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Abstract: The continued expansion of agriculture must contend with the dual pressures of changing
factor endowment structure and constrained resources and environments. The main purpose of this
paper is to provide feasible ideas for high-quality agricultural development in the transition period
through the research on the green-biased technical change in Chinese agriculture. This paper selects
China’s provincial panel data of the agriculture industry from 1997 to 2017, combining the DEA-
SBM model and Malmquist–Luenberger index decomposition method to calculate the green-biased
technical change (BTC) index; second, the influence mechanism of BTC is empirically investigated by
using the panel data regression analysis approach. The results show that: (1) in China’s agriculture
industry, BTC is the driving force behind long-term and steady improvement of technological
advancement. Specifically, input-biased technical change (IBTC) has a substantial enhancing effect on
agricultural green total factor productivity (GTFP), whereas output-biased technical change (OBTC)
has a certain inhibiting effect. (2) On the whole, the tendency of capital substituting for labor and
land is very evident, whereas the biased advantage of desirable output is not particularly prominent.
(3) The BTC index in Chinese agriculture varies regionally. The eastern region has the highest IBTC
index but the lowest OBTC index. (4) The degree of marketization, urbanization, capital deepening,
financial support for agriculture, and other factors have a promoting effect on IBTC, whereas most
of them have a restraining effect on OBTC. There is evident regional heterogeneity in the effect of
environmental regulation intensity on BTC. The following are the primary contributions of this paper:
based on national conditions in China, this paper empirically explores the changes and internal rules
of green-biased technical change in China’s agriculture industry from various regional viewpoints. It
provides an empirical foundation for the regional diversification of agricultural green transformation.

Keywords: agriculture; green-biased technical change; SBM model; Malmquist–Luenberger index

1. Introduction

Since the reform and opening up, China’s agriculture has made outstanding progress.
With less than 10% of the world’s land, China feeds more than 20% of the world’s popula-
tion, effectively ensuring national food security and a steady supply of vital agricultural
products [1]. However, the continued expansion of agriculture must contend with the
dual pressures of changing factor endowment structure and constrained resources and
environments. On the one hand, with the acceleration of industrialization and urbanization,
the traditional agricultural factor supply, including cultivated land and labor force, has
undergone significant changes [2,3]. On the other hand, a high environmental cost came
along with this great success [4]. According to the Bulletin on the Second National Census
of Pollution Sources, the national agricultural pollution discharge of chemical oxygen
demand (CODcr), total nitrogen (TN), and total phosphorus (NP) in 2017 made up 49.77%,
46.52%, and 67.22% of all national emissions, respectively. Moreover, it is important to not
undervalue the amount of carbon emissions produced by agricultural production processes
such as rice farming and livestock raising [5,6]. At the 20th CPC National Congress, it was
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proposed to accelerate the green transformation of the development mode, and adhere
to coordinated promotion of carbon reduction, pollution reduction, green expansion, and
growth. The green development of agriculture is an important part of it, and how to
resolve the “tripartite dilemma” of resources, environment, and development has become
a practical problem that needs to be solved urgently.

For a very long time, China’s agricultural development and the expansion of the
national economy have been greatly influenced by technical change. It is also an important
means of bridging the gap between the demands for resources, the environment, and devel-
opment. Even though the majority of neoclassical growth theories view technical change
as exogenous and neutral, in most instances [7,8], the process of technical change and het-
erogeneity of factor endowment will result in different preferences for factor input, which
will then result in different preferences for technical change [9–11]. Additionally, when
technical change tends to conserve factor resources and reduce undesirable output, energy
conservation and emission reduction can be achieved while promoting growth, reflecting
the high-quality development objective of green production technology progress [12,13].
Then, a question arises: in the Chinese agriculture industry, what function does the green-
biased technical change play in the agricultural growth process? Does it reflect the relative
rarity of the factors, and does it successfully ease off the conflict between development
and the environment? What are the driving forces behind the growth of green-biased
technical change? Based on the research purpose above, this paper intends to measure the
green-biased technical change by using the Chinese agriculture industry as a case study,
analyze its contributions to agricultural growth, and investigate its bias characteristics. Ad-
ditionally, this paper discusses the factors that influence green-biased technical change. The
accomplishment of these research objectives will serve as a significant comparison value
for the high-quality development of China’s agriculture during this phase of transition.

The marginal contribution of this study in comparison to earlier papers is as follows:
first, this paper implements the DEA-SBM method to incorporate agricultural non-point
source pollution and agricultural carbon emissions into the scope of the investigation of
undesirable output. Based on China’s national circumstances, the pollution accounting
method is revised in order to produce more accurate results and valuable policy references.
Second, in contrast to the research on multi-factor input of agriculture industry, this paper
only incorporated capital, land, and labor into a unified analysis framework through the
accounting of provincial agricultural capital stock, so as to accurately grasp the changes and
internal rules of green-biased technical change from a macro perspective. Thirdly, through
the accounting, decomposition, and identification of green-biased technical change, as well
as the regional investigation of the impact mechanism, this paper not only extends the
existing research, but also offers an empirical foundation for the formulation of regional
differentiation policy.

2. Literature Review

Since Acemoglu systematically discussed biased technical change [11,14–16], the
biased technical change theory has gradually emerged as a fresh way to understand
unbalanced economic development and growth. The Hayami and Ruttan (1971) theory
of induced technological innovation in agriculture [10] has emerged as an important
theoretical tool for assessing the progress of agricultural technology [17].

The parametric method and the non-parametric method are the two main solutions
used to measure biased technical change. Stochastic frontier analysis (SFA) and the nor-
malized supply-side system approach (NSS) are examples of parametric methods. Data
envelopment analysis (DEA) is an example of a non-parametric method. The first strategy
is called a normalized supply-side system (NSS). The most representative examples are
two publications by Klump [18,19]. As research continues, academics apply the method to
industries in order to analyze the bias of technical change [20–22]. Wang et al. (2015) em-
ployed this method to study the biased technical change in China’s agricultural sector [23].
The second technique is stochastic frontier analysis (SFA). Given the diversity of input
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factors, the CES function with fixed elasticity of substitution is rarely employed. In contrast,
the translog production (cost) function with variable elasticity of substitution is gaining
increasing attention [24–26]. The SFA method was employed in the field of agriculture
by foreign researchers Taylor et al. (1986), Battese (1992), and Kalirajan (1996) to assess
changes in total factor productivity [27–29]. Recent representative works on the bias of
agricultural technical change in China include Kong et al. (2018) and Gong (2018) [2,17].
They both confirm the existence of biased technical change. The third method is data enve-
lope analysis (DEA). To measure productivity, Caves et al. (1982) first suggested combining
the DEA model and the Malmquist Index [30]. Later, Färe et al. (1994) and Färe et al.
(1997) conducted additional research on this index and, from input and output, respectively,
decomposed the biased technical change index [31,32]. The use of non-parametric tech-
niques eliminates bias that results from the subjective setting of production functions and is
appropriate for complex systems with numerous inputs and outputs [33,34]. Some scholars
brought negative environmental output into the research framework and analyzed the
biased technical change and its influential mechanism in different fields [12,33,35–37]. In
the field of agriculture, Managi et al. (2004) and Singh et al. (2012), respectively, measured
the biased technical change of agriculture in the United States and India [38,39]. The recent
representative literature that applied the DEA method to study the biased technical change
in Chinese agriculture includes the study of Yin et al. (2018) and Hu et al. (2021) [3,40].
However, neither the discussion of output-biased technical change based on agricultural
pollution emission data nor its influence mechanism are included in these two studies.

