentration
and the livability indicators. The correlation between factors is considered high when
the grey correlation degree is greater than 0.6 [37]. The grey correlation degree of PM2.5
concentration to the livability indicators in South Korea ranged from (0.459) to (0.870). In
the livability index, safety aspects had the highest correlation with PM2.5 concentration,
especially the traffic safety index of traffic accidents per 1000 vehicles (0.890). Existing
research has related traffic indicators to the emission of air pollutants such as particulate
matters [10]. The urban living infrastructure (0.665) was the second most relevant indicator,
and the culture and leisure (0.825) and education (0.687) indicators were highly correlated
with PM2.5 concentration. As for the sensitivity indicator for vulnerability, the highest
correlation was found for the percentage of the population under 13 years of age (0.870).
Regarding urban living infrastructure, high correlations were observed for the education
sub-indicator of the number of students per teacher (0.687) and the culture and leisure
sub-indicator of the urban park area per 1000 population (0.826). The public administration
budget in general accounting (0.746) in the social inclusion indicator in the social develop-
ment domain, the number of traffic accidents per 1000 vehicles (0.840) in the traffic safety
indicator in the safety domain, and the annual average precipitation (0.677) and annual
average temperature (0.640) in the climate indicator in the environment domain, were
highly correlated with PM2.5 concentration.

The results of the livability correlation coefficient calculation for China showed that
urban living infrastructure (0.773), urban planning (0.737), and vulnerability (0.673) were
highly correlated with PM2.5 concentration, with the highest correlation coefficient for
urban living infrastructure. Specifically, the health and healthcare (0.932) indicator in
the urban living infrastructure area showed the highest correlation, and the urban park
area per 1000 population (0.856) in the culture and leisure indicator also showed a high
correlation with PM2.5 concentration. Unlike that in South Korea, the correlation of urban
planning was high in China (0.737), especially that of the green area rate (0.890), which
was very high. In the domain of vulnerability, sensitivity indicators, such as the ratio
of recipients basic living support (0.874) and the aging index (0.931), showed very high
correlations. The livability indicator that was highly correlated with PM2.5 concentration in
both South Korea and China was urban living infrastructure. The number of urban parks,
final energy consumption, and the average annual temperature had a high relevance in
both two countries.

This is consistent with findings in previous studies. Traffic safety is related to the rate
of automobile accidents. Traffic is a major contributor to PM2.5 as indicated by empirical
studies [49,50]. Urban parks, a culture and leisure sub-indicator, are green spaces that
have the effect of reducing PM2.5 concentration [51–53]. In this study, the coefficient of
correlation between the urban park area and PM2.5 concentration was above 0.8, which
is very high, in both South Korea and China. Energy consumption is closely related to
PM2.5 concentration and is used as a carbon footprint indicator [34]. In South Korea, the
average annual temperature and precipitation, which are meteorological factors, were
more strongly correlated with PM2.5 concentration than in China. Meteorological factors
such as temperature, humidity, wind speed, and precipitation are important parameters
affecting particulate matter retention [54]. In South Korea, the education index showed
a characteristically high correlation with PM2.5 concentration, which is explained by the
high urbanization rate and the population density centered in educational areas. In China,
urban living infrastructure and urban planning were highly correlated, which is in line
with the results of previous studies showing that the urbanization level index is highly
related to PM2.5 in China [55]. Finally, in China, socio-economically disadvantaged groups
are more vulnerable to PM2.5 than in South Korea.
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3.2. Spatial Analysis of the Livability Index of South Korea and China

