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Abstract: The accurate estimation of reference evapotranspiration (ET0) is crucial for water resource
management and crop water requirements. This study aims to develop an efficient and accurate
model to estimate the monthly ET0 in the Jialing River Basin, China. For this purpose, a relevance
vector machine, complex extreme learning machine (C-ELM), extremely randomized trees, and four
empirical equations were developed. Monthly climatic data including mean air temperature, solar
radiation, relative humidity, and wind speed from 1964 to 2014 were used as inputs for modeling. A
total comparison was made between all constructed models using four statistical indicators, i.e., the
coefficient of determination (R2), Nash efficiency coefficient (NSE), root mean square error (RMSE)
and mean absolute error (MAE). The outcome of this study revealed that the Hargreaves equation
(R2 = 0.982, NSE = 0.957, RMSE = 7.047 mm month−1, MAE = 5.946 mm month−1) had better perfor-
mance than the other empirical equations. All machine learning models generally outperformed the
studied empirical equations. The C-ELM model (R2 = 0.995, NSE = 0.995, RMSE = 2.517 mm month−1,
MAE = 1.966 mm month−1) had the most accurate estimates among all generated models and can be
recommended for monthly ET0 estimation in the Jialing River Basin, China.

Keywords: reference evapotranspiration; empirical equations; complex extreme learning machine;
relevance vector machine; extremely randomized trees; Jialing River Basin

1. Introduction

Reference crop evapotranspiration (ET0) is an essential element of the hydrological
cycle. The accurate estimation of ET0 is critical for crop modeling, irrigation scheduling [1,2],
and water resource management [3]. ET0 can be measured directly using lysimeters [4]
and eddy covariance systems [5], which are expensive and time-consuming. As a more
economical alternative to the direct measurement method, mathematical equations with
measured meteorological parameters as inputs can be utilized to estimate ET0. The FAO-56
Penman–Monteith equation (FAO-56 PM) has been suggested by the Food and Agriculture
Organization of the United Nations (FAO) as a standard model for estimating ET0 [6].
However, it is well known that using the FAO-56 PM equation requires many meteorological
parameters, which limits its use in data-poor regions. In addition, the construction and
maintenance of automatic meteorological stations is expensive, especially in developing
countries [7]. Hence, simplified empirical equations with fewer input meteorological
parameters are gaining popularity.

In recent decades, numerous researchers have developed various simplified empirical
equations for estimating ET0. A detailed review of these empirical equations is beyond
the scope of this study, and the several most widely used methods are pointed out as
follows. The Hargreaves equation [8] was recommended as an alternative method for
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estimating ET0 in data-scarce regions [6]. The Hargreaves equation was also shown to be
the most accurate model under warm humid and semi-arid climatic patterns [9]. The Truc
equation [10] was determined to be the most appropriate model under cold humid and
arid climates in Iran [11]. The Trabert [12], Romanenko [13], and Schendel [14] equations
were reported to be the most promising equations for estimating ET0 under an arid climate
in the Senegal River Valley [15]. The Irmak equation [16] can be successfully used to
estimate ET0 in the humid climate in the Southeast United States. The Priestley–Taylor
(PT) equation [17] is energy-driven and presented a good performance in estimating ET0.
Numerous studies have developed these empirical equations in different climates and
regions [18–20]. However, according to existing studies, the above-mentioned empirical
methods may be limited due to the fact that the performance of empirical equations could
significantly vary depending on the environment [21]. Therefore, in order to achieve
reliable results, local calibration should be taken into account when applying the empirical
equations above, and their modeling performance should be evaluated for obtaining the
best model in the region.