Compared to the measurement of biased technical change, research on the influenc-
ing factors of biased technical change deserves equal attention. Generally speaking, the
categories of scholars’ discussions are classified as follows: firstly, factor markets. Hicks
(1932) noted that changes in the prices of production factors could encourage inventions,
especially those that directly save relatively expensive factors [9]. Hayami and Ruttan
(1971) explained the bias of technology generation and change under the given natural
resource conditions, and empirically examined the differences in agricultural technology
innovation and agricultural development paths between the United States and Japan [10].
Huang et al. (2020) and Liu et al. (2022) also empirically confirmed the viewpoints
above [12,33]. Secondly, the policy. Gong (2018) studied the impact of a series of market-
oriented fundamental reforms on biased technical change in agriculture since China’s
reform and opening up [17]. Government innovation subsidies have a significant impact on
biased technical change, according to an empirical study by Liu et al. (2022) [12]. The factor
of environmental regulation has also become a hot topic of discussion in recent years. There
are mainly two viewpoints: they are “compliance costs theory” [41] and “innovation com-
pensation theory” [42], respectively. Some literature conducted empirical verification and
found that the aforementioned two effects may exist in various circumstances [12,43–46].
The third is global trade. However, results on the impact of global trade on biased technical
change are very different in specific empirical studies for various industries [12,24,33,47].
Fourth, the additional factors. Existing research has also examined the impact of property
rights structure, industry size, energy consumption structure, R&D intensity, industrial
structure, urbanization level, marketization degree, and foreign direct investment on biased
technical change [12,24,33,46].

In conclusion, the current literature is valuable for future research on agricultural green
technology progress. However, it still has drawbacks: (1) research on green-biased technical
change in Chinese agriculture is not as common as it is in other industries. The difficulty
in estimating provincial agricultural capital stock is one of the most important reasons. In
most studies, intermediate inputs such as fertilizer, machinery, pesticides, agricultural film,
water, and energy are substituted for agricultural capital factors [2,6,17,48–51]. However,
these intermediate inputs are not ideal substitutes for agricultural capital factors [3,52].
(2) Most studies do not take into account agricultural undesirable output in sufficient
amounts, which means that studies on agriculturally biased technical change lack full
investigation of the important part of output bias. The following are the main reasons for
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inadequate consideration: first, the majority of the literature employs parametric methods
that require strict assumptions on production functions, making it difficult to account for
agricultural pollution emissions effectively. Second, to achieve the goal of high-quality
development, both non-point source pollution and carbon emissions in agriculture cannot
be ignored [51,53]. However, most current studies only consider one of them. Third, the
measurement of agricultural carbon emissions in the majority of studies lacks breadth and
precision. Some carbon emission coefficients are not based on the actual domestic situation
and frequently copy foreign literature, and some studies fail to distinguish “carbon” and
“carbon dioxide” accurately [5]. (3) Even though studies on the accounting of biased
technical change in Chinese agriculture have been conducted, the influencing factors of
biased technical change have not been empirically examined, and the varying influences
on the different regions of China have not been considered.

3. Methods
3.1. Framework of Method Analysis

The research framework consists of three phases. First, this paper takes three factors of
labor, land, and capital as the input ends, and takes desirable output and undesirable output
(including agricultural non-point source pollution and agricultural carbon emissions) as the
output ends to be included in the unified analysis framework of this research. Second, by
configuring the DEA-SBM model, this paper constructs the Malmquist–Luenberger index,
which can further decompose the biased technical change index. Following that, the bias
identification method is used to pinpoint the input/output bias of technical change. Finally,
regression analysis is used to identify the factors that influence biased technical change.
Figure 1 depicts the analysis framework for this paper.
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3.2. Calculation Method of Green-Biased Technical Change in Chinese Agriculture
3.2.1. SBM Model Setting and Green Total Factor Productivity Decomposition

Tone (2001) proposed the SBM model to improve the traditional DEA model which
failed to solve the problem with slack variables in the course of efficiency evaluation.
Subsequently, Tone (2004) put forward the SBM model considering undesirable output.
This model not only solved the slack improvement in efficiency evaluation, but also gave
comprehensive consideration to the relationship between input, output, and bad pollu-
tion [54,55].

In the present study, each province in China is treated as a single decision-making
unit (DMU) to construct the optimal production technology boundary. It is assumed that K
province makes use of N input factors X = (x1, · · · , xn) to produce M desirable outputs
Y = (y1, · · · , ym), y ∈ R+

m and I undesirable outputs B = (b1, · · · , bi), b ∈ R+
i . When the

input-output of the kth observed value in period t is expressed as
(
xt

k, yt
k, bt

k
)
, the production

possibility set containing undesirable output can be expressed as:

pt(xt) =
{(

xt
k, yt

k, bt
k
)∣∣: xt

n ≥ Xλ, yt
m ≤ Yλ, bt

i ≥ Bλ, λ ≥ 0
}

(1)

According to Equation (1), the SBM model considering undesirable output can be
written as:

ρ∗ = min
1− 1

N

N
∑

n=1

sx−
n

xnk

1+ 1
M+I

(
M
∑

m=1

ym
ymk

+
I

∑
i=1

bi
bik

)
s.t. Xλ + sx− = xk

Yλ− sy+ = yk
Bλ + sb− = bk
λ ≥ 0, sx−, sy+, sb− ≥ 0

(2)

where sx−, sy+, sb− represent the slack values of input, desirable output, and undesirable
output, respectively; and xnk, ymk, bik refer to the nth input, the mth desirable output, and
the ith undesirable output of the kth DMU, respectively. If and only if ρ∗ = 1, that is, when
sx− = sy+ = sb− = 0, the DMU is completely effective; otherwise, there is room for the
improvement of both input and output.

Furthermore, inspired by the idea of Färe et al. (1994) and Chung et al. (1997), this
paper starts by constructing the Malmquist–Luenberger index [31,56]. It is supposed that
ρt

k(xt, yt, bt) and ρt+1
k (xt+1, yt+1, bt+1) are the efficiency values of the kth DMU at t and

t + 1 period, respectively. Therefore, the agricultural green Malmquist–Luenberger index
(ML) of each province is expressed as:

MLt,t+1
k =

[
ρt

k(xt+1, yt+1, bt+1)

ρt
k(xt, yt, bt)

×
ρt+1

k (xt+1, yt+1, bt+1)

ρt+1
k (xt, yt, bt)

] 1
2

(3)

When MLt,t+1
k > 1, it indicates an increase in the green total factor productivity (GTFP)

from period t to period t + 1. When MLt,t+1
k < 1, it indicates a decline in the GTFP from

period t to period t + 1. According to the ML index decomposition method, it is further
decomposed into two parts: technical change and efficiency change:

MLt,t+1
k =

[
ρt

k(xt ,yt ,bt)

ρt+1
k (xt ,yt ,bt)

× ρt
k(xt+1,yt+1,bt+1)

ρt+1
k (xt+1,yt+1,bt+1)

] 1
2
× ρt+1

k (xt+1,yt+1,bt+1)

ρt
k(xt ,yt ,bt)

= TCt,t+1
k × ECt,t+1

k

(4)

where TCt,t+1
k represents the technical change of the kth DMU from t to t + 1 period,

namely, the movement of technology frontier; and ECt,t+1
k denotes the change in relative

efficiency, that is, the change in distance between the input–output combination and the
production frontier.
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To assess the bias of technical change, Färe et al. (1997), based on the study of Färe et al.
(1994), decomposed the technical change (TC) index into the magnitude of technical change
(MATC) and bias of technical change (BTC) index. Moreover, the BTC index can be further
decomposed into the input-biased technical change index and output-biased technical
change index [31,32]. Based on this, the specific decomposition process is expressed
as follows:

TCt,t+1
k =

[
ρt

k(xt ,yt ,bt)

ρt+1
k (xt ,yt ,bt)

× ρt
k(xt+1,yt+1,bt+1)