The livability index was calculated based on the livability indicators and relevance
coefficients derived from GRA as weights. Spatial analysis of the livability index was
performed using the GIS program. Annual average PM2.5 concentrations were divided
into 15 classes using the natural breaks classification method, and the results are shown
in (Figure 3). The natural breaks approach minimizes the average deviation of the overall
values within the same class of data and maximizes the dispersion between classes [56].
According to the WHO, the overall PM2.5 concentration in South Korea is lower than that
in China. In both countries, PM2.5 concentrations decreased from 2015 to 2019. For South
Korea, PM2.5 concentration was the highest in the Jeon-buk region in 2015 and has declined
since 2018. Gyeonggi-do and Gangwon-do also show decreasing PM2.5 concentration
trends as of 2018. The highest PM2.5 concentrations were noted in Gyeonggi-do, in the
northern Chungcheong Province, and in Jeon-nam, in the west coast region close to China.
Gyeonggi-do is a densely populated region near Seoul, and Chung-buk also is a region with
high population mobility. Moreover, the distribution of industrial facilities is concentrated
in the Gyeonggi-do and Chung-buk regions. In the Chung-buk region, PM2.5 concentrations
decreased in 2016 but have been increasing since 2017 and are currently the highest in the
country. A recent study of the inflow path of fine dust in the Chung-buk area showed
foreign inflow from China and domestic fine dust generation by industrial facilities and
thermal power plants located in Chung-buk and surrounding coastal areas [57].

Regarding the spatial distribution of the annual average PM2.5 concentrations from
2015 to 2019, except in the Fujian, Guangdong, and Hainan regions, PM2.5 concentrations
were generally relatively high in 2015. They were the highest in the central and eastern
regions, where primary industries, such as the coal industry, are concentrated. It is well
known that especially the secondary sector contributes to air pollution [58,59]. While PM2.5
concentrations in China have been gradually decreasing between 2015 and 2019, those in
the central and eastern regions still exceed the WHO air quality norms. The regions with
the highest PM2.5 concentrations in 2019 were mainly the Jing-Jin-Ji (Beijing-Tianjin-Hebei)
area and surrounding areas (Shandong and He-nan). These regions have high urbanization
rates and GDP per capita.

Figure 4 shows the livability measurement results considering PM2.5 vulnerability.
China showed a higher vulnerability to PM2.5 and lower livability than South Korea. From
2015 to 2019, livability improved in both South Korea and China. In South Korea, the
Gangwon-do and Gyeong-buk regions showed the highest livability in 2015, and in 2017,
Ulsan and Daegu showed the highest livability among the Gyeonggi-do, Chung-nam,
and Jeonbuk regions and large cities. In 2019, Incheon and Jeon-buk showed the highest
livability among large cities, followed by Jeon-nam, Chung-buk, and Gangwon-do. On
Jeju Island, livability has been declining since 2018. In Gangwon-do, regional development
projects for balanced regional development are being actively carried out. Jeon-nam also
showed a high livability; the urban living infrastructure index and planning index were
higher in this region than in other areas. In the coastal region of southern China, PM2.5
concentrations and vulnerability were low. Most of the areas with higher livability had
a lower PM2.5 vulnerability index. The livability index of coastal areas was higher than
that of inland areas. Vulnerability indices were lower in major cities, such as Beijing and
Tianjin, and higher in surrounding areas (Tianjin and Hebei). This suggests a concentration
of vulnerable populations in the surrounding areas. In inland China, livability has been
declining since 2016.
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3.3. Panel Regression Analysis Results