ET0 is characterized by a complex nonlinear dynamic system and depends on various
meteorological parameters and physical processes, so finding and establishing an accurate
formula to illustrate all of those processes are challenging [22]. Fortunately, over the
past few decades, machine learning (ML) algorithms as effective tools for dealing with
nonlinear processes have already been successfully used in ET0 estimation. For instance,
Citakoglu et al. [23] used the adaptive neuro fuzzy inference system (ANFIS), artificial
neural network (ANN) models, and empirical methods including the Hargreaves and
Ritchie [24] equations to estimate ET0 in Turkey. The results showed that the ANFIS model
was the most reliable model. Feng et al. [25] compared an extreme learning machine
(ELM), a generalized regression neural network (GRNN), and wavelet neural networks
(WNNs) [26] versus empirical models (Hargreaves, Makkink [27], PT, Ritchie) in the
humid area of Southwest China. The fundamental input meteorological parameter in
these models was air temperature. The best results were obtained by ELM and GRNN
with air temperature, sunlight duration, relative humidity, and wind speed as inputs.
Fan et al. [28] studied the performance of support vector machine (SVM), ELM, random
forest (RF), M5 model tree (M5Tree), extreme gradient boosting (XGBoost), and gradient
boosting decision tree (GBDT) models for estimating ET0 in various climates of China. The
results indicated that XGBoost and GBDT provided superior performance. Bellido-Jiménez
et al. [29] evaluated multilayer perceptron (MLP), ELM, GRNN, SVM, RF, and XGBoost in
southern Spain, with ELM as the most precise model. It should be noted that although the
potential of the ML techniques mentioned above has been proven extensively for modeling
ET0, these techniques still have various shortcomings, such as over-fitting for ANNs, and
the high computational cost for SVMs. In conclusion, selecting an appropriate ML model
for modeling ET0 is of essential importance.

In recent years, many attempts have been made to overcome the inherent drawbacks
of traditional ML approaches in terms of their robustness, efficiency, and generalization
performance. A number of new ML models have attracted attention in practical scientific
issues, such as the relevance vector machine (RVM) [30], complex extreme learning machine
(C-ELM) [31], and extremely randomized trees (ETRs) [32]. Deo et al. [33] compared
ELMs, multivariate adaptive regression splines (MARS), and RVM to predict evaporative
in Australia and concluded that the RVM model has a good ability compared to other
traditional ML models. The RVM model has become an efficient tool in hydrology due to its
excellent generalization properties [34]. Li et al. [31] inspected the performance of C-ELM
and RBFNN in the application of channel equalization. Their study found that C-ELM had
better results in the symbol error rate and learning speed. Saeed et al. [35] used SVM, RF,
ANN, and ETR models to detect faults in wireless sensor networks. According to their
study, the ETR model is robust against signal noise, with a strong reduction of bias and
variance error. In addition, the ETR model has a shorter training time compared to other
traditional ML models. To the best of our knowledge, however, the potential of these three
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relatively new ML methods has not been demonstrated for estimating ET0 in the humid
area of Southwest China. Therefore, investigating and comparing the performance of RVM,
C-ELM, and ETR approaches for ET0 modeling is a strong motivation for this study.

The present study therefore attempts to utilize three relatively new approaches and
four empirical equations to estimate ET0 with limited meteorological data from 1964 to
2014 in the Jialing River Basin, China. More specifically, the aims of this study are the
following: (1) to investigate the practicability and ability of RVM, C-ELM, and ETR models
for estimating monthly ET0 at seven meteorological stations; (2) to test the validity of
four empirical equations (Hargreaves, Schendel, Irmak, and Romanenko) for estimating
monthly ET0 in the Jialing River Basin, China; (3) to evaluate the relative importance
of meteorological variables for ET0 estimates by the use of various combinations and
determine the best combination as input for ML models; (4) to compare the predictive ability
of our developed ML models with four empirical equations using four statistical indicators.

2. Materials and Methods
2.1. Study Region and Data Collection

The Jialing River Basin (JRB) (29◦17′ N–34◦28′ N and 102◦35′ E–109◦01′ E) originates
from the northern side of the Qinling Mountains and covers an area of 160,000 km2. The
Jialing River has a total length of nearly 1120 km, flowing through four provinces: Shanxi,
Gansu, Sichuan, and Chongqing. Figure 1 shows the geographical location of the JRB with
meteorological stations. JRB has a subtropical humid monsoon climate, and the average
annual rainfall is between 900 and 1200 mm [36]. The mean air temperature is around
25.5 ◦C during the summer months from June to August and falls to 6.5 ◦C during the
winter months from December to February [37].
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Figure 1. The geographical location of the study area.