ρt+1
k (xt+1,yt+1,bt+1)

] 1
2

=
ρt

k(xt+1,yt+1,bt+1)

ρt+1
k (xt+1,yt+1,bt+1)

×
[

ρt
k(xt ,yt ,bt)

ρt+1
k (xt ,yt ,bt)

× ρt+1
k (xt+1,yt+1,bt+1)

ρt
k(xt+1,yt+1,bt+1)

] 1
2

= MATCt,t+1
k × BTCt,t+1

k

(5)

BTCt,t+1
k =

[
ρt

k(xt ,yt ,bt)

ρt+1
k (xt ,yt ,bt)

× ρt+1
k (xt+1,yt+1,bt+1)

ρt
k(xt+1,yt+1,bt+1)

] 1
2

=

[
ρt+1

k (xt ,yt ,bt)

ρt
k(xt ,yt ,bt)

× ρt
k(xt+1,yt ,bt)

ρt+1
k (xt+1,yt ,bt)

] 1
2
×[

ρt
k(xt+1,yt+1,bt+1)

ρt+1
k (xt+1,yt+1,bt+1)

× ρt+1
k (xt+1,yt ,bt)

ρt
k(xt+1,yt ,bt)

] 1
2

= IBTCt,t+1
k ×OBTCt,t+1

k

(6)

where MATC represents neutral technical change, which is used to measure the shift of
production frontier; BTC indicates the biased technical change, which is used to measure
the “non-neutral” transfer of technological frontier; IBTC refers to input-biased technical
change, which is used to measure the change in marginal rate of substitution of different in-
put factors caused by technical change; and OBTC denotes output-biased technical change,
which is used to measure the promoting effect of technological progress on different propor-
tions of various outputs in the case of multiple outputs. If IBTC > 1(<1), it indicates that
the input-biased technical change promotes (hinders) the enhancement of GTFP. Likewise,
when OBTC > 1(<1), it implies that the output-biased technical change promotes (hinders)
the enhancement of GTFP. Additionally, when IBTC = 1 and OBTC = 1, it suggests that
the technical change is Hicks-neutral.

3.2.2. Identification Method of Green Technical Change Bias

The indexes IBTC and OBTC are used to measure the biased technical change from
the perspective of input and output, respectively. However, it is difficult to know the
specific bias of the input and output side by using the indexes alone. Weber and Doma-
zlicky (1999) proposed a method, which combined biased technical change index and
intertemporal variation of marginal substitution rate of factors, to analyze the bias of spe-
cific factors [57]. Based on the above arguments, and the idea of Huang et al. (2020) and
Ding et al. (2020) [33,46], the specific method of identifying input bias of technical change
is constructed as follows:

πi,j =

(
It+1

Jt+1 /
It

Jt − 1
)
× (IBTC− 1) (7)

It is assumed that there is technical change occurring from the t to t + 1 period. It+1

Jt+1 / It

Jt

represents the ratio of the marginal substitution rate of factors I and J from t to t + 1, which
indicates the change of factor allocation. At a time when IBTC > 1 and It+1

Jt+1 / It

Jt > 1, πi,j > 0,
the biased technological progress results from the relatively more inputs of factor I, which
is referred to as factor I-driven technological progress (or factor J-saving technological
progress). Conversely, when IBTC < 1 and It+1

Jt+1 / It

Jt > 1, πi,j < 0, the large input of factor I
contributes to technological retrogression. That is to say, technological progress is biased
towards factor J, namely, factor J-driven technological progress.
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Similar to the analysis of output-biased technical change, the output bias index πYB is
expressed as follows:

πY,B =

(
Yt+1

Bt+1 /
Yt

Bt − 1
)
× (OBTC− 1) (8)

where Yt+1

Bt+1 / Yt

Bt represents the ratio of the marginal substitution rate of the desirable output
Y and the undesirable output B between the two periods. When πY,B > 0, it indicates that
technological progress is biased towards producing more desirable output while reducing
undesirable output, which is referred to as environmentally friendly technological progress.
In addition, the opposite is true for environmental degradation technological progress.

Finally, the methods used to identify the input and output biases of green technical
change are summarized, as shown in Table 1:

Table 1. Identification method of green technical change bias.

Input IBTC > 1 IBTC = 1 IBTC < 1

It+1

Jt+1 / It

Jt > 1
Technological

progress of I using
and J saving

Neutral
Technological

progress of J using
and I saving

It+1

Jt+1 / It

Jt < 1
Technological

progress of J using
and I saving

Neutral
Technological

progress of I using
and J saving

Output OBTC > 1 OBTC = 1 OBTC < 1

Yt+1

Bt+1 / Yt

Bt > 1
Environmentally

friendly technological
progress

Neutral

Environmental
degradation
technological

progress

Yt+1

Bt+1 / Yt

Bt < 1

Environmental
degradation
technological

progress

Neutral
Environmentally

friendly technological
progress

3.3. Regression Analysis of Factors Affecting Green-Biased Technical Change

To further explain the differences in green-biased technical change among regions,
this paper takes IBTC and OBTC as the explained variables to analyze the effects of various
factors on biased technical change. The model is presented as follows:

{ln IBTCit, ln OBTCit} = α + β1 ln MAit + β2 ln ULit + β3 ln CDit
+β4 ln FSit + β5ERit + β6ER2

it
+ β7 ln DRit

+β8 ln PFit + β9 ln AHit + ηi + µt + εit

(9)

where i and t represent the province and time, respectively; IBTC and OBTC denote the
agricultural input-biased technical change and output-biased technical change of each
province, respectively; and η, µ, and ε refer to the individual effect reflecting the regional
differences of each province, the time effect changing over time, and other interference
terms, respectively. The meaning of each explanatory variable is detailed as follows:

(1) Degree of marketization (MA). The degree of marketization is regarded as a significant
index used to indicate the marketization mobility of agricultural products and agri-
cultural factors [33]. Herein, Fan Gang’s marketization index is adopted to measure
the depth and breadth of marketization reform carried out in each province.

(2) Urbanization level (UL). Urbanization is coupled with the transfer of substantial
agricultural surplus labor and the non-agricultural process of arable land [33,58].
Herein, the proportion of urban population to the total population is used to measure
the urbanization level.
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(3) Agricultural capital deepening (CD). Capital accumulation and its deepening pro-
vide a crucial driving force for agricultural growth. According to the study of
Li et al. (2014) and that of Kong et al. (2018) [2,58], there are three indicators se-
lected: total power of agricultural machinery/10,000 people, fertilizer application
amount (net)/1000 hectares, and effective irrigation area/1000 hectares. Then, the
entropy method is applied to calculate the variables used to characterize the degree of
agricultural capital deepening.

(4) Financial support for agriculture (FS). The financial support offered for agriculture
reflects, to a large extent, the shift in the agricultural support policy enforced by
the government and the actual strength of the agricultural public investment [5,52].
Herein, this paper uses the proportion of agricultural expenditure in total fiscal
expenditure to measure it.

(5) Environmental regulation intensity (ER). It represents the trade-off made by the gov-
ernment between economic output and green development. Based on the research of
Tian et al. (2022), this paper uses the proportion of investment in environmental pollu-
tion control in regional GDP to measure the intensity of environmental regulation [5].
In the meantime, to overcome the data missing in individual years of investment in
environmental pollution control, the missing data are estimated by using the average
proportion of the investment completed in anti-industrial pollution projects to the
investment in environmental pollution control over the years. In addition, in order to
study the nonlinear impact of environmental regulation intensity on biased technical
change, the quadratic term of this variable is also included in the model.