Table 3 shows the results of panel regression analysis by deriving an indicator with
a grey correlation coefficient of 0.6 or higher. In the case of South Korea, the random
effects model was significant in the Hausmann test. The feasible generalized least squares
(FGLS) regression model that can correct for autocorrelation and heteroscedasticity was
the most suitable, and the results are interpreted using this model. In South Korea, it
was found that education, health and medical care, social inclusion, traffic safety, and
climate indicators in the urban living infrastructure domain affect PM2.5 concentration.
Educational indicators in the urban living infrastructure domain were significant in the
positive direction, meaning that the better the educational indicators, the lower the PM2.5
concentration. The higher the quality of education, the more abundant human capital,
which increases economic productivity, which in turn improves livability [12,60,61]. In
other words, an area with good livability means that the quality of the environment is
high, so it can be interpreted that PM2.5 concentration is low. The safety indicator was also
significant in the positive direction, and the number of traffic accidents is likely to be high
in a place with a lot of vehicle movement, so PM2.5 concentration is likely to increase. The
social inclusion indicator in the social domain was also shown to be significantly related
to PM2.5 concentration. The revenue of the local general accounting and administrative
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budget is mainly tax revenue. Accordingly, an increase in tax revenue means an increase in
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In the case of China, the fixed-effects model was found to be significant in the Haus-
mann test, and the results were interpreted based on the Driscoll–Kraay model, which
can correct for autocorrelation and heteroscedasticity. Most of the indicators with high
GRA relevance were similar to those in South Korea. As a result of the panel regression
analysis, the cultural, leisure, education, and health and medical care indicators in the
urban living infrastructure domain were found to be significant, and the economic vitality,
social inclusion, and climate indicators were also found to have an effect on PM2.5 concen-
tration. Educational indicators were found to be influenced by wealth, in common with
South Korea, and economic indicators showed that PM2.5 concentration increased as the
number of workers increased. Health and medical care indicators were different from those
in South Korea, with a positive effect on PM2.5 in China based on the influence of wealth.
Health and medical care indicators refer to access to medical services, and in general, the
higher the number, the higher the livability. However, in the case of China, the greater the
access to medical services, the higher was the PM2.5 concentration. However, these specific
factors cannot be identified in this study. In both South Korea and China, the vulnerability
indicators, which showed a high correlation in the GRA, did not appear significant in the
panel regression model.
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Table 3. Panel regression analysis results.

Domain Indicators Sub Indicators South Korea China

(1) (2) (3) (4) (5) (6) (7) (8)

Vulnerability Sensitivity X3: Ratio of recipients of basic living
support 0.013 0.099 0.053 0.001

Urban living
infrastructure

Culture and leisure X6: Urban park area per 1000 population 0.004 −0.170 * −0.085 0.004 −0.142 0.080 −0.049 0.080 *

Education
X7: Number of students per teacher 0.587 *** 1.819 *** 0.787 *** 0.627 ***

X8: Number of childcare facilities per
1000 children −0.146 −0.267 −0.158 −0.158 * −0.161 −0.478 ** −0.182 −0.478 ***

Health and
healthcare

X9: Number of employees in medical
institutions per 1000 −0.346 *** 0.644 −0.358 * −0.335 *** 0.164 0.8317 0.273 0.832 ***

X10: Hospital beds per 1000 population 0.104 * −0.047 0.156 0.127 *** 0.515 * 0.197 0.761 ** 0.197 ***

Urban plan Urban growth X12: Green area rate −0.118 0.013 −0.015 −0.121 0.047 −0.044 −0.499 −0.044

Economic
development Economic vitality X18: Number of employees per 1000

population −0.086 0.462 0.061 −0.034 0.637 1.992 * 0.980 * 1.992 *

Social
development Social inclusion X19: Public administration budget in

general accounting 0.081 0.225 ** 0.113 0.107 *** −0.344 −0.821 ** −0.457** −0.821 ***

Safety Traffic safety X22: Number of traffic accidents per 1000
vehicles 0.210 *** 0.063 0.116 0.191 *** 0.083 −0.057 −0.001 −0.057

Environment

Environmental
consumption X24: Final energy consumption 0.228 −0.057 −0.046 0.045 0.057 0.142 0.135 0.142

Climate
X26: Annual average precipitation −0.061 * −0.054 −0.075 ** −0.059 *** −0.354 *** −0.197 −0.241 *** −0.197 ***
X27: Annual average temperature −0.315 ** −0.029 −0.264 −0.442 ***

_cons 3.014 −1.579 2.292 3.252 *** 1.064 −7.163 −0.476 −7.163
R-squared 0.597 0.679 0.630 0.606 0.522 0.461 0.522

Modified Wald test
chi2 (16) 1268.80 2010.10

Prob > chi2 0.000 0.000

Wooldridge test F(1, 15) 16.450 10.456
Prob > F 0.001 0.005

Hausman test
chi2 (13) = (b-B)’[(V_b-V_B)ˆ(−1)](b-B) 12.320 202.410

Prob > chi2 0.501 0.000

Note 1: Significant levels, * p < 0.1; ** p < 0.05; *** p < 0.01. Note 2: Model (1): Pooled OLS; Model; Model (2): Fixed-effect Model; (3): Random-effect Model; (4): Feasible Generalized
Least Squares; Model (5): Pooled OLS; Model; Model (6): Fixed-effect Model; (7): Random-effect Model; Model (8): Fixed-effect regression with Driscoll–Kraay standard errors. Note 3:
Statistically significant numbers were expressed in bold.
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4. Discussion