The present study was conducted using seven stations in the JRB: Wudu, Mianyang,
Lveyang, Guangyuan, Daxian, Gaoping, and Shapinba. The period from 1964 to 2014
was selected due to the availability of climatic data with few gaps. Monthly climatic
data were used in this investigation to estimate monthly ET0. The monthly ET0 values
have obvious periodicity [38] and play an important role in planning long-term irrigation
management [39]. Therefore, estimating monthly ET0 using machine learning methods is
necessary and feasible. The geographical coordinates and the monthly average meteorologi-
cal parameters are reported in Table 1. Figure 2 shows the monthly variation of the mean air
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temperature (Tmean), solar radiation (Rs), wind speed at 2 m height (u2), relative humidity
(RH), precipitation, and standard FAO-56 PM ET0 of these meteorological stations. These
meteorological datasets were provided by the China Meteorological Data Service Centre
(see http://data.cma.cn/en, accessed on 14 April 2021).

Table 1. Meteorological stations with monthly average climatic conditions (from 1964 to 2014). Tmean

is the monthly mean air temperature (◦C), Rs is the monthly solar radiation (MJ m−2 month-1), u2 is
the monthly wind speed at 2 m height (m s−1), RH is the monthly relative humidity (%), ET0 is the
monthly standard FAO-56 PM ET0 values (mm month-1), and precipitation is the average annual
rainfall (mm).

Sites Latitude
(◦ N)

Longitude
(◦ E)

Altitude
(m) Tmean Rs u2 RH ET0 Precipitation

Wudu 33.40 104.92 1079.1 14.82 14.12 1.54 57.65 87.66 466.29
Mianyang 31.45 104.73 522.7 16.45 11.96 1.20 76.87 70.95 865.49
Lveyang 33.32 106.15 794.2 13.50 12.99 1.87 71.64 74.42 776.57

Guangyuan 32.43 105.85 513.8 16.26 12.40 1.40 68.38 77.47 939.32
Daxian 31.20 107.50 344.3 17.24 12.47 1.25 78.80 73.99 1228.38

Gaoping 30.78 106.10 309.7 17.48 12.32 1.06 79.34 72.79 1005.38
Shapinba 29.58 106.47 259.1 18.40 11.83 1.35 79.16 74.71 1121.27
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Figure 2. Monthly variations of meteorological parameters and ET0 for seven studied meteorological
stations during 1964–2014.

2.2. Penman–Monteith Method

The FAO-recommended Penman–Monteith equation (FAO-56 PM) [6] is employed
to estimate ET0 data. Given the absence of lysimeter-measured ET0 data, the FAO-56 PM
equation is an accepted and widely used practice [40,41]. Thus, the FAO-56 PM equation
is considered the benchmark model for the calibration and evaluation of the Hargreaves,

http://data.cma.cn/en
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Schendel, Irmak, Romanenko, C-ELM, RVM, and ETR models. The equation is given
below [6]:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the standardized grass reference evapotranspiration (mm month−1), ∆ is the
slope of the vapor pressure curve (kPa ◦C−1), Rn is the net radiation at the crop surface (MJ
m−2 month−1), G is the soil heat flux (MJ m−2 month−1), Tmean is the mean air temperature
(◦C), u2 is the wind speed at 2 m height (m s−1), es is the saturation vapor pressure (kPa),
ea is the actual vapor pressure (kPa), γ is the air psychometric constant (kPa ◦C−1).

2.3. Empirical Equations

Four empirical equations were employed to estimate monthly ET0: Hargreaves, Schen-
del, Irmak, and Romanenko. These equations were locally calibrated using the FAO-56 PM
equation to optimize their performance.

The Hargreaves equation [9] is one of the easiest and most accurate equations for
estimating ET0. It is described as

ET0 = a1·Rs·(Tmean + a2) (2)

where ET0 is the reference evapotranspiration (mm month−1), a1 and a2 are the empirical
coefficients, Rs is the solar radiation (MJ m−2 month−1), Tmean is the monthly mean air
temperatures (◦C).