(6) Agricultural disaster rate (DR). Given the special attributes of intertwined natural
reproduction and economic reproduction for agriculture industry, consideration is
given in this study to the impact of uncontrollable natural factors, such as agricultural
disasters on the bias of technical change, which is based on the reference made to the
study of Liu et al. (2021) [48]. In this paper, the agricultural disaster rate is measured
by the proportion of agricultural disaster area to total sown area.

(7) Structure of agricultural sector. Allowing for farming and animal husbandry as the
two major sectors of agricultural productions, as well as the significant contributors to
non-point environmental pollution and carbon emissions [5,59], the impact of different
sectors within agriculture on the green-biased technical change is investigated by
using two indicators. They are the ratio/share of the two segments: farming (PF) and
animal husbandry (AH), respectively.

4. Variable Definition and Data Sources

Given the availability of data, the consistency of statistical caliber, and the comparabil-
ity made to various accounting indicators, this paper selects the period from 1996 to 2017
as the research time span (uniformly deflating the output value indicators at 1978 constant
prices). On this basis, the provincial panel data in mainland China (excluding Hong Kong,
Macao, and Taiwan) is used to analyze the agricultural, green-biased technical change
and its influencing factors. Additionally, allowing for the traditional regional division and
regional economic development in China, the sample provinces are categorized into three
major regions: eastern, central, and western regions. Specifically, the eastern region covers
11 provinces: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shan-
dong, Guangdong, and Hainan; the central region comprises 8 provinces: Shanxi, Henan,
Anhui, Hubei, Jiangxi, Hunan, Jilin, and Heilongjiang; and the western region consists of
12 provinces, Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, Xinjiang, and Tibet. The data of Chongqing are incorporated
into Sichuan in the actual analysis, whereas Tibet is excluded from the sample due to the
particularity of resource endowment conditions and data availability. Finally, the panel
data of 29 provinces (including autonomous regions and municipalities) from 1996 to 2017
are gathered.



Int. J. Environ. Res. Public Health 2022, 19, 16369 9 of 24

There are extensive data sources used in this study, mainly including The China Statis-
tical Yearbook, China Rural Statistical Yearbook, China Agricultural Statistics 1949–2019,
Provincial-level Statistical Yearbooks, and National Bureau of Statistics. These indicators
and data sources are detailed as follows:

(1) Input factors. Three input factors, namely, labor (L), farmland (F), and capital (K), are
adopted. Among them, the labor input is represented by the number of employees
in the first industry at the end of the year; the farmland input is indicated by the
sown area of crops, considering the multiple cropping index; the capital input is
based on the treatment method proposed in the study of Li et al. (2014) and Feenstra
et al. (2015) [58,60], so as to estimate agricultural capital stock (at constant prices in
1978) through the perpetual inventory method. The key data of agricultural capital
stock accounting are sourced from Historical Data of China’s GDP Accounting and
Statistical Yearbook of China’s Fixed Assets Investment. Additionally, the sample
data used in this study are only available until 2017 because provincial fixed asset
investment statistics have ceased to be published since 2017.

(2) Output. Desirable output (Y) is defined as the gross output value of farming, forestry,
animal husbandry, and fishery (constant price in 1978). With regard to undesirable
output (B), there are two pollution sources adopted: agricultural carbon emission
(CO2) and agricultural non-point source pollution (ANSP, including chemical oxygen
demand (CODcr), total nitrogen (TN), total phosphorus (TP) emissions). Moreover,
the entropy method is applied to obtain the comprehensive index of agricultural
environmental pollution.

(3) Agricultural carbon emissions (CO2) estimation and data sources. This paper takes
into account a number of research results [5,6,61,62], with four aspects (agricultural
materials, livestock breeding, rice cultivation, and agricultural energy) selected to
measure the sources of agricultural carbon emission. Table 2 lists the specific reference
sources of emission coefficient. The first category, the carbon emissions from agri-
cultural materials, includes carbon emissions from the production and subsequent
utilization of chemical fertilizers, pesticides, and agricultural films. As chemical
fertilizer is an important contributor to China’s agricultural carbon emissions, its
accounting results will directly affect the accuracy of the total agricultural carbon
emissions. Therefore, unlike previous studies, this paper subdivides chemical fertiliz-
ers into nitrogen, phosphorus, potassium, and compound fertilizers, and uses carbon
emission coefficients of different chemical fertilizer varieties that reflect China’s actual
conditions to calculate them, respectively [63]. The second category is the carbon emis-
sions from rice planting, with the dual differences of rice planting cycle and region
taken into account for the choice over the rice carbon emission coefficient. The third
category, the carbon emissions from livestock and poultry breeding, includes CH4
and N2O emissions from livestock and poultry intestinal fermentation and excreta.
This is purposed mainly to investigate cattle (including beef cattle, dairy cattle, buf-
falo), sheep (including goats and sheep), pigs, poultry, and other major livestock and
poultry varieties. The fourth category, agricultural energy carbon emissions, involves
agricultural diesel oil as a major contributor. Therefore, the calculation formula for
agricultural carbon emission is expressed as follows:

C = ∑ Cc = ∑ Tcδc (10)

where C and Cc (subscript indicates the category of carbon sources) represent the total
amount of agricultural carbon emissions and the carbon emissions caused by various
specific carbon sources, respectively; Tc and δc denote the actual number of various types
of carbon sources and their corresponding carbon emission coefficient, respectively. Finally,
the calculated greenhouse gases are converted into standard CO2. According to the IPCC
Fourth Assessment Report, the CO2 conversion coefficients are 44/12, 25, and 298 for C,
CH4, and N2O, respectively.
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(4) Agricultural non-point source pollution (ANSP) estimation and data sources. The
unit analysis method is developed to investigate and calculate agricultural non-point
source pollution, including chemical oxygen demand (CODcr), total nitrogen (TN),
and total phosphorus (TP). According to the studies of Lai et al. (2004), Chen et al.
(2006), and Chen et al. (2021) [49,66,67], the following formula is used to calculate the
emissions of ANSP:

ANSP = ∑ EUactivity = ∑ ∑ EUclass =∑ ∑ ∑ EUnit × EUA (11)

Table 2. Agricultural carbon emission.

Source Sub Source Reference Sources for Carbon
Emission Coefficient

Agricultural materials
Chemical fertilizers (including nitrogen,
phosphorus, potassium and compound

fertilizers), pesticides, and agricultural films

Zhang et al. (2019), West (2002),
Cheng et al. (2011) [63–65]

Rice cultivation Early rice, middle rice, and late rice Min et al. (2012),
Tian et al. (2022) [5,61]

Livestock breeding * Cattle (including beef cattle, dairy cattle, buffalo),
sheep (including goats and sheep), pigs, poultry

Min et al. (2012),
Huang et al. (2022) [6,61]

Agricultural energy Agricultural diesel oil IPCC

Note: * Taking into account the growth cycle of livestock and the poultry breeding process, the breeding period of
cattle and sheep is more than 1 year, and the total amount of breeding is measured by the end of the inventory;
as the breeding period of pigs and poultry is less than 1 year, the total amount of breeding is measured by the
amount slaughtered in that year (the same with the ANSP estimation below).

ANSP refers to the non-point source pollution emission, and EUactivity represents the
agricultural production activities that lead to non-point source pollution. EUclass indicates
the type of pollutants, EUunit denotes the non-point source pollution unit, and EUA repre-
sents the single unit pollution discharge. The method used to calculate EUA is expressed
as follows:

EUA = ∑
i

EUiρij(1− ηi)Cij(EUij, S) = ∑
i

PEijρij(1− ηi)Cij(EUij, S) (12)

where EUi represents the statistic of unit i; ρij indicates the pollutant production intensity
coefficient of unit i; ηi refers to the coefficient that indicates the utilization efficiency of
related resources; PEij denotes the production of non-point source pollution; and Cij stands
for the emission coefficient of pollutant j of unit i, as determined mainly by unit and spatial
characteristics (S). Table 3 lists the agricultural non-point source pollution units in China.
For the emission coefficients of pollutants, they are based mainly on the reference made
to the study of Lai et al. (2004), Chen et al. (2021), and the Bulletin on the First National
Census of Pollution Sources [49,66].