The environment is a major determinant of livability, and air quality in particular is
known to have the greatest impact [11,12]. PM2.5 travels long distances into the atmosphere
and affects neighboring countries, so it is important to understand the influence relationship
between neighboring countries [6,7]. The livability index is a standard for measuring the
quality of the urban environment and the basis for protecting citizens from environmental
pollution and the right to live in a safe environment [9]. Therefore, in this study, the effect
of PM2.5 concentration on livability in neighboring regions of China and South Korea
was investigated. As an alternative to transboundary PM2.5, international cooperation
between South Korea and China has been carried out. Recognizing that PM2.5 measures
are a priority, the two countries agreed to exchange information on PM2.5 component
analysis. The South Korea and China Air Quality Joint Research Center conducts joint
research in 10 areas, including the identification of the causes of air pollution, improvement
of forecasting models, and reduction of air pollutant emissions. It was agreed to establish a
research plan. However, this has limitations in responding because it is closely linked to
the difference in the mutual contribution rate of air pollution between the two countries
and to political and economic issues.

As confirmed in previous studies, PM2.5 is not limited to environmental problems
and affects daily life. It is necessary to identify and respond at the local level because it is
influenced by various factors such as climate, geography, economy, society, and population
of the region. Through the GRA analysis, it was confirmed that the urban life infrastructure
area showed the highest correlation between South Korea and China.

In China, urban living infrastructure, urban planning, and vulnerability were found
to be highly correlated with the PM2.5 concentration. Urban living infrastructure, which
measures the services and facilities required to live, including educational opportunities,
access to healthcare, cultural and recreational facilities, public amenities, and parks, is
the major factor in the livability index. The availability and accessibility of urban living
infrastructure are also related to urban planning and transportation. When livability was
defined based on the quality of life, the quality of the external environment, and living con-
ditions, urban living infrastructure, planning, and transportation had the highest weights
among all indicators [63]. The high correlation between urban living infrastructure and
PM2.5 concentration indicates that the latter clearly affects the quality of the living envi-
ronment. Conversely, this means that the indicators that make up the livability index can
also influence PM2.5 concentrations. Through the panel regression analysis, the influence
relationship could be identified more clearly. In both South Korea and China, the indicators
of urban living infrastructure, society, and environment were significant. Unlike China, in
South Korea, traffic safety indicators were significant, and in China, the area of urban parks
per 1000 people and the number of businesspeople were significant.

This study revealed that PM2.5 affects our daily life and is not just an environmental
problem. Based on our findings, we suggest several measures that can be taken to tackle
the problem of PM2.5 pollution. First, in the urban living infrastructure domain, urban
parks and green spaces were highly negatively correlated with PM2.5 concentration, and
they play a role in reducing PM2.5 concentrations. Thus, to reduce the negative impact
of PM2.5 in cities, it is necessary to increase the ratio of urban parks or green spaces. In
addition, in China, PM2.5 concentration showed a very high correlation with the health and
medical care index. Indeed, in China, PM2.5-related deaths increased by 23% between 2002
and 2017 [64]. Second, although there was not a clear causal relationship between PM2.5
concentration and social vulnerability, the GRA analysis showed a high correlation. In
South Korea, the population under 13 years of age showed a high correlation, whereas, in
China, the ratio of recipients of basic living support and the elderly population showed high
correlations. High-vulnerability areas have potential risks and therefore have the potential
to have lower livability in the long run. In both South Korea and China, areas surrounding
cities and primary or secondary industrial centers were more vulnerable than large cities.
China has a high PM2.5-related mortality rate and high vulnerability. Thus, more proactive
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countermeasures are needed. Third, in the environmental domain, energy consumption
showed a high correlation with PM2.5 concentration in both South Korea and China. Energy
consumption is directly related to PM2.5 concentration as it has a direct environmental
impact. Finally, South Korea and China are geographically close to each other and can affect
each other in terms of pollution. According to a South Korea–China–Japan joint research
report, 32% of the total PM2.5 concentration in South Korea was transboundary PM2.5 from
China, and the PM2.5 contribution rate of South Korea to China was 2% [65]. Therefore, for
South Korea, control of the PM2.5 pollution in China is of utmost importance. In addition,
based on the correlations among the livability indicators, the neighboring regions of China
and South Korea need to develop more specific and practical countermeasures for urban
living infrastructure, urban planning, transportation, and vulnerability factors that are
highly correlated with PM2.5 not only at the national level, but also at the regional level.