The Schendel equation, as described by Schendel [14] is as follows:

ET0 =
a1·Tmean

RH
(3)

where ET0 is the reference evapotranspiration (mm month−1), a1 is the empirical coefficient,
Tmean is the monthly mean air temperature (◦C), RH is the relative humidity (%).

Irmak equation [16] is a linear regression equation and can be expressed as

ET0 = a1·Rs + a2·Tmean − a3 (4)

where ET0 is the reference evapotranspiration (mm month−1), a1, a2 and a3 are the empirical
coefficients, Rs is the solar radiation (MJ m−2 month−1), Tmean is the monthly mean air
temperature (◦C).

The Romanenko equation proposed by Romanenko [13] is used to estimate ET0 based
on the mean air temperature and relative humidity. It is expressed as

ET0 = a1·(a2 + Tmean)
a3 ·(a4 − RH) (5)

where ET0 is the reference evapotranspiration (mm month−1), a1, a2, a3, and a4 are em-
pirical coefficients, Tmean is the monthly mean air temperature (◦C), RH is the relative
humidity (%).

2.4. Relevance Vector Machine

Tipping [30] proposed the relevance vector machine (RVM) as a general-purpose sparse
Bayesian modeling method. The RVM model applies automatic relevance determination
(ARD) to linear regression to remove parameters that contribute nothing to the construction
of the model, resulting in a sparsity model. Therefore, models generated by the RVM
are usually more concise than those generated by the corresponding SVM, increasing the
speed of processing test data. In the RVM model, most parameters converge to zero during
the iterative learning process, while non-zero parameters correspond to points referred
to as relevance vectors, which reflect the most essential features of the dataset. The RVM
model can utilize non-Mercer kernels and has a fast computation speed compared to the
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SVM model. Moreover, the RVM model has a high generalization capacity and generates
probabilistic interpretation and prediction uncertainties [42]. The kernel function of the
RVM model used in this study is sigmoid.

2.5. Complex Extreme Learning Machine

The Complex Extreme Learning Machine (C-ELM) is an ELM-based model developed
by Li et al. [31], which has better generalization capability than ELM. The C-ELM model
is simple to use and offers a faster learning rate, faster reaction time, and a low symbolic
error rate (SER) [43]. When constructing a C-ELM model, the hidden layer bias and input
weights (linking the input and hidden layers) are produced at random, and the final output
weights (connecting the hidden and output layers) are simply determined mathematically
rather than being iteratively tuned. This method eliminates the potential for human error
in manually fine-tuning control parameters including starting weights, learning rates, and
learning epochs. The analysis of excellent solutions using the C-ELM model can also help
prevent local minima. The hyperparameter tested in this study is the hidden layers. The
remaining parameters are in the default settings.

2.6. Extremely Randomized Trees

Random Forest (RF) uses a randomized with a put-back approach to obtain the training
set of each decision tree, which results in duplicate samples in the training set. The RF
model does not guarantee that all samples can be fully utilized, and there may be similarities
among decision trees [44]. Based on the above considerations, the extreme random tree
(ETR) model was developed by Geurts [32]. Every decision tree in the ETR model is
trained utilizing the entire training set, guaranteeing that the training set is fully used and
minimizing the final prediction bias. To ensure structural differences among decision trees,
the division threshold of each feature is randomly chosen from the sub-datasets, and the
feature with the best division is chosen as the satisfactory division attribute by the specified
threshold. Therefore, the ETR model is trained faster than the RF. The hyperparameters
tested in this study are the number of trees, the number of points for each leaf, and the
number of attributes selected to perform the random splits. The rest of the parameters are
in the default mode.