Table 3. Agricultural non-point source pollution unit table.

Activity Class Unit Indicator Discharged
Pollutants

Fertilizer runoff

Nitrogenous
Fertilizer (NF)

NF use for grain crops
NF use for vegetables
NF use for other crops

NF consumption (104 t)

TN, TPPhosphate
Fertilizer (PF)

PF use for grain crops
PF use for vegetables
PF use for other crops

PF consumption (104 t)

Compound
Fertilizer (CF)

CF use for grain crops
CF use for vegetables
CF use for other crops

CF consumption (104 t)
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Table 3. Cont.

Activity Class Unit Indicator Discharged
Pollutants

Livestock and poultry
breeding *

Livestock
Cow and cattle Year-end inventory (104 head)

CODcr,
TN, TP

Pig Slaughtered number (104 head)
Sheep Year-end inventory (104 head)

poultry Poultry Slaughtered number (104 head)

Agricultural
organic waste

Grain crops

Rice
Wheat
Beans
Corn

Yield (104 t)
CODcr,
TN, TP

Economic crops Oil-bearing crops
Vegetables, fruits Yield (104 t)

Rural sewage
Rural wastes

Rural wastewater
Rural solid waste

Person Rural population (104 person) CODcr,
TN, TPPerson Rural population (104 person)

Note: * Taking into account the growth cycle of livestock and the poultry breeding process (the same with carbon
emission estimation above).

5. Empirical Results
5.1. Analysis of Green-Biased Technical Change in Chinese Agriculture

The geometric mean of the ML index was found to be slightly higher than 1 for the
29 provinces during the period from 1998 to 2017, which indicates an overall upward trend
in agricultural green total factor productivity (GTFP). With regard to the composition of
ML index of GTFP, stage characteristics are exhibited by the contribution of efficiency index
(EC) and technical change index (TC) to its growth. As shown in Figure 2a, prior to 2003, the
contribution of TC to ML growth was more significant compared to EC. During the decade
from 2003 to 2013, however, the TC index declined, and EC played a more significant role
in driving the increase of the ML index. In the years after 2013, the main contributor of
ML index growth was gradually converted to TC. Overall, the geometric mean of the TC
index is higher compared to EC, which means that the TC index is essential for promoting
agricultural GTFP growth. Furthermore, the TC index can be decomposed into bias of
technical change (BTC) and magnitude of technical change (MATC) indexes. As shown in
Figure 2b, although the MATC index made great contributions to the TC index in some
years, it continued to decline and fluctuated sharply since 2003, which is the main reason
why the TC index experienced a 10-year downturn. For a long time, there was a relative
stability maintained in the contribution of the BTC index to the TC index, and it reaches
above 1 in most years. Especially since 2003, it has played an increasingly prominent role in
maintaining the stability of the TC index. To sum up, biased technical change is crucial to
sustaining the enhancement of agricultural green total factor productivity in the long run.

Table 4 lists the results of BTC index decomposition for different regions. Specifically,
the average value of the OBTC index is slightly lower than 1 in the three regions, indicating
the room for further improvement of the OBTC index. From the regional differences of the
OBTC index, the improvement in the western and central regions is more significant than in
the eastern region over time. Except for the central region, the IBTC index is almost greater
than 1. That is to say, it exerts a positive effect on GTFP as a whole, and the advantage in
the IBTC index is the most significant in the eastern region.
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Table 4. Measurement results of BTC index decomposition of each region.

Year
OBTC IBTC

Eastern
Region

Central
Region

Western
Region

Eastern
Region

Central
Region

Western
Region

1998–2000 0.98259 0.99587 1.00060 1.00291 1.00066 1.00140
2001–2005 1.00251 0.99583 0.98209 1.00873 1.00087 1.00107
2006–2010 0.99784 0.99993 0.99981 1.01579 0.99761 1.00066
2011–2015 0.99211 0.99994 1.00321 1.01090 0.99871 0.99995
2016–2017 0.99865 1.00040 1.00165 1.01396 1.00187 1.00280
Average 0.99535 0.99834 0.99650 1.01068 0.99958 1.00091

Figure 3 shows the statistics of the IBTC and OBTC indexes for each province. Ac-
cording to the radar chart of the IBTC index, the average IBTC index exceeds 1 in most
provinces, and the most prominent input-biased technological progress is achieved mainly
in those provinces located in the eastern region, including Beijing, Tianjin, Jiangsu, Fujian,
Guangdong, and so on. Comparatively, the OBTC index is less than optimistic, basically
around “1”, with the radar map showing a more obvious regional “collapse” in some
eastern provinces. Notably, despite an excellent performance in the IBTC index in the
eastern region, there are also some downsides of the OBTC index (such as Guangdong
and Jiangsu), which has, to some extent, offset the growth of GTFP brought about by
input-biased technological progress.
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5.2. Bias Identification Analysis of Green Technical Change in Chinese Agriculture

Figure 4 shows the classified statistical results of agricultural input bias and output
bias during the period from 1998 to 2017. First of all, the factor combinations of capital-
labor and capital-land both show a relatively consistent trend; that is, China’s agricultural
production tends to use more capital while saving labor and land factors. As for the
input combination of labor-land factors, land use bias is slightly more than labor use bias.
Secondly, according to the trend of contribution made by input bias to technical change (the
statistical results of the classification of whether the IBTC index exceeds 1 in Figure 4), there
is a similar regularity, whether it is a combination of capital-labor factors or of capital-land
factors. That is to say, in provinces with IBTC > 1, the trend of capital substituting for
labor and land is obvious, especially noticeable in the years after 2003. It indicates the
promoting effect of capital-biased technical change on the improvement of GTFP. This
conclusion is consistent with the theory of induced technological innovation [10], and
coherent with the findings of Yin et al. (2018) [3]. In contrast, the input bias of labor or land
factor is reflected more as technical regress (IBTC < 1), which, to some extent, reduces GTFP.
Regarding the combination of land-labor factors, there is a certain trend of land replacing
labor factor when IBTC > 1. Similarly, labor is more likely to substitute for land factor when
IBTC < 1. This trend is more evident in the years after 2003. However, this trend is less
stable compared with the capital–labor and capital–land factor combinations.

According to the output bias statistics, the desirable output bias of agricultural pro-
duction is slightly more than the undesirable output bias in the provinces during the
period from 1998 to 2017. Moreover, as for the contribution of output bias to technological
progress, there is a certain trend of desirable output substituting for undesirable output on
the whole when OBTC > 1. However, the opposite is true when OBTC < 1. It is suggested
that green production technology exerts a positive effect on GTFP. By taking into account
the finding that the previously calculated average of the OBTC index is less than 1, it can
be found out that the promoting effect of agricultural green production technology remains
insufficient, which is a major constraint on the improvement of GTFP. Therefore, it is still
worth paying adequate attention to the environmental pollution caused by agricultural
production. However, it is also worth noting that the trend of desirable output substituting
for undesirable output has started to show a positive sign since 2008, especially in the
years after 2015. One of the primary reasons for this change in recent years is that the
state government has placed a significant emphasis on agricultural energy conservation
and emission reduction. The specific calculation results indicate that, since 2015, major
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pollution emissions such as agricultural carbon emissions and non-point source pollution
have all decreased to varying degrees, with the pollution of agricultural materials and
livestock and poultry decreasing the most. The former is mainly due to the “zero increase
in the use of chemical fertilizers and pesticides” launched by the Ministry of Agriculture
and Rural Affairs in 2015. The latter is mainly due to the “2015 pollution reduction target”
set in the 12th Five-Year Plan for the prevention and control of pollution from livestock and
poultry breeding.
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Table 5 lists the statistical results of input and output bias for various regions. Re-
garding the capital–labor and capital–land combinations, the eastern, central, and western
regions show a clear trend of capital substituting for labor and land. As for the land–labor
factor combination, the trend of land substituting for labor is most significant in the western
region. According to the statistical results of output bias, the substitution effect of the desir-
able output on the undesirable output of the national total sample is slightly stronger. As
suggested by the results of the regional comparison, the environmental problems caused by
agricultural production are most severe in the eastern region, which reaffirms the previous
analytical results.
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Table 5. Input bias and output bias statistics of each region.