As a limitation of this study, when collecting the data for measuring livability, only
variables that were in common between the two countries were extracted. Therefore,
various other potentially relevant indicators, such as the housing index, were not included.
In future, it is necessary to lay a foundation for establishing regional PM2.5 reduction
measures by a South Korea–China joint council based on studies.

5. Conclusions

The purpose of this study was to investigate the effect of the concentration of PM2.5 on
the livability of neighboring regions of China and South Korea with the aim of informing
common policy development. South Korea and China have shared an analysis of PM2.5
emissions and movement through joint research and an agreement to reduce PM2.5. How-
ever, there is a limit to the response due to the difference in the mutual contribution rate of
PM2.5 emission between the two countries, and political and economic issues. Therefore,
this study aims to contribute to the response at the regional level by empirically analyzing
the effect of PM2.5 concentration on the livability index of South Korea and China.

As a result, urban living infrastructure showed the highest correlation and influence
with PM2.5 concentration in both countries. Urban living infrastructure occupies the largest
portion of the livability index and includes all physical environments and services enjoyed
in daily life in the city. Urban living infrastructure is closely related to planning and
policy indicators because it is implemented as a plan and policy for environmental quality,
appropriate distribution, and accessibility [63]. In addition, as a result of spatial analysis
to examine changes in PM2.5 concentration and livability according to time and space, the
average annual PM2.5 concentration decreased from 2015 to 2019 in both South Korea and
China, and livability improved. At the regional level, PM2.5 concentrations were high in
areas surrounding large cities, and livability was low. In China, the vulnerability index was
also high in the areas around big cities, and the livability in the inland regions tended to
be lower. Overall, South Korea showed a lower PM2.5 concentration and higher livability
than China. The concentration of PM2.5 was highest in areas with high population density
and industrial complexes. Since the spatial distribution of PM2.5 concentration and the
livability index differ according to regions, a regional approach is necessary for a joint
response to reduce PM2.5 at the national level. Therefore, it is necessary to prepare policies
at the regional level to respond to PM2.5 between bordering countries.

In this study, regional countermeasures can be prepared according to the livability
index that is greatly affected by PM2.5. In the case of urban living infrastructure, accessibility
and population density are major planning factors and are related to land use and urban
form. In the case of China, efforts are needed to reduce the concentration of PM2.5 by
expanding urban parks and green areas. In particular, in inland areas, the vulnerability is
increasing, so it seems urgent to prepare policies for the vulnerable population. South Korea
needs an active response to PM2.5 reduction through urban planning to reduce the use of
automobiles and link it with transportation policies. In areas where industrial complexes are
concentrated, the concentration of PM2.5 is high, so it seems that separate countermeasures
are needed. Lastly, environmental indicators have also been shown to have a significant



Int. J. Environ. Res. Public Health 2022, 19, 13049 18 of 20

impact, and complementary policies can be prepared by linking them with climate change
response policies and PM2.5 reduction measures. Through empirical analysis, this study
revealed that the decrease in PM2.5 concentration is not an environmental problem but is
closely related to the quality of the environment we can experience in our daily life. In
addition, this study is meaningful as a basic study for preparing policies to respond not
only at the national level, but also at the regional and city level in preparing a joint response
aimed at reducing PM2.5 between South Korea and China in the future.
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