2.7. Model Development

In the present study, the RVM, C-ELM, and ETR models were developed and compared
with four calibrated empirical equations. ET0 is only affected by climatic data including
Tmean, Rs, RH, u2, etc. [45]. Temperature and solar radiation data have been proved to be
important factors for ET0 estimation [46]. This is consistent with the background theory
that temperature and solar radiation are the two main driving forces of ET0 [47]. In the
development of ML models, it is desirable to determine the independence of each parame-
ter to reduce complexity and increase efficiency [48]. Utilizing the Pearson’s correlation
coefficient is one of the commonly used approaches to check the independence of hydrolog-
ical parameters. This is a parametric technique, and therefore its application requires the
conditions that must be respected in the data set. One of the most crucial assumptions is
that the statistical distribution is normal, which is not always true in hydrological data [49].
Additionally, the presence of outlier data may have an impact on the modeling outcomes.
As a result, instead of utilizing Pearson’s correlation coefficient to check the independence
of the input parameters, this study estimated the accuracy of the ML models with six input
combinations of parameters (Tmean, Rs, RH, and u2) based on the background theory to
assess the significance of each climatic parameter and train the ML models.

Table 2 illustrates the six input combinations used in this study. The RVM3, C-ELM3,
ETR3, Hargreaves, and Schendel equations have the same input combination (Tmean, Rs).
The RVM4, C-ELM4, ETR4, Irmak, and Romanenko equations have the same input combi-
nation (Tmean, RH).
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Table 2. Summary of the six input combinations of the meteorological parameters used in the RVM,
C-ELM, and ETR models.

Combination RVM C-ELM ETR Input
Combination

1 RVM1 C-ELM1 ETR1 Tmean
2 RVM2 C-ELM2 ETR2 Rs
3 RVM3 C-ELM3 ETR3 Tmean, Rs
4 RVM4 C-ELM4 ETR4 Tmean, RH
5 RVM5 C-ELM5 ETR5 Tmean, RH, u2
6 RVM6 C-ELM6 ETR6 Tmean, Rs, RH, u2

The entire dataset (data during 1964–2014) was divided into three parts. The first
part (data during 1964–2000) was used to train/calibrate the ML models/empirical equa-
tions; the second part (data during 2001–2007) was utilized to validate the ML models
and empirical equations; the third part (data during 2008–2014) was used to test the cal-
ibrated ML models and revised empirical equations. This approach can ensure a high
generalization ability and an independent test of the calibrated models [50,51]. Although
it is disappointing that the dataset from 2015 to present was not used, similar studies in
Iran [49,52] illustrated that 50 years of data are sufficient to meet the objectives of the study.

2.8. Performance Evaluation

This study employed four frequently used statistical metrics to compare empirical
equations and ML models to the FAO-56 PM equation: correlation of determination (R2),
Nash–Sutcliffe efficiency coefficient (NSE), root mean square error (RMSE), and mean
absolute error (MAE). They are defined as

R2 =
(∑n

i=1 (ET0,PM,i − ET0,PM,i)(ET0,e,i − ET0,e,i))
2

∑n
i=1 (ET0,PM,i − ET0,PM,i)

2
∑n

i=1 (ET0,e,i − ET0,e,i)
2 (6)

NSE = 1− ∑n
i=1 (ET0,PM,i − ET0,e,i)

2

∑n
i=1 (ET0,PM,i − ET0,PM,i)

2 (7)

RMSE =

√
1
n∑n

i=1 (ET0,PM,i − ET0,e,i)
2 (8)

MAE =
1
n∑n

i=1|ET0,PM,i − ET0,e,i| (9)

where n is the sample number, ET0,PM,i is the standard FAO-56 PM ET0 value, ET0,e,i is the
model estimated ET0 value, ET0,PM,i is the average FAO-56 PM ET0 value, and ET0,e,i is the
average model estimated ET0 value.

3. Results and Discussion
3.1. Estimation of Empirical Models

Table 3 represents the statistical indices of the four empirical equations averaged over
the seven stations. In the testing period, the Hargreaves equation is superior to other
empirical equations; the R2, NSE, RMSE, and MAE values are calculated as 0.982, 0.957,
7.047 mm month−1, and 5.946 mm month−1, respectively, followed by the Irmak equation
(R2 = 0.973, NSE = 0.953, RMSE = 7.588 mm month−1, MAE = 5.983 mm month−1), and the
Romanenko equation in third place (R2 = 0.966, NSE = 0.916, RMSE = 9.648 mm month−1,
MAE = 7.612 mm month−1). The Schendel equation has the poorest results (R2 = 0.944,
NSE = 0.901, RMSE = 11.025 mm month−1, MAE = 8.900 mm month−1).
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Table 3. Statistical indices of the studied empirical equations for modeling ET0 at the seven stations.