Region
Capital and Labor Capital and Land Land and Labor Desirable and

Undesirable Output

Capital Labor Capital Land Land Labor Desirable
Output

Undesirable
Output

Eastern Region 164 56 156 64 110 110 90 130
Central Region 120 40 121 39 92 68 104 56
Western Region 161 39 160 40 123 77 129 69
Total samples 445 135 437 143 325 255 323 255

Note: Since the OBTC index of Sichuan in 1999 and Ningxia in 2014 is 1, these two data are missing in the output
bias statistics (the same below).

5.3. Analysis of Influencing Factors on Green-Biased Technical Change in Chinese Agriculture

According to previous findings, the agricultural production in China shows an evident
trend of capital substituting for labor and land. In addition to promoting IBTC, it also
stimulates the growth of agricultural GTFP. However, the capital-driven application of
agricultural technology has also caused environmental pollution problems at the output
end. To some extent, it offsets the contribution of BTC to the growth of agricultural GTFP.
Therefore, it is necessary to further analyze the influencing factors of green-biased technical
change in Chinese agriculture, so as to explore the source of its growth.

Table 6 reports the descriptive statistics of main variables. According to the standard
deviation, the variables lnDR and lnCD have the largest volatility, whereas the variables
ER and ER2 register the smallest volatility. The skewness values indicate that four variables
are skewed to the right and seven variables are skewed to the left. Seven variables have
leptokurtic distributions because their kurtosis values exceed the threshold of 3. In contrast,
four variables have platykurtic distributions because their kurtosis value fall below this
threshold. Moreover, since all Jarque–Bera test values pass the significance test, the null
hypothesis of normal distribution is rejected. Therefore, it indicates that the variables
selected are non-normally distributed.

Table 6. Descriptive statistics.

Mean Standard
Dev Minimum Maximum Skewness Kurtosis Jarque–Bera

Test Observations

lnIBTC 0.0038 0.0173 −0.00448 0.1035 2.9596 17.7605 6112 *** 580
lnOBTC −0.0029 0.0194 −0.1116 0.0510 −2.7606 16.4924 5136 *** 580
lnMA 1.8080 0.3505 0.8078 2.3921 −0.4792 2.6509 25.15 *** 580
lnUL −0.7793 0.3308 −1.6245 −0.1187 −0.2409 2.7983 6.593 ** 580
lnCD −1.2450 0.7378 −4.3559 −0.0721 −1.8913 8.3489 1037 *** 580
lnFS −2.3735 0.4069 −3.7297 −1.7259 −1.0571 4.0012 132.3 *** 580
ER 0.0128 0.0072 0.0029 0.0403 1.5223 5.5945 386.7 *** 580
ER2 0.0002 0.0003 8.41 × 10−6 0.0016 2.8749 12.2450 2865 *** 580

lnDR −1.5735 0.7650 −6.2146 −0.3368 −1.3051 6.4919 453.8 *** 573
lnPF −0.6497 0.1673 −1.0023 −0.3011 0.1179 2.4222 9.412 *** 580
lnAH −1.2168 0.2899 −1.8643 −0.6143 −0.0849 2.5101 6.499 ** 580

Note: ** p < 0.05, *** p < 0.01.

Before running any panel model on these data, a correlation matrix is computed to
inspect the correlations between all variables selected by this paper, as shown in Table 7:
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Table 7. Correlation matrix.

lnIBTC lnOBTC lnMA lnUL lnCD lnFS ER ER2 lnDR lnPF lnAH

lnIBTC 1.0000
lnOBTC / 1.0000
lnMA 0.1968 *** −0.0293 1.0000
lnUL 0.1972 *** −0.0667 0.5677 *** 1.0000
lnCD 0.1386 *** −0.1056 ** 0.3600 *** 0.3896 *** 1.0000
lnFS −0.1717 *** 0.1138 *** −0.3419 *** −0.1935 *** −0.3379 *** 1.0000
ER −0.0294 −0.0767 * −0.1062 ** 0.1811 *** 0.2118 *** 0.2150 *** 1.0000
ER2 0.0068 0.0068 ** −0.2106 *** 0.0314 0.0927 ** 0.1328 *** 0.7102 *** 1.0000

lnDR −0.1090 *** −0.0255 −0.4871 *** −0.2726 *** −0.1114 *** 0.1850 *** 0.0831 ** 0.0945 ** 1.0000
lnPF −0.1444 *** 0.0941 ** −0.4583 *** −0.2931 *** −0.2013 *** 0.3939 *** 0.1514 *** 0.1651 *** 0.1151 *** 1.0000
lnAH −0.1063 ** −0.0005 −0.1940 *** −0.0418 −0.0507 −0.0616 0.0915 ** 0.0688 * 0.1643 *** −0.2792 *** 1.0000

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
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According to the results displayed in Table 7, the correlation coefficient ranges from
−0.4871 to 0.7102. The results regarding the explanatory variables show that they are
not highly correlated and, therefore, there is no multicollinearity risk. Since none of the
correlations exceed the threshold of 0.8, it indicates that multicollinearity would not bias
the following econometric estimations [68–70]. Furthermore, variance inflation factor (VIF)
is adopted as an additional method to test multicollinearity risk. Since the maximum VIF
value is 2.54, which is much smaller than 5, the risk of multicollinearity can be excluded [68].
The coefficient covariance matrix is also computed as follows (Table 8):

Table 8. Coefficient covariance matrix.

lnIBTC lnOBTC lnMA lnUL lnFS ER ER2 lnDR lnPF lnAH

lnIBTC 0.0003
lnOBTC / 0.0004
lnMA 0.0011 −0.0003 0.1213
lnUL 0.0011 −0.0006 0.0628 0.1055
lnCD 0.0017 −0.0015 0.0921 0.0937
lnFS −0.0011 0.0008 −0.0456 −0.0225 0.1571
ER −0.0004 −0.0012 0.0329 0.0672 0.0856 1.0025
ER2 −0.0003 −0.0035 −0.1581 0.0252 0.1147 1.5377 4.6386

lnDR −0.0014 −0.0003 −0.1298 −0.0677 0.0561 0.0636 0.1576 0.5853
lnPF −0.0004 0.0002 −0.0271 −0.0164 0.0265 0.0257 0.0571 0.0148 0.0282
lnAH −0.0005 0.0001 −0.0184 −0.0019 −0.0087 0.0243 0.0099 0.0364 −0.0136 0.0840

Table 9 lists the LLC and Fisher tests (including Fisher-ADF and Fisher PP) for the
panel series as unit root tests to ensure the validity of the estimates. According to the
results, each variable has passed the unit root test. It suggests the stability of the panel data
in time series and its applicability for regression analysis.

Table 9. Unit root test.

Variables LLC Test ADF-Fisher Test PP-Fisher Test

LnIBTC −18.2225 *** 145.8261 *** 429.1882 ***
LnOBTC −22.0813 *** 292.1797 *** 620.4112 ***

lnMA −10.7147 *** 148.6061 *** 289.9698 ***
lnUL −31.8652 *** 381.2459 *** 87.7849 ***
lnCD −1.2960 * 107.0598 *** 78.1833 **
lnFS −5.7594 *** 492.2177 *** 125.3569 ***
ER −10.0466 *** 135.7645 *** 218.8106 ***

lnDR −11.8420 *** 132.1506 *** 383.0298 ***
lnPF −4.2352 *** 83.1229 ** 75.0570 *
lnAH −3.3904 *** 107.2212 *** 76.3836 *

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.

Herein, IBTC and OBTC are treated as explained variables, respectively, so as to
explore the differences in influencing factors among different regions through grouping
regression. The estimations are tested across the pooled OLS model, fixed effects model,
and random effects model. To estimate, the considered regression models were taken after
analyzing the results of the F test, the Breusch–Pagan LM test, and the Hausman test. A
summary of these test results are displayed as follows (Table 10):
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Table 10. Summary of F test, Breusch–Pagan LM test, and Hausman test results.

Explained Variable Test Statistics p Value

lnIBTC
F test 3.02 *** 0.0000

Breusch–Pagan LM test 25.18 *** 0.0000
Hausman test (Cross-section Random) 21.539 ** 0.0105

lnOBTC
F test 1.64 ** 0.0059

Breusch–Pagan LM test 2.66 * 0.0513
Hausman test (Cross-section Random) 16.370 * 0.0595

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.

According to the Table 10, the results indicate that the p value of Hausman test is
established to be less than 10% level of significance. Therefore, the null hypothesis that
the effects are random cannot be accepted. Additionally, the probability value of the
F test, as well as the Breusch–Pagan LM test, is found to have less than a 10% level of
significance. Hence, the fixed effects model is the most appropriate when testing the factors
that influenced green-biased technical change.

Columns (1), (2), (3), and (4) of Table 11 show the regression results obtained for the
influencing factors in IBTC across the country, eastern, central, and western regions, respec-
tively. Columns (5), (6), (7), and (8) show the regression results obtained for the influencing
factors in OBTC across the country, eastern, central, and western regions, respectively. Con-
sidering that the perturbation term of the econometric model may exhibit serial correlation,
heteroscedasticity, or self-correlation, and that the number of cross-sectional units in this
paper is larger than the time span, the standard error will be underestimated if the usual
panel data estimation method is used; therefore, the Driscoll–Kraay standard error is used
to correct for this [71,72].

Although the degree of marketization is insignificant in the national sample regression,
it exerts a significant positive effect on the IBTC in the eastern region and a positive effect
on the OBTC in the central region. The fiscal support offered for agriculture has the most
significant effect on IBTC in the eastern region, whereas the impact on OBTC fails the
significance test. The level of urbanization exerts not only a significant positive effect on
IBTC in the whole country and the western region, but also a significant negative effect
on OBTC in the eastern and central regions. This is because the rapid development of
urbanization in the eastern and central regions leads to a decline in the available arable
land area and the structure of consumption demand for agricultural products changes
due to a fast-paced increase of urban population. To ensure the prompt supply of “rice
bags” and “vegetable baskets”, it is inevitable for pollution emissions to increase because
of being output-oriented, which impedes the progress of OBTC. In the eastern region,
capital deepening exerts a significant positive effect on IBTC. According to the results of
previous input-biased identification analysis, the factor market develops well in the eastern
region, and the substitution of capital for labor and land factors is effectively promoted by
the accumulation and deepening of agricultural capital. This is beneficial in promoting
agricultural technological progress [3,58]. Additionally, capital deepening has a significant
negative effect on OBTC in the eastern and central regions, but this effect is found positive
in the western region. This means that the capital accumulation in the eastern and central
regions makes the agricultural technology promotion and production management model
still deviate from the goals of environment-friendly development. The disaster rate shows
a positive effect to IBTC in the eastern region. The possible reason is that the agricultural
capital in the eastern region is highly deepened, and the production can be rapidly adjusted
even in the face of natural disasters. However, the disaster rate exerts a significant negative
effect on the OBTC in the eastern region, indicating that natural disasters have lowered
output expectations and further suppressed the promotion of agricultural green technology.
The farming proportion and animal husbandry proportion both show a significant negative
effect to the regression of the national total sample and cause a significant positive effect on
IBTC only in the central region. This is because most provinces in the central region are the
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main grain producing areas, as well as the areas of highly developed animal husbandry.
Moreover, there are remarkable results achieved in the scale and intensive management of
planting and animal husbandry, which not only improves the marginal substitution rate of
dominant factors, but also promotes technological progress [3]. However, the two variables
make no significant contribution to OBTC in general. In particular, animal husbandry,
which is still an important source of non-point source pollution and agricultural carbon
emissions, inhibits the growth of OBTC [5,49].

Table 11. Regression analysis results of influencing factors on green-biased technical change in
Chinese agriculture.

Variables
lnIBTC lnOBTC

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Samples

Eastern
Region

Central
Region

Western
Region

Total
Samples

Eastern
Region

Central
Region

Western
Region

lnMA 0.0021
(0.0035)

0.0363 ***
(0.0087)

0.0083
(0.0112)

−0.0001
(0.0033)

0.0018
(0.0088)

−0.0173
(0.0362)

0.0198 *
(0.0101)

−0.0065
(0.0072)

lnUL 0.0052 *
(0.0027)

0.0027
(0.0077)

0.0053
(0.0044)

0.0042 **
(0.0014)

−0.0102 ***
(0.0028)

−0.0272 ***
(0.0054)

−0.0413 ***
(0.0071)

−0.0010
(0.0010)

lnCD −0.0025
(0.0017)

0.0117 **
(0.0052)

−0.0019
(0.0017)

−0.0013
(0.0009)

−0.0028
(0.0028)

−0.0300 ***
(0.0058)

−0.0058 ***
(0.0015)

0.0050 **
(0.0020)

lnFS 0.0100 ***
(0.0025)

0.0229 *
(0.0114)

0.0027
(0.0027)

−0.0003
(0.0022)

−0.0078
(0.0046)

−0.0061
(0.0138)

−0.0006
(0.0048)

−0.0082
(0.0062)

ER −0.7761 ***
(0.1574)

−2.0264 ***
(0.4751)

−0.1211
(0.3218)

0.3311 *
(0.1608)

−0.1151
(0.2135)

−1.8207 **
(0.7417)

0.8116
(0.8059)

0.9338 ***
(0.1812)

ER2 12.7479 ***
(4.4072)

50.7286 ***
(16.6306)

−2.9618
(10.5899)

−6.6953
(3.9956)

−1.8625
(6.2291)

45.4718 ***
(12.0672)

−15.2118
(16.2269)

−27.2374 ***
(7.4569)

lnDR 0.0006
(0.0004)

0.0028 **
(0.0011)

0.0007
(0.0009)

0.0003
(0.0003)

−0.0027 ***
(0.0008)

−0.0040 ***
(0.0012)

−0.0006
(0.0009)

−0.0002
(0.0010)

lnPF −0.0503 ***
(0.0147)

−0.1131 ***
(0.0243)

0.0499 *
(0.0260)

−0.0098
(0.0104)

0.0144
(0.0121)

0.0924 *
(0.0444)

−0.0420
(0.0266)

0.0078
(0.0049)

lnAH −0.0147 *
(0.0076)

−0.0358 ***
(0.0094)

0.0231 ***
(0.0079)

−0.0055
(0.0080)

−0.0177 ***
(0.0049)

−0.0088
(0.0123)

−0.0095
(0.0081)

−0.0070 **
(0.0032)

Constant −0.0084
(0.0128)

−0.0702 *
(0.0395)

0.0000
(0.0000)

0.0000
(0.0000)

−0.0836 **
(0.0343)

−0.0385
(0.0800)