Model Hargreaves Schendel Irmak Romanenko

Calibration R2 0.98 0.942 0.973 0.964
NSE 0.979 0.929 0.973 0.964

RMSE 5.201 9.689 6.027 6.959
MAE 3.983 7.766 4.581 5.381

Validation R2 0.976 0.946 0.965 0.956
NSE 0.958 0.932 0.954 0.941

RMSE 7.079 9.621 7.77 8.751
MAE 5.763 7.679 6.012 6.587

Testing R2 0.982 0.944 0.973 0.966
NSE 0.957 0.901 0.953 0.916

RMSE 7.047 11.025 7.588 9.648
MAE 5.946 8.9 5.983 7.612

The R2, NSE, RMSE, and MAE values of the studied empirical equations at different
stations are given in Figure 3. In general, the Hargreaves equation performs best at all
stations, followed by the Irmak equation. The Romanenko equation is slightly better than
the Schendel equation at most stations. The lowest NSE value and highest RMSE value
are found at the Daxian station, which has higher precipitation (1228.38 mm) than those of
other stations (most < 1000 mm). With the lowest RMSE and MAE values and the highest
R2 and NSE values, Lveyang station achieves the best performance.
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Figure 3. Statistical indices of the four calibrated empirical equations at the seven stations for
modeling ET0 during the testing period (2008–2014). WD-Wudu, MY-Mianyang, LY-Lveyang, GY-
Guangyuan, DX-Daxian, GP-Gaoping, SPB-Shapinba.

The Shapinba station is a typical station belonging not only to the Jialing River basin
but also to the Three Gorges Reservoir area of the Yangtze River. Figure 4 shows the
FAO-56 PM ET0 values and empirical equation-estimated ET0 values at Shapinba sta-
tion during the testing period. The scatter plot of the Hargreaves equation provides
accurate results between 0 and 150 mm month−1 but underestimates ET0 when values
exceed 150 mm month−1. The Irmak equation performs well from 50 to 150 mm month−1



Int. J. Environ. Res. Public Health 2022, 19, 13127 9 of 16

and underestimates ET0 when values are less than 50 mm month−1 and greater than
150 mm month−1. The Romanenko equation significantly overestimates ET0 and shows
more scattered estimates than the others. The Schendel equation overestimates low ET0
values and underestimates high ET0 values. Therefore, the Hargreaves equation is the
most accurate of the four empirical models. Our results are consistent with those of
Moeletsi et al. [53] and Valipour et al. [54].
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Figure 4. Scatter plots of ET0 values estimated by the four empirical models against FAO-56 PM ET0

values at Shapinba station during the testing period.

3.2. Estimation of Machine Learning Models

Table 4 is created to compare the accuracy of ET0 estimated by the RVM, C-ELM, and
ETR models with six input combinations. From Table 4, it is seen that input combina-
tion 6 has superior performance to other input combinations. Considering all eighteen
ML models, the best model is C-ELM6 (R2 = 0. 995, NSE = 0. 995, RMSE = 2.517 mm
month−1, MAE = 1.966 mm month−1), the best model with three input parameters is C-
ELM5 (R2 = 0.974, NSE = 0.943, RMSE = 8.293 mm month−1, MAE = 6.570 mm month−1),
the best model with two input parameters is C-ELM3 (R2 = 0.985, NSE = 0.966, RMSE = 6.153 mm
month−1, NSE = 4.988 mm month−1), and the best model with only one input parameter is
RVM2 (R2 = 0.946, NSE = 0.909, RMSE = 10.626 mm month−1, MAE = 8.652 mm month−1).

Figure 5 shows the RMSE values of the RVM, C-ELM, and ETR models with six input
combinations. According to Figure 5, when input parameters are combinations 1–4, the
RVM, C-ELM, and ETR models present similar estimation accuracy. When input parameters
are combinations 5–6, the C-ELM model gives better performance than the RVM and ETR
models. Otherwise, combination 2 gives lower RMSE values than those of combination 1.
The combination 3 also gives quite good results. The RMSE of combination 5 has little
significant improvement compared to combination 4. The results show that Rs has the
greatest effect on estimating monthly ET0 in this humid study area, followed by Tmean and
RH. The minimum effective input parameter is determined as u2 for the RVM, CELM, and
ETR models.
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Table 4. Statistical indices for the RVM, C-ELM, and ETR models with six input combinations for
modeling ET0 during the training, validation, and testing periods.

Model RVM1 RVM2 RVM3 RVM4 RVM5 RVM6 C-
ELM1

C-
ELM2

C-
ELM3

C-
ELM4

C-
ELM5

C-
ELM6 ETR1 ETR2 ETR3 ETR4 ETR5 ETR6

Training R2 0.912 0.943 0.986 0.972 0.976 0.993 0.913 0.944 0.986 0.972 0.978 0.994 0.922 0.948 0.988 0.976 0.981 0.993
NSE 0.912 0.943 0.985 0.972 0.948 0.993 0.913 0.944 0.986 0.972 0.978 0.994 0.922 0.948 0.988 0.976 0.981 0.993

RMSE 10.740 8.748 4.313 6.153 7.409 2.977 10.682 8.693 4.195 6.099 5.362 2.709 10.113 8.423 3.948 5.661 5.063 2.955
MAE 8.460 6.927 3.190 4.550 5.797 2.120 8.418 6.869 3.076 4.499 3.867 1.908 7.941 6.662 2.834 4.244 3.736 2.063

Validation R2 0.890 0.935 0.979 0.957 0.952 0.992 0.886 0.935 0.981 0.959 0.968 0.994 0.883 0.934 0.981 0.957 0.950 0.972
NSE 0.886 0.908 0.967 0.950 0.908 0.991 0.882 0.906 0.969 0.949 0.951 0.993 0.879 0.907 0.968 0.953 0.941 0.967

RMSE 12.414 11.020 6.318 8.100 9.956 3.406 12.665 11.081 5.975 8.177 7.906 2.978 12.826 11.095 6.189 7.935 8.610 5.996
MAE 9.890 8.845 4.912 6.066 7.819 2.571 10.032 8.893 4.719 6.082 6.026 2.268 10.073 8.830 4.838 6.012 6.520 4.314

Testing R2 0.890 0.946 0.985 0.967 0.969 0.994 0.890 0.945 0.985 0.965 0.974 0.995 0.890 0.944 0.985 0.965 0.962 0.978
NSE 0.866 0.909 0.965 0.926 0.881 0.992 0.865 0.907 0.966 0.927 0.943 0.995 0.866 0.907 0.965 0.937 0.944 0.972

RMSE 12.815 10.626 6.287 9.148 11.016 3.069 12.860 10.720 6.153 9.034 8.293 2.517 12.800 10.773 6.246 8.688 8.446 5.716
MAE 10.001 8.652 5.106 7.208 9.077 2.396 10.049 8.742 4.988 6.993 6.570 1.966 9.966 8.715 5.040 6.668 6.465 4.000
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Figure 5. RMSE values of the RVM, C-ELM, and ETR models with six input combinations at the
seven stations for modeling ET0 during the testing period (2008–2014). WD-Wudu, MY-Mianyang,
LY-Lveyang, GY-Guangyuan, DX-Daxian, GP-Gaoping, SPB-Shapinba.