0.0000
(0.0000)

0.0000
(0.0000)

R2 0.2776 0.3426 0.2151 0.2671 0.1649 0.2386 0.3680 0.2790
F test 167.8366 *** 5028.2179 *** 76.3014 *** 205.0315 *** 179.2126 *** 1455.8758 *** 189.5409 *** 118.9316 ***

Sample 573 213 160 200 573 213 160 200
Year Effect Yes Yes Yes Yes Yes Yes Yes Yes

Region Effect Yes Yes Yes Yes Yes Yes Yes Yes

Note: Driscoll–Kraay Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

With quadratic terms introduced, the variable intensity of environmental regulation
(ER) shows a relatively complex association with the effect of biased technical change. The
ER variable exerts a positive “U” effect on both IBTC and OBTC achieved in the eastern
region (“U” inflection point is 0.01997 and 0.02002, respectively). The impact of the ER
variable on IBTC and OBTC in the western region is positive and inverted “U”-shaped
(“U” inflection point is 0.01714), respectively. According to the current regional average
level of environmental regulation intensity, the western region is in the rising interval. By
contrast, the eastern region is on the left side of the “U” inflection point, which is in the
falling interval. This means that the current environmental regulation inhibits the growth
of IBTC in eastern region to some extent, but it could play a positive role beyond the
inflection point. Considering the regression results of environmental regulation on IBTC,
it can be found out that the “compliance costs theory” applies to the impact of current
environmental regulation on biased technological progress in the eastern region [41]. Since
agricultural production is in a period of green transformation, the increase in pollution
control costs will produce a crowding-out effect on the development and application of
green technologies, and the production technology with bad output will still bring great
benefits. However, this problem can be alleviated by further enhancing environmental
regulation (crossing the “U” inflection point) to enter the “innovation and compensation”
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stage [42]. The practicalities of resource endowment and agricultural production in the
western region are starkly different than in the eastern region, and the western region is
less polluted. Currently, environmental regulation in the western region has a positive
impact on both IBTC and OBTC, but the growth of OBTC will be inhibited when it is further
improved (crossing the “U” inflection point).

6. Conclusions and Policy Implications

Based on the DEA-SBM model considering undesired output, this paper decomposes
the agricultural green total factor productivity index (ML) to obtain the green-biased
technical change (BTC) index in Chinese agriculture. Then, this paper selects agricultural
carbon emissions and non-point source pollution into undesired output simultaneously,
so as to calculate and identify the bias and characteristics of agricultural green technology
change made in 29 Chinese provinces (including autonomous regions and municipalities)
from 1998 to 2017. Furthermore, the impact mechanism of green-biased technical change is
explored. The main conclusions of this study are presented as follows:

(1) During the research period from 1998 to 2017, technical change is the key driving force
for improving China’s agricultural green total factor productivity, and green-biased
technical change is crucial to maintaining the long-term and stable improvement of
technical change. In contrast, the IBTC index plays a significant role in promoting
technological progress, whereas the OBTC index impedes technological progress to
some degree. According to the results of regional comparison, the BTC index in
the eastern region shows a trend of “one high and one low”. Specifically, among
all regions, the eastern region has the highest IBTC index, whereas its OBTC index
is the lowest.

(2) According to the identification results about the characteristics of green-biased techni-
cal change, China’s agricultural production shows a clear tendency of capital substi-
tuting for labor and land during the period from 1998 to 2017. On the one hand, it
promotes the growth of IBTC, thus enhancing the improvement of agricultural GTFP.
On the other hand, the application of agricultural technology with capital support
continues to cause severe environmental problems. In general, the substitution effect
of desirable output on undesirable output at the national level is slightly stronger and
the advantage is not immediately apparent, but there has been a positive trend over
the recent few years. The results of the regional comparison show that the eastern
region has the most severe environmental problems with agricultural production.

(3) As indicated by the regional grouping regression results obtained for the influencing
factors of green-biased technical change, IBTC is promoted by the degree of marketi-
zation, the level of urbanization, the degree of capital deepening, and the intensity of
financial support for agriculture. By contrast, the OBTC is mostly inhibited by these
variables. As for the proportion of the farming sector and animal husbandry, it only
has a positive impact on the growth of IBTC in the central region. Differently, the pro-
portion of animal husbandry exerts a negative effect on OBTC to some extent. There
is regional heterogeneity observed in the impact of environmental regulation intensity
on biased technical change. In the eastern region, there is a period of transition from
the “compliance costs” stage to the “innovation compensation” stage, whereas in the
western region, there is a positive impact on biased technical change, which is due to
its special resource endowment and economic development characteristics. However,
a further enhancement of environmental regulation in the western region will make it
counterproductive.

The above conclusions have significant implications for the guidance on the agri-
cultural greening transformation and development in China. The main points are stated
as follows:

(1) There is a close correlation between the biased changes in agricultural technology
progress and the factor endowment structure of agricultural development in different
periods. As an important source of agricultural growth in China’s transition period,
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the substitution of agricultural capital for labor and land factors represents an in-
evitable choice to ensure the continued balance between the supply and demand of
agricultural products, given the current conflict between people and land and the
development of a new period of urbanization. For compliance with this change in
the mode of agricultural production, it is necessary to deepen the market-oriented
reform of factors while giving full play to the market mechanism, and to provide
an institutional guarantee for the deepening of agricultural capital, the transfer of
agricultural labor force, and the orderly circulation and large-scale use of land.

(2) The biased technical change of agriculture should be evaluated differently based on
the circumstances of various provinces. Regions should seize the opportunities pre-
sented by the changes in factor endowments during the transformation of agriculture,
maximizing the use of the regional advantages’ resource endowments and adapting
their resources to local conditions in order to optimize the allocation and combination
of capital, labor, and land. Through the optimization of industrial structure, opera-
tions on a moderate size and related facilities are enhanced, the regional comparative
advantage is exerted, and the biased technical progress is steered in accordance with
the regional agricultural production mode.

(3) The development of agricultural green technology should be actively guided toward
the stage of “innovation compensation” by implementing effective strategies of in-
tegrated innovation and demonstration promotion; for example: strengthening the
guiding role of financial, taxation, fiscal, and other preferential means in the invest-
ment of agricultural enterprises in green technology R&D development; establishing a
mechanism for the in-depth integration of industry, university, and research institutes,
strengthening green-oriented technology research in agriculture, and bringing into
play the synergistic innovation effect; stimulating the transformation and application
of green technology achievements in agriculture by improving a multi-body and
multi-dimensional agricultural science and technology promotion network, as well as
pilot demonstrations in agricultural green development pioneer areas.

(4) Reasonable environmental regulations may effectively minimize pollution emissions
in the production process, conserve the input of production factors, and hasten the
transformation of agricultural technology progress towards energy conservation and
emission reduction. On the one hand, local governments should control the intensity
of environmental regulations and properly balance economic performance and envi-
ronmental performance based on the phased characteristics of regional agricultural
development. On the basis of the comprehensive treatment of agricultural pollu-
tion, the reduction of agricultural inputs and their scientific use should be further
promoted, and the resource utilization of livestock and poultry manure should be
strengthened. On the other side, the government should energize the market-driven
environmental regulations and build and enhance ecological compensation methods
such as resource use rights, emissions trading, and carbon emissions trading.

(5) Lastly, from the perspective of strategic foresight, with the rapid development of digi-
talization and intelligence and their deep penetration into agriculture, as well as other
industries, the trend of capital substituting for labor and land will become increas-
ingly apparent, having a revolutionary effect on the development of agricultural green
technology. To promote the high-quality development of agriculture, it is essential
to seize this period of strategic opportunity and layout in advance, and effectively
implement the effective agglomeration and optimal allocation of agricultural capital,
land, labor, and so on.
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