From Table 4 and Figure 5, the C-ELM model is superior to the RVM and ETR mod-
els. Figure 6 is intended to investigate the accuracy of the C-ELM model with six input
combinations. As can be seen from Figure 6, the scatter plot of C-ELM6 is less scattered.
Among the models investigated, the C-ELM6 model has the best fit line and the highest
R2 value (R2 = 0.9949). The C-ELM4 and C-ELM5 models invariably overestimate the ET0
values. The R2 values of the C-ELM4 and C-ELM5 are 0.9836 and 0.9842, respectively. The
fitting slopes of C-ELM1, C-ELM2, and C-ELM3 are between 0.83 and 0.99, indicating those
models underestimate the ET0 values. The C-ELM1 and C-ELM2 models with one input
parameter are more scattered than the other models. The C-ELM3 model with two input
parameters is less distributed and produces reliable results (R2 = 0.9855). Overall, C-ELM3
and C-ELM6 are recommended to estimate monthly ET0 values.
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3.3. Comparison of Empirical and Machine Learning Models

Figure 7 presents the boxplots of statistical indices for the four empirical equations
and studied ML models with input combinations 3, 4, and 6. As shown in Figure 7, the
C-ELM6, RVM6, and ETR6 models offer the best outcomes compared to other empirical
equations and ML models. The C-ELM6 model has the highest values for R2 and NSE and
the lowest values for RMSE and MAE, followed by the RVM6 model, with the ETR6 model
in third place. When Tmean and Rs are the inputs, The C-ELM3, RVM3, and ETR3 models
give better performance than the Hargreaves and Schendel equations. When Tmean and RH
are the inputs, the C-ELM3, RVM3, ETR3, and Romanenko equations have similar accuracy,
but the Irmak equation has the worst performance. In conclusion, the ML models exhibit
superior performance compared to the four empirical equations, and the C-ELM6 model is
the best model.
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Figure 7. Boxplot of statistical indices for the four empirical equations and ML models for predicting
ET0 with input combinations 3, 4, and 6. Solid boxes are empirical equations, and blank boxes are
ML models.

The Taylor diagram is created to study the adaptation between FAO-56 PM ET0 and
estimated ET0 (Figure 8). As displayed in Figure 8, the C-ELM6, RVM6, and ETR6 models
perform quite well. The most accurate model compared to FAO-56 PM ET0 for the seven
stations except Shapinba is the C-ELM6 model. At the Shapinba station, the best model is
the ETR6 model. Overall, the C-ELM6 model and Schendel equation yield the highest and
lowest accordance, respectively, with the FAO-56 PM standard deviation line.
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4. Conclusions

In this study, for the first time, four empirical equations (Hargreaves, Schendel, Irmak,
and Romanenko) and three ML models (RVM, C-ELM, and ETR) were established for
estimating monthly ET0 in the JRB. Monthly meteorological datasets including Tmean, Rs,
RH, and u2 from the seven meteorological stations in this Basin for 1964–2014 were used.
Based on the obtained results, some conclusions can be drawn.

Firstly, Rs and Tmean were considered to have significant effects on ET0, especially
under humid conditions. RH and u2 produced less meaningful results when used sepa-
rately. Nevertheless, adding RH and u2 to Rs or Tmean improved the accuracy for estimating
monthly ET0.
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Secondly, four empirical equations (Hargreaves, Schendel, Irmak, and Romanenko)
had acceptable estimation accuracy. The Hargreaves equation was the best empirical
equation in the JRB. However, all ML models had more accurate results compared to
empirical equations. Therefore, it can be confirmed that the RVM, C-ELM, and ETR models
are efficient methods to get satisfactory results for estimating monthly ET0. The RVM
and ETR models showed similar ability. The C-ELM performed better than the RVM and
ETR models. Moreover, the C-ELM6 model, which uses Tmean, Rs, RH, and u2 as inputs,
produced the best estimates.

Finally, this study conclusively substantiated the effectiveness and generalization
performance of ML techniques (RVM, C-ELM, and ETR) for modeling and forecasting ET0,
which was also the first attempt to investigate the JRB with a subtropical humid monsoon
climate. Nevertheless, under other climatic conditions, the applicability and validity of
these advanced regression techniques remain to be investigated. More importantly, with
the development of remote sensing techniques, using satellite remote sensing datasets
combined with meteorological datasets needs to be studied to further improve the accuracy
of ML models.
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